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Abstract

A graph is said to be symmetric if its automorphism group acts transitively on
its arcs. In this paper, a complete classification of connected pentavalent symmetric
graphs of order 12p is given for each prime p. As a result, a connected pentavalent
symmetric graph of order 12p exists if and only if p = 2, 3, 5 or 11, and up to
isomorphism, there are only nine such graphs: one for each p = 2, 3 and 5, and six
for p = 11.
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1 Introduction

Throughout this paper graphs are assumed to be finite and, unless stated otherwise, sim-
ple, connected and undirected. For group-theoretic concepts or graph-theoretic terms not
defined here we refer the reader to [31, 35] or [1, 2], respectively. Let G be a permutation
group on a set Ω and v ∈ Ω. Denote by Gv the stabilizer of v in G, that is, the subgroup
of G fixing the point v. We say that G is semiregular on Ω if Gv = 1 for every v ∈ Ω and
regular if G is transitive and semiregular.

For a graph X, denote by V (X), E(X) and Aut(X) its vertex set, its edge set and its
full automorphism group, respectively. For any u, v ∈ V (X), denote by {u, v} the edge
incident to u and v in X, and by X1(v) the neighborhood of v.

A graph X is said to be G-vertex-transitive if G ≤ Aut(X) acts transitively on V (X).
X is simply called vertex-transitive if it is Aut(X)-vertex-transitive. An s-arc in a graph
is an ordered (s + 1)-tuple (v0, v1, · · · , vs−1, vs) of vertices of the graph X such that vi−1
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is adjacent to vi for 1 ≤ i ≤ s, and vi−1 6= vi+1 for 1 ≤ i ≤ s − 1. In particular, a
1-arc is just an arc and a 0-arc is a vertex. For a subgroup G ≤ Aut(X), a graph X
is said to be (G, s)-arc-transitive or (G, s)-regular if G is transitive or regular on the set
of s-arcs in X, respectively. A (G, s)-arc-transitive graph is said to be (G, s)-transitive

if it is not (G, s + 1)-arc-transitive. In particular, a (G, 1)-arc-transitive graph is called
G-symmetric. A graph X is simply called s-arc-transitive, s-regular or s-transitive if it is
(Aut(X), s)-arc-transitive, (Aut(X), s)-regular or (Aut(X), s)-transitive, respectively.

The problem of classifying symmetric graphs has received considerable attention over
forty years, beginning with a classification of symmetric graphs of prime order [4]. Fol-
lowing this, by using deep group theory, all symmetric graphs of order 2p, 3p or qp were
classified in [5, 34, 29, 30], where p, q are distinct primes. Recently, Li [22] classified
vertex-primitive and vertex-biprimitive s-transitive graphs for s ≥ 4, and Fang et al. [8]
classified vertex-primitive 2-regular graphs. For more results on symmetric graphs with
general valencies, see, for example, [10, 20, 21, 22]. Despite all of these efforts, however,
further classifications of symmetric graphs with general valencies seem to be very difficult.
For example, the classification of symmetric graphs of order 4p for p a prime has been
considered for many years by several authors, but it still has not been achieved.

Symmetric graphs with certain valency have also been extensively studied in literature.
For example, Conder and Dobcsányi [6] exhausted all cubic symmetric graphs on up to
768 vertices. Let p and q be primes. By analyzing automorphism groups of graphs, a
classification of cubic symmetric graphs of order 2p2 was given in [11], and together with
covering techniques, cubic symmetric graphs of order np or np2 with 4 ≤ n ≤ 10 were
classified in [12, 13, 14, 15]. Recently, Oh [27, 28] classified cubic symmetric graphs of
order 14p or 16p. The classification of tetravalent s-transitive Cayley graphs on abelian
groups were given in [38]. Zhou and Feng [42] gave a classification of tetravalent 1-regular
graphs of order 2pq, and they also classified tetravalent s-transitive graphs of order 4p
or 2p2 in [39, 40]. For the pentavalent symmetric graphs, Li and Feng [23] classified
pentavalent 1-regular graphs of square free order, and Hua and Feng [17, 18] classified
pentavalent symmetric graphs of order 2pq or 8p. In this paper, we classify pentavalent
symmetric graphs of order 12p for each prime p.

2 Preliminaries

In this section, we introduce some notational conventions and preliminary results. We
denote by Zn, Fn, D2n, An and Sn the cyclic group of order n, the Frobenius group of
order n, the dihedral group of order 2n, the alternating group and the symmetric group
of degree n, respectively. Denote by Kn the complete graph of order n, and by Kn,n the
complete bipartite graph of order 2n.

For a subgroup H of a group G, denote by CG(H) the centralizer of H in G and by
NG(H) the normalizer of H in G.

Proposition 2.1 ([19, Chapter I, Theorem 4.5]) The quotient group NG(H)/CG(H) is

isomorphic to a subgroup of the automorphism group Aut(H) of H.
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The following proposition is due to Burnside.

Proposition 2.2 ([31, Theorem 8.5.3]) Let p and q be primes, and let m and n be non-

negative integers. Then every group of order pmqn is solvable.

From [17, Proposition 2.3] we obtain the following proposition.

Proposition 2.3 Let p be a prime, and let G be a non-abelian simple group of order

2i·3j·5·p with 1 ≤ i ≤ 19 and 1 ≤ j ≤ 3. Then G is one of the groups listed in Table 1.

Table 1: Non-abelian simple {2, 3, 5, p}-groups

3-prime factor 4-prime factor
G Order G Order
A5 22 · 3 · 5 A7 23 · 32 · 5 · 7
A6 23 · 32 · 5 A8 26 · 32 · 5 · 7

PSL(2, 7) 23 · 3 · 7 PSL(2, 11) 22 · 3 · 5 · 11
PSL(2, 23) 23 · 32 · 7 PSL(2, 24) 24 · 3 · 5 · 17
PSL(2, 17) 24 · 32 · 17 PSL(2, 19) 22 · 32 · 5 · 19
PSL(3, 3) 24 · 33 · 13 PSL(2, 31) 25 · 3 · 5 · 31
PSU(3, 3) 25 · 33 · 7 PSL(3, 4) 26 · 32 · 5 · 7
PSU(4, 2) 26 · 34 · 5 M11 24 · 32 · 5 · 11

M12 26 · 33 · 5 · 11

Let X be a connected G-vertex-transitive graph with G ≤ Aut(X), and let N be a
normal subgroup of G. The quotient graph XN of X relative to N is defined as the graph
with vertices the orbits of N on V (X) and with two orbits adjacent if there is an edge in
X between those two orbits. In view of [24, Theorem 9], we have the following:

Proposition 2.4 Let X be a connected pentavalent (G, s)-arc-transitive graph for some

s ≥ 1, and let N be a normal subgroup of G with more than two orbits on V (X). Then

XN is also a pentavalent symmetric graph and N is the kernel of the action of G on

V (XN). Moreover, N is semiregular on V (X) and G/N is an s-arc-transitive subgroup

of Aut(XN).

The next proposition determines the solvable vertex stabilizers of pentavalent sym-
metric graphs.

Proposition 2.5 ([43, Theorem 4.1]) Let X be a connected pentavalent (G, s)-transitive

graph for some s ≥ 1. If the vertex stabilizer Gv of a vertex v ∈ V (X) in G is solvable

then s ≤ 3. Furthermore,

(1) If s = 1 then Gv is isomorphic to Z5, D10 or D20;

(2) If s = 2 then Gv is isomorphic to F20 or F20 × Z2;

(3) If s = 3 then Gv is isomorphic to F20 × Z4.
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Let X be a graph. The standard double cover X(2) of X is defined as the graph with
vertex set {u1, u2 | u ∈ V (X)} and edge set {{u1, v2}, {u2, v1} | {u, v} ∈ E(X)}. It is
easy to see that Aut(X) × Z2 is a group of automorphisms of X(2). Let X be connected.
Then X(2) is connected if and only X is not bipartite.

Proposition 2.6 Let X be a connected G-symmetric bipartite graph of valency at least

2, and let G contain a normal subgroup N of order 2. If the involution in N interchanges

the two bipartite sets of X, then X is a standard double cover of the quotient graph XN .

Proof. Write N = 〈z〉. Let U be a set with cardinality |V (X)|/2, and let U1 = {u1 | u ∈
U} and U2 = {u2 | u ∈ U} be the bipartite sets of X. Then z interchanges u1 and u2 for
any u ∈ U . Since N EG, {u1, u2} cannot be an edge of X because X has valency at least
2. Take an arbitrary edge {u1, v2} in X. Since uz

1 = u2 and vz
2 = v1, {u2, v1} is also an

edge of X. Clearly, the quotient graph XN is isomorphic to the graph with vertex set U
and edge set {{u, v} | {u1, v2} ∈ E(X), {u2, v1} ∈ E(X)}. Thus, X ∼= X

(2)
N .

3 Constructions of pentavalent symmetric graphs

In this section, we shall construct some pentavalent symmetric graphs. To do this, we
need to introduce the so called coset graph (see [26, 33]) constructed from a finite group
G relative to a subgroup H of G and a union D of some double cosets of H in G such
that D−1 = D. The coset graph Cos(G, H, D) of G with respect to H and D is defined to
have vertex set [G : H ], the set of right cosets of H in G, and edge set {{Hg, Hdg} | g ∈
G, d ∈ D}. The graph Cos(G, H, D) has valency |D|/|H| and is connected if and only if
D generates the group G. The action of G on V (Cos(G, H, D)) by right multiplication
induces a vertex-transitive automorphism group, which is arc-transitive if and only if D
is a single double coset. Moreover, this action is faithful if and only if HG = 1, where HG

is the largest normal subgroup of G in H . Clearly, Cos(G, H, D) ∼= Cos(G, Hα, Dα) for
every α ∈ Aut(G).

Conversely, let X be a A-vertex-transitive graph with A ≤ Aut(X). By [33], the graph
X is isomorphic to a coset graph Cos(A, H, D), where H = Au is the vertex stabilizer of
u ∈ V (X) in A and D consists of all elements of A which map u to one of its neighbors.
It is easy to show that HA = 1 and that D is a union of some double cosets of H in
A satisfying D = D−1. Assume that A is arc-transitive and that g ∈ A interchanges u
and one of its neighbors. Then g2 ∈ H and D = HgH . Furthermore, g can be chosen
as a 2-element in A, and the valency of X is |D|/|H| = |H : H ∩ Hg|. For more details
regarding coset graphs, see, for example, [9, 24, 33].

Now we introduce three pentavalent symmetric graphs of order 6p for some prime p
which were constructed in [17, Section 3].

Example 3.1 (1) Let T = PSL(3, 4). Then T has two conjugacy classes of maximal

subgroups isomorphic to Z4
2 ⋊ A5, which are fused by an automorphism g of T of order 2.
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Let H = Z4
2 ⋊A5 be a subgroup of T . Set G = 〈T, g〉, and Denote G42 = Cos(G, H, HgH),

where 42 means the order of G42. In particular, G42 is bipartite.

(2) Let G = PSL(2, 11). Then G has a subgroup H ∼= D10 and an involution g such

that |HgH|/|H| = 5 and 〈H, g〉 = G. Denote G66 = Cos(G, H, HgH). In particular, G66

is not bipartite.

(3) Let G = PGL(2, 19). Then G has a subgroup H ∼= A5 and an involution g such

that |HgH|/|H| = 5 and 〈H, g〉 = G. Denote G114 = Cos(G, H, HgH). In particular, G114

is bipartite.

Denote by I12 the Icosahedron graph, and by K6,6 − 6K2 the complete bipartite graph
of order 12 minus a one-factor. From [25], it is easy to see that there exists no connected
pentavalent symmetric graph of order 18. Together with [17, Theorems 4.1 and 4.2], we
have the following proposition.

Proposition 3.2 Let X be a connected pentavalent symmetric graph of order 6p for a

prime p. Then one of the following occurs:

(1) X ∼= I12 and Aut(X) ∼= A5 × Z2 with p = 2;

(2) X ∼= K6,6 − 6K2 and Aut(X) ∼= S6 × Z2 with p = 2;

(3) X ∼= G42 and Aut(X) ∼= Aut(PSL(3, 4)) with p = 7;

(4) X ∼= G66 and Aut(X) ∼= PGL(2, 11) with p = 11;

(5) X ∼= G114 and Aut(X) ∼= PGL(2, 19) with p = 19.

In what follows, we shall construct several pentavalent symmetric graphs of order 12p
for some prime p.

Construction I: Let G = A6. Take a Sylow 5-subgroup, say P , of G, and set H = NG(P ).
From Atlas [7, pp.4] it is easily known that H ∼= D10. Note that all involutions in G are
conjugate each other. For any involution x ∈ H , we have CG(x) ∼= D8. Take an element
g of order 4 in CG(x). Denote G36 = Cos(G, H, HgH).

Lemma 3.3 The graph G36 is a connected 2-transitive graph of order 36 and Aut(G36) ∼=
Aut(A6). Furthermore, every connected pentavalent symmetric graph of order 36 admit-

ting A6 as an arc-transitive automorphism group is isomorphic to G36.

Proof. By Construction I, g2 = x ∈ H . So, |HgH|/|H| = 5. From Atlas [7, pp.4]
we may easily see that 〈H, g〉 = G. This implies that Cos(G, H, HgH) is a connected
pentavalent symmetric graph of order 36. By Magma [3], Aut(G36) ∼= Aut(A6) and G36 is
2-transitive.

Let X be a connected pentavalent symmetric graph of order 36 admitting G = A6 as
an arc-transitive group of automorphisms. For any v ∈ V (X), the vertex stabilizer Gv has
order 10. From Proposition 2.5 it follows that Gv

∼= D10. Since all Sylow 5-subgroups of
G are conjugate, their normalizers are also conjugate. This implies that Gv is conjugate
to H . Without loss of generality, assume that Gv = H . Then X ∼= Cos(G, H, HfH),
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where f is a 2-element in G such that f 2 ∈ H , |H|/|Hf ∩ H| = 5 and 〈f, H〉 = G. So,
Hf ∩ H = 〈y〉 ∼= Z2 and f ∈ CG(y). Since H ∼= D10, we have yz = x for some z ∈ H .
Set d = f z. Then Cos(G, H, HfH) = Cos(G, H, HdH). Furthermore, d2 = (f 2)z ∈ H ,
|H|/|Hd ∩ H| = 5, 〈d, H〉 = G and d ∈ CG(x). By Magma [3], if d is an involution,
then 〈d, H〉 < G, which is impossible. Thus, d = g or g−1. Again by Magma [3],
Cos(G, H, HgH) ∼= Cos(G, H, Hg−1H). Consequently, X ∼= Cos(G, H, HgH) = G36.

For a finite group G and a subset S of G such that 1 /∈ S and S = S−1, the Cayley

graph Cay(G, S) on G with respect to S is defined to have vertex set G and edge set
{{g, sg} | g ∈ G, s ∈ S}. Given g ∈ G, define the permutation R(g) on G by x 7→ xg,
x ∈ G. Then R(G) = {R(g) | g ∈ G} is a permutation group isomorphic to G, which
acts regularly on the vertex set V (Cay(G, S)). It is proved that a graph X is isomorphic
to a Cayley graph on a group G if and only if Aut(X) has a regular subgroup isomorphic
to G (see [33, Lemma 4]). A Cayley graph Cay(G, S) is called normal if R(G) is a
normal subgroup in Aut(Cay(G, S)). The following pentavalent symmetric graph was
first constructed in [41, Corollary 5.2].

Construction II: Let G60 = Cay(A5, T ) with T = {(1 4)(2 5), (1 3)(2 5), (1 3)(2 4),
(2 4)(3 5), (1 4)(3 5)}. Then every connected pentavalent symmetric Cayley graph on A5

is isomorphic to G60. Furthermore, G60 is a normal Cayley graph and Aut(G60) ∼= A5⋊D10.

Construction III: Let G be a primitive subgroup of the symmetric group S12 of degree
12, which is isomorphic to PGL(2, 11). Let T be the socle of G. Then T ∼= PSL(2, 11).
Choose the following elements in T :

a = (3 11 9 7 5)(4 12 10 8 6), b1 = (1 12)(2 7)(3 10)(4 8)(5 11)(6 9),
b2 = (1 12)(2 6)(3 5)(4 9)(7 10)(8 11), b3 = (1 12)(2 4)(3 8)(5 7)(6 10)(9 11),

and choose the following elements in G:

c = (1 2)(3 4)(5 12)(6 11)(7 10)(8 9),
d1 = (1 12)(2 5)(3 6)(4 11)(8 9), d2 = (1 6 2 11)(3 12 4 5)(7 8 10 9).

Then T = 〈a, bi〉 and G = 〈a, c, dj〉 for each 1 ≤ i ≤ 3 and 1 ≤ j ≤ 2. Set H1 = 〈a〉 and
H2 = 〈a, c〉. Define five coset graphs as following:

G1
132 = Cos(T, H1, H1b1H1), G2

132 = Cos(T, H1, H1b2H1), G3
132 = Cos(T, H1, H1b3H1),

G4
132 = Cos(G, H2, H2d1H2), G5

132 = Cos(G, H2, H2d2H2).

Lemma 3.4 The graphs Gi
132 (1 ≤ i ≤ 5) are pairwise non-isomorphic connected pentava-

lent symmetric graphs of order 132 with Aut(G1
132) = PSL(2, 11) × Z2 and Aut(Gi

132) =
PGL(2, 11) for 2 ≤ i ≤ 5. Furthermore, every connected pentavalent symmetric graph of

order 132 admitting PSL(2, 11) as an arc-transitive automorphism group is isomorphic to

one of Gi
132 (1 ≤ i ≤ 3), and every connected pentavalent symmetric graph of order 132

admitting PGL(2, 11) as an arc-transitive automorphism group is isomorphic to one of

Gi
132 (2 ≤ i ≤ 5).
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Proof. By Magma [3], Gi
132 (1 ≤ i ≤ 5) are pairwise non-isomorphic connected pentava-

lent symmetric graphs of order 132, and Aut(G1
132)

∼= PSL(2, 11) × Z2 and Aut(Gi
132)

∼=
PGL(2, 11) for 2 ≤ i ≤ 5.

Let X be a connected pentavalent symmetric graph of order 132 admitting T as an
arc-transitive group of automorphisms. Then Tv

∼= Z5, and X ∼= Cos(T, Tv, TvgTv), where
g is a 2-element in T such that g2 ∈ Tv. Furthermore, |TvgTv|/|T | = 5 and 〈Tv, g〉 = T .
Since Tv

∼= Z5, we have g2 = 1. By Magma [3], g has 30 choices and let S be the set of
all such involutions. By Atlas [7, pp.7], Aut(T, Tv) ∼= D20 and by Magma [3], the action
of Aut(T, Tv) on S has three orbits with b1, b2 and b3 as their representatives. It follows
that X is isomorphic to G1

132, G
2
132 or G3

132

Now let X be a connected pentavalent symmetric graph of order 132 admitting G as
an arc-transitive automorphism group. Then Gv

∼= D10 for any v ∈ V (X). Since T is
normal in G, by Proposition 2.4, T has at most two orbits on V (X). If T is transitive
on V (X), then T is arc-transitive on X. From the argument in the above paragraph it is
known that X is isomorphic to G2

132 or G3
132. In what follows, assume that T has two orbits

on V (X). Then X is bipartite and Gv = Tv
∼= D10. Since G has one conjugacy class of

subgroups isomorphic to D10, we may assume that Gv = H2. So, X ∼= Cos(G, H2, H2gH2),
where g ∈ G is a 2-element such that g2 ∈ H2, |H2gH2|/|H2| = 5 and 〈H2, g〉 = G.
Set Hg

2 ∩ H2 = 〈x〉. Since H2
∼= D10, x = cy for some y ∈ H2. Set d = gy. Then

d ∈ CG(c) ∼= D24 and Cos(G, H2, H2gH2) = Cos(G, H2, H2dH2). Since 〈H2, d〉 = G, by
Magma [3], g has six choices, and the resulting coset graphs corresponding to these six
2-elements form two non-isomorphic graphs. It follows that X ∼= G4

132 or G5
132.

4 Classification

In this section, we classify pentavalent symmetric graphs of order 12p for p a prime. Let
G be a simple group and Z an abelian group. We call an extension E = Z.G of Z by G a
central extension of G if Z ≤ Z(E). If E is perfect, that is, the derived group E ′ = E, we
call E a covering group of G. Schur [19] proved that for every simple group G there is a
unique maximal covering group M such that every covering group of G is a factor group
of M . This group M is called the full covering group of G, and the center of M is called
the Schur multiplier of G, denoted by Mult(G).

Theorem 4.1 Let p be a prime. A connected pentavalent graph of order 12p is symmetric

if and only if it is isomorphic to one of the graphs in Table 2. Furthermore, all graphs in

Table 2 are pairwise non-isomorphic.

Proof. Note that the Icosahedron graph I12 and the graph G66 (Example 3.1) are not

bipartite. Their the standard double covers I
(2)
12 and G

(2)
66 are connected pentavalent sym-

metric graphs. By Magma [3], Aut(I
(2)
12 ) ∼= A5 × Z2

2 and Aut(G
(2)
66 ) ∼= PGL(2, 11) × Z2.

Together with Constructions I, II, III and Lemmas 3.3-3.4, all graphs in Table 2 are pair-
wise non-isomorphic connected pentavalent symmetric graphs. To complete the proof, it
suffices to prove the necessity.
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Table 2: Pentavalent symmetric graphs of order 12p

X s-transitive Aut(X) Comments

I
(2)
12 1-transitive A5 × Z2

2 p = 2
G36 2-transitive Aut(A6) Construction I, p = 3
G60 1-transitive A5 ⋊ D10 Construction II, p = 5

G
(2)
66 1-transitive PGL(2, 11) × Z2 p = 11

G1
132 1-transitive PSL(2, 11) × Z2 Construction III, p = 11

G2
132 1-transitive PGL(2, 11) Construction III, p = 11

G3
132 1-transitive PGL(2, 11) Construction III, p = 11

G4
132 1-transitive PGL(2, 11) Construction III, p = 11

G5
132 1-transitive PGL(2, 11) Construction III, p = 11

By [32, Section 5.1], there is a unique connected pentavalent symmetric graph of order

24, that is, the standard double cover I
(2)
12 of the Icosahedron graph I12. In what follows

we assume that p ≥ 3. Let X be a connected pentavalent symmetric graph of order
12p. Set A = Aut(X). Take v ∈ V (X). By Weiss [36, 37], |Av| | 217·32·5 and hence
|A| = |V (X)||Av| = 2i·3j·5·p with 2 ≤ i ≤ 19 and 1 ≤ j ≤ 3. We divide the proof into
the following two cases.

Case 1 A has a solvable minimal normal subgroup.

Let N be a solvable minimal normal subgroup of A. Then N is an elementary abelian
q-group with q = 2, 3 or p. Since X has order 12p, by Proposition 2.4, N is semiregular
on V (X) and the quotient graph XN of X relative to N is a pentavalent symmetric graph
with A/N as an arc-transitive automorphism group. Clearly, the order of XN is even and
at least 6. This implies that N is isomorphic to Z2, Z3 or Zp.

Assume that N ∼= Z3 or Zp. Then |XN | = 4p or 12. It follows from [17, Theorem 4.1]
that XN is isomorphic to the Icosahedron graph I12 or the complete bipartite graph of
order 12 minus a one-factor K6,6 − 6K2.

Let XN
∼= I12. Then A/N ≤ Aut(I12) ∼= A5 × Z2, which has a unique subgroup of

order 60. Since A/N is arc-transitive on XN , we have 60 | |A/N |. Thus, A/N contains
an arc-transitive subgroup H/N ∼= A5. Set C = CH(N), the centralizer of N in H . Then
N ≤ C, and by Proposition 2.1, H/C . Aut(N) ∼= Zp−1. As H/N ∼= A5, we have
C = H , and hence N is in the center Z(H) of H . Since H is non-solvable, its derived
subgroup H ′ is also non-solvable. Then 1 < H ′N/N E H/N , and hence H ′N/N = H/N .
If N ≤ H ′ then H ′ = H , and hence H is a covering group of A5. However, by [19,
Chapter V,Theorem 25.7], the Schur multiplier of A5 is Z2, a contradiction. Thus, N � H ′.
Then N ∩H ′ = 1, and hence H = N ×H ′ with H ′ ∼= A5. If H ′ has more than two orbits
on V (X), then by Proposition 2.4, H ′ is semiregular on V (X). This forces that |H ′| | 12p
and |H ′| < 12p, and hence H ′ is solvable, a contradiction. If H ′ has two orbits then X
is bipartite with the two orbits of H ′ as the bipartite sets. Since |N | is odd, N preserves
the bipartite sets and hence H cannot be arc-transitive, a contradiction. Consequently,
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H ′ is transitive on V (X). So, p = 5 and H ′ is also regular on V (X). Thus, X is an
arc-transitive Cayley graph on H ′ ∼= A5. By Construction II, X ∼= G60.

Let XN
∼= K6,6 − 6K2. Then A/N ≤ Aut(XN) ∼= S6 × Z2. Since A/N is arc-

transitive on XN , we have 60 | |A/N |. By Magma [3], A/N has an arc-transitive subgroup
H/N ∼= A5 × Z2 or S5. It follows that H/N has a normal subgroup M/N ∼= A5. Since
XN is bipartite, M/N has two orbits on V (XN) and hence M has two orbits on V (X).
With a similar argument as in the above paragraph, it can be deduced that M = M ′ ×N
with M ′ ∼= A5. Since M ′ is characteristic in M , M ′ is normal in H . Clearly, M ′ has at
least two orbits on V (X). If M ′ has more than two orbits, then by Proposition 2.4, M ′

is semiregular on V (X), a contradiction. If M ′ has exactly two orbits, then p = 5 and
1 6= M ′

v E Hv. It follows that 5 | |M ′

v|, and hence 25 | |M ′| = 60, a contradiction.
Now assume that N ∼= Z2. Then XN has order 6p. Recall that p ≥ 3. By Proposi-

tion 3.2, XN is isomorphic to G42, G66 or G114.
Let XN

∼= G42. Then A/N . Aut(PSL(3, 4)). Since A/N is arc-transitive on XN ,
we have 5·42 | |A/N |. From Atlas [7, pp.23] it can be obtained that A/N contains a
normal subgroup H/N ∼= PSL(3, 4). Since N ∼= Z2 is normal in H , we have N ≤ Z(H).
Hence, H is isomorphic to the central extension Z2.PSL(3, 4) of Z2 by PSL(3, 4), or to
PSL(3, 4) × Z2. By Example 3.1 (1), G42 is bipartite and PSL(3, 4) has two orbits on
V (G42). This means that H has two orbits on V (X) and |Hv| = 26·3·5. By Magma [3],
Z2.PSL(3, 4) has no subgroups of order 26·3·5. Thus, H ∼= PSL(3, 4) × Z2. Let M be
the subgroup of H isomorphic to PSL(3, 4). Then M is characteristic in H and hence
normal in A. Since H has two orbits on V (X), M has at least two orbits on V (X).
As M is non-solvable, by Proposition 2.4, M has exactly two orbits on V (X), implying
that |Mv| = 25·3·5. However, by Magma [3], M has no subgroups of order 25·3·5, a
contradiction.

Let XN
∼= G66. Then A/N . PGL(2, 11). Since A/N is arc-transitive on XN , we have

5·66 | |A/N |. By Atlas [7, pp.7], A/N must contain a normal subgroup H/N ∼= PSL(2, 11).
Since N ∼= Z2 is in the center of H , we have H = SL(2, 11) or PSL(2, 11) × Z2. By
Example 3.1 (2), H/N is arc-transitive on XN . It follows that H is arc-transitive on X
and |Hv| = 10. By Proposition 2.5, Hv

∼= D10. If H ∼= SL(2, 11), then H has a unique
involution, say z, such that Z(H) = 〈z〉. This forces that Z(H) ≤ Hv. However, since
Z(H) is characteristic in H , the normality of H in A implies that Z(H) E A, forcing
Z(H) = 1, a contradiction. Thus, H ∼= PSL(2, 11) × Z2. Let M be the subgroup of H
isomorphic to PSL(2, 11). Then M is normal in H . Since H is arc-transitive on X, M
has at most two orbits on V (X) by Proposition 2.4. If M is transitive on V (X) then
M is arc-transitive on X. Since H ∼= PSL(2, 11) × Z2, from Lemma 3.4 it follows that
X ∼= G1

132. Let M have two orbits on V (X). Then X is bipartite and by Proposition 2.6,

we may easily deduce that X ∼= G
(2)
66 .

Let XN = G114. Then A/N . PGL(2, 19). From the arc-transitivity of A/N on
XN it follows that 5·114 | |A/N |. By Atlas [7, pp.11], A/N has a normal subgroup
H/N ∼= PSL(2, 19). Since N ≤ Z(H), we have H ∼= SL(2, 19) or PSL(2, 19) × Z2. By
Example 3.1 (3), G114 is bipartite and PSL(2, 19) has two orbits on V (G114). Thus, H has
two orbits on V (X), and hence |Hv| = 60. Noting that SL(2, 19) has a unique involution,
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we have H ∼= PSL(2, 19) × Z2. Let M be the subgroup of H isomorphic to PSL(2, 19).
Then M is characteristic in H and hence normal in A. Since H has two orbits on V (X),
M has at least two orbits on V (X). Since M is non-solvable, by Proposition 2.4, M
has exactly two orbits on V (X), implying |Mv| = 30. However, by Atlas [7, pp.11],
M ∼= PSL(2, 19) has no subgroups of order 30, a contradiction.

Case 2 A has no solvable minimal normal subgroups.

For convenience, we still use N to denote a minimal normal subgroup of A. Then N is
non-solvable. By Proposition 2.2, N has at least 3-prime factors and by Proposition 2.4,
N has at most two orbits on V (X). This implies that |N | = 6p|Nv| or 12p|Nv|.

Let p = 3. Then |V (X)| = 36 and |A| | 219·34·5. It follows that N must be a non-
abelian simple group, and by Proposition 2.3, N ∼= A5, A6 or PSU(4, 2). Since 18 | |N |,
we have A ≇ A5. Suppose N = PSU(4, 2). Then |N | = 26·34·5. Since N has at most
two orbits on V (X), we have |Nv| = 24·32·5 or 25·32·5. From Atlas [7, pp.26] it is easy
to see that Nv

∼= S6. This is clearly impossible because S6 cannot have a permutation
representation of degree 5. Thus, N ∼= A6. If N has two orbits on V (X), then Nv

would be a subgroup of N of order 20, which is impossible by Atlas [7, pp.4]. Thus, N is
transitive on V (X). Since 5 | |N |, N is arc-transitive on X. It follows from Lemma 3.3
that X ∼= G36.

Let p = 5. Then |V (X)| = 60 and |A| = 2i·3j ·52 with 2 ≤ i ≤ 19 and 1 ≤ j ≤ 3. From
Proposition 2.3 it can be obtained that N ∼= A5, A5 × A5 or A6. The normality of N in
A implies that Nv E Av. As Av is primitive on X1(v), either Nv = 1 or 5 | |Nv|. Suppose
5 | |Nv|. Noting that |N | = 30|Nv| or 60|Nv|, we have N = H × T ∼= A5 × A5. Since
5 | |Nv|, Nv is also primitive on X1(v). Let N be transitive on V (X). Then the normality
of Hv in Nv gives 5 | |Hv|. Similarly, 5 | |Tv|. As Hv × Tv ≤ Nv, we have 52 | |Nv|, a
contradiction. Let N have two orbits, say B0 and B1, on V (X), and let v ∈ B0. Then
|Nv| = 120. By Proposition 2.5, Nv is non-solvable. Consequently, Nv

∼= SL(2, 5), S5 or
A5 × Z2. By Magma [3], A5 × A5 has no subgroups isomorphic to SL(2, 5) or S5. So,
Nv

∼= A5×Z2. Since HEN , 1 < Nv∩HENv. Similarly, 1 < Nv∩T ENv. If neither H nor
T is contained in Nv, then Nv ∩H = Nv ∩ T = Z(Nv) ∼= Z2, where Z(Nv) is the center of
Nv. This is impossible. Thus, either H or T is contained in Nv. Without loss of generality,
assume H ≤ Nv. Since H EN , H fixes all vertices in B0. This forces that X is isomorphic
to the complete bipartite graph K5,5, a contradiction. Thus, Nv = 1. Since N has at most
two orbits on V (X), we must have N ∼= A5, which is regular on V (X). In this case, X is
a Cayley graph on A5, and by Construction II, X ∼= G60. However, Aut(G60) ∼= A5 ⋊ D10

has a normal subgroup isomorphic to Z5, contrary to our assumption.
Let p > 5. Then |A| = 2i·3j·5·p with 2 ≤ i ≤ 19 and 1 ≤ j ≤ 3, and hence N is a

non-abelian simple group by Proposition 2.3. Also, from Proposition 2.4, we know that
N cannot be a non-abelian simple {2, 3, 5}-group. Set C = CA(N). By the simplicity of
N , C ∩N = 1. If C 6= 1, then C would have more than p orbits on V (X) because p ∤ |C|.
By Proposition 2.4, C is semiregular on V (X), and by Proposition 2.2, C is solvable
which is contrary to our assumption. Thus, C = 1, and hence A ∼= A/C . Aut(N) by
Proposition 2.1, that is, A is an almost simple group.
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Since N is non-abelian, it is not semiregular on V (X), and hence Nv 6= 1. Since Av

is primitive on X1(v), we have 5 | |Nv|, namely, 5 | |N |. Thus, N is a non-abelian simple
{2, 3, 5, p}-group. By Table 1, N is isomorphic to one of the following groups:

A7, A8, PSL(2, 11), PSL(2, 16), PSL(2, 19), PSL(2, 31), PSL(3, 4), M11, M12.

Since N has at most two orbits on V (X), we have |N |/|Nv| = 12p or 6p.
Suppose N ∼= A8. Then |Nv| = 24·3·5 or 25·3·5. However, by Magma [3], A8 has no

subgroups of order 24·3·5 or 25·3·5, a contradiction. We have a similar contradiction if
N ∼= PSL(2, 16), PSL(2, 19), PSL(2, 31), PSL(3, 4) or M12.

Suppose N ∼= A7. Then |Nv| = 2·3·5 or 22·3·5. By Atlas [7, pp.10], A7 has no
subgroups of order 30. Thus, |Nv| = 22·3·5 = 60 and Nv

∼= A5. It follows that N has two
orbits on V (X) and hence X is bipartite. Since A ≤ Aut(N), we have A ∼= S7. Clearly,
p = 7 and |V (X)| = 12 · 7. Then, X ∼= Cos(A, Av, AvgAv), where g is a 2-element in A
such that g2 ∈ Av, Av ∩ Ag

v
∼= A4 and 〈Av, g〉 = A. Set H = Av ∩ Ag

v. Then g ∈ NA(H).
By Atlas [7, pp.10], there are two conjugacy classes of subgroups isomorphic to A4. By
Magma [3], NA(H) ∼= S4 × S3 or S4 × Z2, and moreover, in both cases there exists no
2-element g ∈ NA(H) such that 〈Av, g〉 = A, contrary to the fact that X is connected.

Suppose N ∼= M11. Then |Nv| = 22·3·5 or 23·3·5. By Atlas [7, pp.18], Nv
∼= A5 or

S5. If Nv = A5 then N is arc-transitive on X. So, X ∼= Cos(N, Nv, NvgNv), where g is a
2-element such that g2 ∈ Nv, Nv∩Ng

v
∼= A4 and 〈Nv, g〉 = N . Set H = Nv∩Ng

v . Then g ∈
NN(H)\NN(Nv). By Magma [3], NN (H) = S4 and for any 2-element g ∈ NN(H)\NN(Nv),
g and Nv cannot generate N , a contradiction. If Nv

∼= S5 then N has two orbits on V (X)
and X is bipartite. Since A is almost simple, we have N < A ≤ Aut(N). However, from
Atlas [7, pp.18] we know that Aut(N) = N , a contradiction.

Thus, N ∼= PSL(2, 11). It follows that p = 11 and |Nv| = 5 or 2 · 5. If |Nv| = 5, then
N is arc-transitive on X. By Lemma 3.4, X ∼= G2

132 or G3
132. If |Nv| = 10, then N has two

orbits on V (X) and X is bipartite. Recall that A is almost simple. So, N < A ≤ Aut(N).
Since Aut(N) ∼= PGL(2, 11), we have A ∼= PGL(2, 11). By Lemma 3.4, X ∼= G4

132 or G5
132.

This completes the proof.
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