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Abstract

The switch chain is a well-known Markov chain for sampling directed graphs with
a given degree sequence. While not ergodic in general, we show that it is ergodic for
regular degree sequences. We then prove that the switch chain is rapidly mixing for
regular directed graphs of degree d, where d is any positive integer-valued function
of the number of vertices. We bound the mixing time by bounding the eigenvalues
of the chain. A new result is presented and applied to bound the smallest (most
negative) eigenvalue. This result is a modification of a lemma by Diaconis and
Stroock [9], and by using it we avoid working with a lazy chain. A multicommodity
flow argument is used to bound the second-largest eigenvalue of the chain. This
argument is based on the analysis of a related Markov chain for undirected regular
graphs by Cooper, Dyer and Greenhill [6], but with significant extension required.

1 Introduction

Directed graphs are natural combinatorial objects which are used to model systems in
many areas including biology (for example [5, 16]), the social sciences (for example [25, 26])
and computer science (for example [12, 18]). In this paper we consider the problem of
sampling directed graphs with a given degree sequence.

For graph-theoretic terminology not introduced here, see [1]. A directed graph (di-
graph) G = (V,A) consists of a vertex set V = V (G) and an arc set

A = A(G) ⊆ {(v, w) ∈ V × V | v 6= w}.

Note that digraphs as defined here are simple, which means that they contain no loops
and no multiple arcs.
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The arc (v, w) is drawn as an arrow from v to w. We refer to v as the tail and w as
the head of the arc. For a vertex v, the out-degree d+(v) of v is the number of arcs with
tail v. Similarly, the in-degree d−(v) of v is the number of arcs with head v. For a positive
integer d, if d+(v) = d−(v) = d for all vertices v ∈ V then we say that the digraph G is
d-regular (or d-in, d-out).

Let d = d(n) ≥ 1 be a sequence of positive integers, and let Ωn,d be the set of all
simple d-regular digraphs on the vertex set [n] = {1, . . . , n}. The configuration model
of Bollobás [4] (adapted for directed graphs) gives an expected polynomial-time uniform
sampling algorithm for Ωn,d when d = O(

√
logn).

There is a one-to-one correspondence between Ωn,d and the set of all d-regular bipartite
graphs on {1, 2, . . . , n}∪ {n+ 1, n+ 2, . . . , 2n} with no edges in common with the perfect
matching {{j, n + j} : j = 1, . . . , n}. The probability that a d-regular bipartite graph
on the given vertex bipartition has no edges in common with this perfect matching is
asymptotic to e−d whenever d = o(n1/3), by [20, Theorem 4.6]. This probability is
polynomially small when d = O(logn). McKay and Wormald’s algorithm [21] for sampling
d-regular graphs runs in expected polynomial time for d = O(n1/3), and hence gives rise
to an expected polynomial-time algorithm for uniformly sampling elements of Ωn,d when
d = O(logn).

The set of all 1-regular digraphs is in one-to-one correspondence with the set of all
derangements of [n], and here the configuration model corresponds to repeatedly sampling
uniform permutations of n until one is obtained without fixed points. The proportion of
permutations which are derangements tends to 1/e, so this algorithm has linear expected
running time. Other algorithms for uniformly sampling derangements in linear expected
time but an improved constant have been proposed, for example [19].

We know of no expected polynomial-time uniform sampling algorithm for regular
digraphs other than those mentioned above. Hence we turn our attention to the problem
of obtaining approximately uniform samples from Ωn,d using a Markov chain. (Some
Markov chain definitions are given in Section 1.1; for others, see [23].)

There is a very natural Markov chain for digraphs which has arisen in many contexts,
which we will call the switch chain. A transition of the switch chain is performed by
randomly choosing two distinct arcs and exchanging their heads, if the two arcs are non-
incident and if the resulting digraph does not contain any multiple arcs. See Figure 1 for
a precise description of the transition procedure of the chain. A transition of the switch
chain is called switching along an alternating rectangle by Rao, Jana and Bandyopad-
hyay [24]; we will simply call it a switch. Similar transformations were used by Ryser [27]
to study 0-1 matrices. Besag and Clifford [3] defined a related chain for sampling 0-1 ma-
trices with given row and column sums, while Diaconis and Sturmfels [10] used a similar
chain to sample contingency tables.

Rao, Jana and Bandyopadhyay [24] showed that the switch chain is not irreducible
for general degree sequences. (However, they mention that degree sequences for which
the switch chain is not irreducible are “rather rare”.) For completeness, we prove in
Lemma 2.2 that the switch chain is irreducible for regular digraphs. This also follows
from the existence of the multicommodity flow defined in Sections 3, 4.
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The switch chain is aperiodic for d ≥ 1, as we prove in Lemma 2.1.
In their empirical study of methods for generating directed graphs with given degree

sequences, Milo et al. [22] wrote that the switch chain “works well but, as with many
Markov chain methods, suffers because in general we have no measure of how long we
need to wait for it to mix properly”. Our main result, Theorem 1.1, partially answers this
point by providing the first rigorous polynomial bound on the mixing time of the switch
chain, in the special case of regular digraphs.

Theorem 1.1. Let Ωn,d be the set of all d-regular digraphs on the vertex set {1, . . . , n},
where d = d(n) is any integer-valued function which satisfies 1 ≤ d(n) ≤ n − 1 for all
n ≥ 4. Let τ(ǫ) be the mixing time of the Markov chain M with state space Ωn,d and
transition procedure given by Figure 1, for d ≥ 1. Then

τ(ǫ) ≤ 50 d25 n9
(

dn log(dn) + log(ǫ−1)
)

.

Our proof of this result has two parts. To avoid using a lazy chain (which stays where
it is at each step, with probability at least 1

2
) we prove and apply a new result which

can be used to bound the smallest eigenvalue of an ergodic reversible Markov chain.
This new bound is based on Diaconis and Stroock [9, Proposition 2] and inspired by
Sinclair [28, Theorem 5]. To bound the second-largest eigenvalue of the chain we adapt
the multicommodity flow analysis given in [6] for the undirected case. While some parts of
the proof are very similar to [6], significant extra technical difficulties arise in the directed
setting. We expect that the bound on the mixing time given in Theorem 1.1 is far from
tight, but proving a substantially tighter bound seems beyond the reach of known proof
techniques.

The flip chain is a Markov chain which performs a restricted set of switches, de-
signed to ensure that the underlying digraph never becomes disconnected. The flip chain
for undirected graphs was described in [17], and proposed as a self-randomizing mecha-
nism for peer-to-peer networks. The mixing time of the flip chain for regular undirected
graphs was analysed in [7, 11], building on the multicommodity flow analysis of the switch
chain [6]. We expect that Theorem 1.1 can be used to show that the flip chain for di-
graphs is rapidly mixing for regular degree sequences. This result would be of interest
since many protocols for communications networks (such as peer-to-peer networks) use
directed communications (see for example [12, 18]).

The structure of the rest of paper is as follows. The necessary Markov chain definitions
are given in the next subsection, together with the new result (Lemma 1.3) for bounding
the smallest eigenvalue of an ergodic, reversible Markov chain. In Section 2 we define the
switch chain M and prove that it is ergodic on Ωn,d for d ≥ 1. A bound on the smallest
eigenvalue of the chain is given in Lemma 2.4, and a bound on the second-largest eigenvalue
is stated in Proposition 2.5. To conclude Section 2, we show how Theorem 1.1 follows
from Proposition 2.5, and give an overview of the main steps of the multicommodity
flow argument which is used to prove Proposition 2.5. This argument is presented in
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Sections 3– 5. Finally, a worked example is given in Section 6 which illustrates several
features of the multicommodity flow construction.

Before we begin our analysis, we mention some recent related work. In many practical
situations, almost uniformly random samples are required in order to estimate the average
value of some observable of a system. Kim et al. [14] describe an alternative approach
to this problem in the case of sampling directed graphs with given in-degrees and out-
degrees. Let d

+, d
− be two vectors of nonnegative integers with a common sum. Denote

by Ωn,d+,d− the set of all digraphs on the vertex set [n] with in-degree sequence d
+ and

out-degree sequence d
− (and assume that this set is nonempty). Kim et al. describe

an algorithm which runs in time O(n3) and produces a random element of Ωn,d+,d−,
drawn from a specific non-uniform distribution. The samples output by the algorithm
are statistically independent, and the algorithm can calculate the weight of each digraph
that it produces. They then explain how combining their algorithm with biased sampling
allows the average value of any function on Ωn,d+,d− to be approximated. However, they
do not analyse the running time of the biased sampling procedure, which could be very
inefficient when the output distribution is far from uniform. (Indeed, in [14, Section 4.1]
they assume that the number of samples in the biased sampling is some positive integer
multiple of |Ωn,d+,d− |, which is usually exponentially large.)

We complete this section with a final remark. Milo et al. [22] wrote of the switch chain
for directed graphs that “Theoretical bounds on the mixing time exist only for specific
near-regular degree sequences”, citing Kannan, Tetali and Vempala [13]. However, this
is not correct, as we now explain. Two Markov chains are considered in [13]. The first
is an analogue of the switch chain for undirected graphs. A bound on the mixing time
is given in [13] for near-regular bipartite undirected graphs, but no conclusion can be
drawn from this for directed graphs. The second chain analysed in [13] is a Markov chain
for tournaments with a given score sequence. (A tournament is a digraph obtained by
giving an orientation to each edge in an (undirected) complete graph. Its score sequence
is the sequence of out-degrees.) Each transition of the Markov chain reverses the arcs of a
directed 3-cycle, so it is quite different from the switch chain. Furthermore, tournaments
are very special kinds of digraphs. We know of no rigorous polynomial bound on the
mixing time of the switch chain for digraphs, other than Theorem 1.1.

Acknowledgements. I am grateful to Brendan McKay for his suggestion that it seemed
unnecessary to make the switch chain lazy, which led to the approach taken here. I am
also grateful to the anonymous referee for their helpful comments, which improved both
the content and the structure of this paper.

1.1 Markov chain definitions and a new bound on the smallest

eigenvalue

Let M be an ergodic, time-reversible Markov chain on the finite state space Ω with
transition matrix P and stationary distribution π. The total variation distance between
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two probability distributions σ, σ′ on Ω is given by

dTV(σ, σ′) = 1
2

∑

x∈Ω

|σ(x) − σ′(x)|.

The mixing time τ(ε) is defined by

τ(ε) = maxx∈Ω min
{

T ≥ 0 | dTV(P t
x, π) ≤ ε for all t ≥ T

}

,

where P t
x is the distribution of the state Xt of the Markov chain after t steps from the

initial state X0 = x. Let π∗ = min{π(x) | x ∈ Ω} be the minimum stationary probability.
The transition matrix P has real eigenvalues

1 = λ0 > λ1 ≥ λ2 ≥ · · · ≥ λN−1 ≥ −1,

where N = |Ω|, and the Markov chain is aperiodic if and only if λN−1 > −1. Let

λ∗ = max{λ1, |λN−1|} (1)

be the second-largest eigenvalue in absolute value. The following result follows from Sin-
clair [28, Proposition 1], which is based on a result of Diaconis and Stroock [9, Proposition
3].

Lemma 1.2. ([28, Proposition 1]) The mixing time of the Markov chain M satisfies

τ(ε) ≤ (1 − λ∗)
−1
(

log(1/π∗) + log(ε−1)
)

.

It has become common practice when applying this bound to first make the Markov
chain lazy (that is, replace the transition matrix P by (I + P )/2). This ensures that all
eigenvalues of the chain are nonnegative, so that λ∗ = λ1 and only (1 − λ1)

−1 needs to
be bounded. However, we prefer not to use introduce unnecessary laziness and seek an
alternative approach.

Diaconis and Stroock proved a result [9, Proposition 2] which provides an upper bound
on (1 + λN−1)−1, where λN−1 is the smallest eigenvalue of a Markov chain as in (1).
In Lemma 1.3 below, we give a new method for bounding on λN−1. The new bound
is obtained by modifying [9, Proposition 2] in the same way that Sinclair modified [9,
Proposition 1] to produce [28, Theorem 5]. The modification results in a bound which is
more local in character and seems easier to apply than [9, Proposition 2]. (See also the
discussion in [28, Section 2].)

To state the new bound we need some notation. Write G for the underlying graph of
the Markov chain M, where G = (Ω,Γ) and each edge e ∈ Γ corresponds to a transition
of M. That is, e = {x, y} is an edge of G if and only if P (x, y) > 0. Define Q(e) =
Q(x, y) = π(x)P (x, y) for the edge e = {x, y}. (If P (x, x) > 0 then the edge {x, x} is
called a self-loop at x.)
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For each x ∈ Ω, fix a particular cycle from x to x in G with an odd number of edges,
and denote it by σx. (Such a cycle exists for each x, since the Markov chain is aperiodic.)
Note that σx may be a 1-cycle, which is a walk along a self-loop edge at x. Write |σx| to
denote the length of the cycle σx, which is a positive odd number. Let Σ = {σx : x ∈ Ω}
be the set of these odd cycles, and define the parameter

η = η(Σ) = maxe∈Γ
1

Q(e)

∑

x∈Ω, e∈σx

|σx|π(x).

Lemma 1.3. Suppose that M is a reversible, ergodic Markov chain with state space Ω.
Let N = |Ω| and let the eigenvalues of M be given by (1). Then

(1 + λN−1)−1 ≤ η

2
.

Proof. The proof is very similar to the proof of [9, Proposition 2], but using a different
application of the Cauchy-Schwarz inequality, as in the proof of [28, Theorem 5]. Assign
an arbitrary orientation to each cycle σx and let e = (e−, e+) under this orientation. Also
define ℓ(e) to be the distance from x to e− along the oriented cycle σx. Then for any
function ψ : Ω → R we have

ψ(x) = 1
2

∑

e∈σx

(−1)ℓ(e) (ψ(e+) + ψ(e−))

for all x ∈ Ω. Given ψ, ϕ : Ω → R, let

〈ψ, ϕ〉π =
∑

x∈Ω

ψ(x)ϕ(x)π(x), Eπ(ψ) =
∑

x∈Ω

ψ(x)π(x).

Then for any nonzero function ψ : Ω → R we have

Eπ(ψ2) =
∑

x∈Ω

ψ(x)2π(x) =
∑

x∈Ω

π(x)

(

1
2

∑

e∈σx

(−1)ℓ(e)(ψ(e+) + ψ(e−))

)2

≤ 1
4

∑

x

π(x)|σx|
∑

e∈σx

(ψ(e+) + ψ(e−))2,

using the Cauchy-Schwarz inequality. Exchanging the order of summation (and now
orienting each edge e ∈ Γ arbitrarily) gives

Eπ(ψ2) = 1
4

∑

e∈Γ

(ψ(e+) + ψ(e−))2
∑

x∈Ω, e∈σx

|σx|π(x)

≤ η

4

∑

e∈Γ

(ψ(e+) + ψ(e−))2Q(e)

=
η

2

(

Eπ(ψ2) + 〈ψ, Pψ〉π
)

.
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Divide through by Eπ(ψ2) to obtain

1 ≤ η

2

(

1 +
〈ψ, Pψ〉π
Eπ(ψ2)

)

.

Now set ψ equal to any eigenfunction ψN−1 corresponding to λN−1. After rearranging this
completes the proof, since

〈ψN−1, PψN−1〉π = λN−1 〈ψN−1, ψN−1〉π = λN−1 Eπ(ψ2
N−1).

This leads to an analogue of [28, Corollary 6]. We also prove a bound for a special
case which often arises.

Corollary 1.4. Under the same conditions as Lemma 1.3 we have

(1 + λN−1)
−1 ≤ η′(Σ) ℓ(Σ)

2

where

η′(Σ) = maxe∈Γ
1

Q(e)

∑

x∈Ω, e∈σx

π(x), ℓ(Σ) = maxx∈Ω |σx|.

In particular, if ℓ(Σ) = 1 then

(1 + λN−1)
−1 ≤ 1

2
maxx∈Ω P (x, x)−1

(where P denotes the transition matrix of the Markov chain).

Proof. The first statement follows immediately from Theorem 1.3. Now suppose that
ℓ(Σ) = 1. Then each σx ∈ Σ is a self-loop. If e = (y, y) ∈ Γ is a self-loop at y then e is
contained in exactly one element of Σ, namely σy. In this case

1

Q(e)

∑

x, e∈σx

π(x) =
π(y)

Q(y, y)
= P (y, y)−1.

If e ∈ Γ is not a self-loop then e is not contained in any element of Σ, and in this case

1

Q(e)

∑

x, e∈σx

π(x) = 0.

Therefore η′(Σ) = maxx∈Ω P (x, x)−1 and the second statement follows from the first.

We will use the multicommodity flow method of Sinclair [28] to bound the second
eigenvalue λ1. A flow in G is a function f : P → [0,∞) which satisfies

∑

p∈Pxy

f(p) = π(x)π(y) for all x, y ∈ Ω, x 6= y, (2)
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where Pxy is the set of all simple directed paths from x to y in G and P = ∪x 6=yPxy.
Extend f to a function on oriented edges by setting

f(e) =
∑

p∋e

f(p),

so that f(e) is the total flow routed through e. Let ℓ(f) be the length of the longest path
with f(p) > 0, and let

ρ(e) = f(e)/Q(e)

be the load of the edge e. The maximum load of the flow is

ρ(f) = max
e
ρ(e).

Sinclair [28, Corollary 6′] proves the following.

Lemma 1.5. ([28, Corollary 6′]) For any reversible ergodic Markov chain M and any
flow f , the second eigenvalue λ1 satisfies

(1 − λ1)
−1 ≤ ρ(f)ℓ(f).

2 The switch chain

Let d : {4, 5, . . .} → N be any function such that 1 ≤ d(n) ≤ n−1 for all n ≥ 4, and denote
by Ωn,d(n) the set of all d(n)-regular simple digraphs with vertex set [n] = {1, 2, . . . , n}.
We usually hide the dependence of d on n and just write d rather than d(n); similarly we
write Ωn,d for Ωn,d(n).

We will study the Markov chain M described in Figure 1, which we call the switch
chain. From a given state, an unordered pair of two distinct arcs are chosen uniformly at
random. Then the two chosen arcs exchange heads, unless the chosen arcs are incident or
exchanging their heads would create a repeated arc. Note that two arcs are non-incident
if and only if the set of endvertices of the two arcs contains exactly four vertices. We will
write [ijkℓ] as shorthand notation for the switch that replaces the arcs (i, j), (k, ℓ) with
the arcs (i, ℓ), (k, j), as in Figure 1.

The transition matrix P of the Markov chain satisfies P (X, Y ) = P (Y,X) = 1/
(

dn
2

)

if X and Y differ by just a switch, with all other non-diagonal entries equal to zero.
Therefore P is symmetric, so the stationary distribution of the Markov chain is uniform
over Ωn,d.

It is not difficult to see that the switch chain is aperiodic, but for completeness we
give a brief proof.

Lemma 2.1. The switch chain on Ωn,d is aperiodic for n ≥ 4 and 1 ≤ d ≤ n− 1.
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From G ∈ Ωn,d do
choose an unordered pair of two distinct arcs {(i, j), (k, ℓ)}, u.a.r.,
if |{i, j, k, ℓ}| = 4 and {(i, ℓ), (k, j)} ∩ A(G) = ∅ then

delete the arcs (i, j), (k, ℓ) and add the arcs (i, ℓ), (k, j),
else

do nothing;
end if;

end.

Figure 1: The Markov chain on Ωn,d

Proof. Fix G ∈ Ωn,d and choose an arc (α, β) ∈ A(G). Since d ≥ 1, there exists an arc
(γ, α) ∈ A(G). These two arcs are distinct but incident, and if they are the arcs chosen in
the transition procedure then the switch will be rejected and the chain will remain at G.
Hence P (G,G) ≥ 1/

(

dn
2

)

> 0. So there is a self-loop at every state of Ωn,d, which proves
that the chain is aperiodic.

Rao, Jana and Bandyopadhyay [24] showed that the switch chain is not always ir-
reducible on the set of all digraphs with a given degree sequence. Characterisations of
degree sequences for which the chain is irreducible were given in [2, 15]. We will now prove
that when n ≥ 4 and d ≥ 1 the set Ωn,d is connected under switches; that is, that the
switch chain is irreducible on Ωn,d. (This was already known when d = 1, see Diaconis,
Graham and Holmes [8, Remark 2].)

We will use results from LaMar [15]. For a set U of vertices in a digraph G, define the
sets W(i,j) = W(i,j)(U,G) for (i, j) ∈ Z

2
2, as follows:

W(0,0) = {x ∈ V (G) − U : (x, u) 6∈ A(G), (u, x) 6∈ A(G) for all u ∈ U},
W(0,1) = {x ∈ V (G) − U : (x, u) 6∈ A(G), (u, x) ∈ A(G) for all u ∈ U},
W(1,0) = {x ∈ V (G) − U : (x, u) ∈ A(G), (u, x) 6∈ A(G) for all u ∈ U},
W(1,1) = {x ∈ V (G) − U : (x, u) ∈ A(G), (u, x) ∈ A(G) for all u ∈ U}.

(In [15] these sets are called C0, C+, C−, C±, respectively.)

Lemma 2.2. The space Ωn,d is connected under switches when n ≥ 4 and 1 ≤ d ≤ n− 1.

Proof. For a contradiction, assume that Ωn,d is not connected under switches. Then by
LaMar [15, Theorems 3.3 and 3.4], for any digraph G ∈ Ωn,d there is a set of vertices
{v0, v1, v2} such that the induced digraph G[{v0, v1, v2}] is a directed 3-cycle and, writing
W(i,j) = W(i,j)({v0, v1, v2}, G) for all (i, j) ∈ Z

2
2,

(i) all vertices in V (G) other than {v0, v1, v2} belong to
⋃

(i,j)∈Z
2
2

W(i,j),

(ii) no arcs from W(0,0) ∪W(0,1) to W(0,0) ∪W(1,0) are present,
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(iii) all (non-loop) arcs from W(1,0) ∪W(1,1) to W(0,1) ∪W(1,1) are present.

Let n(i,j) = |W(i,j)| for (i, j) ∈ Z
2
2. Considering the in-degree and out-degree of v0 gives,

using (i),
d = n(1,0) + n(1,1) + 1 = n(0,1) + n(1,1) + 1

(and in particular, n(0,1) = n(1,0)). However, by (ii), the in-degree of any element of
W(1,0) is at most n(1,0) + n(1,1) − 1 = d − 2, the out-degree of any element of W(0,1) is at
most n(0,1) + n(1,1) − 1 = d − 2 and the out-degree of any element of W(0,0) is at most
n(0,1) + n(1,1) = d− 1. This contradicts the assumption that G ∈ Ωn,d unless

W(0,0) ∪W(0,1) ∪W(1,0) = ∅.

But then W(1,1) = V − {v0, v1, v2}, and this set is nonempty as n ≥ 4. By (iii), the
in-degree of any element of W(1,1) is n− 1. Since the in-degree of v0 is n− 2, we obtain a
contradiction.

Suppose that G ∈ Ωn,d contains a directed 3-cycle on the vertices v0, v1, v2. Consider
the sets W(i,j) = W(i,j)({v0, v1, v2}, G) where (i, j) ∈ Z

2
2. If x ∈ V (G) − {v0, v1, v2} does

not belong to
⋃

(i,j)∈Z
2
2
W(i,j) then we say that x is a useful neighbour for the given 3-cycle.

(Note that x must be an in-neighbour or an out-neighbour of at least one vertex on the
3-cycle, since x 6∈ W(0,0).) Similarly, (x, y) is called a useful arc for the given 3-cycle if
x 6= y and one of the following conditions holds:

(U1) (x, y) ∈ A(G), with x ∈ W(0,0) ∪W(0,1) and y ∈ W(0,0) ∪W(1,0);

(U2) (x, y) 6∈ A(G), with x ∈ W(1,0) ∪W(1,1) and y ∈ W(0,1) ∪W(1,1).

The following result will be used later.

Lemma 2.3. Suppose that G ∈ Ωn,d contains a set of three vertices {v0, v1, v2} such
that the induced digraph G[{v0, v1, v2}] is a directed 3-cycle. Then there exists a useful
neighbour or a useful arc for this 3-cycle.

Proof. Suppose that there is no useful neighbour for the 3-cycle. Then condition (i) from
the proof of Lemma 2.2 holds. For a contradiction, assume that there is no useful arc
(x, y). Then all (non-loop) arcs from W(0,0) ∪W(0,1) to W(0,0) ∪ W(1,0) are absent in G,
and all (non-loop) arcs from W(1,0) ∪W(1,1) to W(0,1) ∪W(1,1) are present in G. That is,
conditions (ii) and (iii) from the proof of Lemma 2.2 also hold. Arguing as in the proof
of Lemma 2.2 leads to a contradiction.

Now we prove a bound on the smallest eigenvalue of the switch chain.

Lemma 2.4. Suppose that n ≥ 4 and 1 ≤ d ≤ n − 1, and let N = |Ωn,d|. The smallest
eigenvalue λN−1 of the switch chain satisfies

(1 + λN−1)−1 ≤ 1
4
d2n2.
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Proof. By Lemma 2.1, there is a self-loop σx in Γ at every x ∈ Ωn,d. Let Σ = {σx} be
the set of these 1-cycles. Since ℓ(Σ) = 1, the result follows from the second statement of
Corollary 1.4 since

maxx∈Ωn,d
P (x, x)−1 ≤

(

dn

2

)

.

We also need a bound on the second-largest eigenvalue of the switch chain.

Proposition 2.5. Suppose that n ≥ 4 and 1 ≤ d ≤ n−1, and let λ1 be the second-largest
eigenvalue of the switch chain on Ωn,d. Then

(1 − λ1)
−1 ≤ 50d25n9.

The proof of Proposition 2.5 is lengthy and quite technical. We give an outline of the
proof below, and full details in Sections 3–5. But first, we show how Theorem 1.1 can be
proved from Proposition 2.5.

Proof of Theorem 1.1. If the smallest eigenvalue λN−1 is nonnegative then λ∗ = λ1, and
by Proposition 2.5 we have

(1 − λ∗)
−1 ≤ 50d25n9. (3)

Suppose now that λN−1 is negative. Then 1 − |λN−1| = 1 + λN−1 and it follows from
Lemma 2.4 and Proposition 2.5 that (3) also holds in this case.

Finally, we note that
log |Ωn,d| ≤ dn log(dn). (4)

(This is well-known but for completeness we sketch a proof. Take a bipartite graph on
n + n vertices and assign d “half-edges” to each vertex on the side. Arbitrarily match
each half-edge on the left to a half-edge on the right. There are at most (dn)dn ways to
perform this matching. Finally, orient each edge from left to right and identify the j’th
vertex on each side, giving a digraph on n vertices which may have loops or multiple arcs.
As each element of Ωn,d can be formed from at least one matching in this way, we obtain
an upper bound.) Hence, since π is uniform,

log 1/π∗ = log |Ωn,d| ≤ dn log(dn).

Substituting (3) and (4) into Lemma 1.2 gives the stated bound on the mixing time,
completing the proof.

Hence it remains to establish Proposition 2.5. We use a multicommodity flow argument
to prove this result. Before embarking on the proof, we outline the major steps in the
argument. (We note that our proof follows the same general outline as most canonical
path or multicommodity flow arguments, where encodings are often used. In particular,
our proof builds upon the argument from [6].)
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• Given distinct digraphs G,G′ ∈ Ωn,d, we define a finite set Ψ(G,G′) of objects,
called pairings. For each ψ ∈ Ψ(G,G′) we will define a canonical path γψ(G,G′)
from G to G′, indexed by ψ. Then the flow f is defined on

⋃

(G,G′)

{γψ(G,G′) | ψ ∈ Ψ(G,G′)}

by

f(γψ(G,G′)) =
π(G) π(G′)

|Ψ(G,G′)| =
(

|Ωn,d|2 |Ψ(G,G′)|
)−1

,

and is set to zero for all other paths. Note that f satisfies (2).

• To define γψ(G,G′) we work with the symmetric difference H = G△G′ of G and G′

(with arcs of G−G′ coloured blue and arcs of G′−G coloured red). In Sections 3.1
and 3.2 we show how to decompose H into a sequence of arc-disjoint subdigraphs
called 1-circuits and 2-circuits, in a canonical way. The canonical path γψ(G,G′) is
formed by processing each of these 1-circuits and 2-circuits in the given order.

• We can process 1-circuits, and certain 2-circuits, in a way which is very similar to
the method used in [6] for undirected graphs. The 2-circuits which can be handled
in this way are called normal. Section 3.3 explains how to process a 1-circuit and
Section 4.1 describes how to process a normal 2-circuit.

• The main difficulties in the proof arise from the need to handle 2-circuits which
are not normal. We further categorise these as eccentric 2-circuits or triangles.
Sections 4.2 and 4.3 describe how to process these 2-circuits.

By this stage, the multicommodity flow is completely defined. Next we must analyse
the flow in order to bound the maximum load of the flow, and hence the second-largest
eigenvalue (using Lemma 1.5).

• Let (Z,Z ′) be a transition along one of the canonical paths γψ(G,G′), and suppose
that this transition is performed while processing the 1-circuit or 2-circuit S. A
set of interesting arcs for Z with respect to (G,G′, ψ) is defined. These are arcs
which have been disturbed during the processing of S and not yet returned to their
original state, and they will play a key role in our analysis. Lemma 5.1 describes
the structure of the digraph formed by the interesting arcs (see also Figure 9).

• Next we identify G, G′ and Z with their adjacency matrices and define a matrix L
by L+Z = G+G′. Then L is an n×n matrix with entries in {−1, 0, 1, 2}. We say
that L is an encoding for Z with respect to (G,G′). Lemma 5.2 shows that given
(Z,Z ′), L and ψ there are at most four possibilities for (G,G′) such that (Z,Z ′) is a
transition on γψ(G,G′) and L is an encoding for Z with respect to (G,G′). Further
information about the structure of L is given in Lemma 5.3.
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• Now the notion of encoding is broadened to encompass any n×n matrix with entries
in {−1, 0, 1, 2} such that all row sums and column sums equal d. Given Z ∈ Ωn,d,
we say that the encoding L is Z-valid if every entry of L + Z belongs to {0, 1, 2}
and L,Z,H satisfy the conclusions of Lemma 5.3. (Here H is the digraph defined
by all entries of L+Z which equal 1.) Lemma 5.4 proves a useful fact about Z-valid
encodings.

• Next we explain how to apply switches to encodings, and prove in Lemma 5.5 (using
Lemma 5.4) that any Z-valid encoding can be transformed into an element of Ωn,d

using at most three switches. Counting the number of ways these switches can be
performed in reverse leads to an upper bound of the form poly(n, d) |Ωn,d| on the
number of Z-valid encodings, as proved in Lemma 5.6.

• Combining all this allows us to prove an upper bound on the total flow routed
through an arbitrary transition of the Markov chain. This bound, of the form
poly(n, d) |Ωn,d|−1, is proved in Lemma 5.7. With this in hand it is easy to establish
a polynomial bound on the maximum load ρ(f) of the flow, and hence to prove
Proposition 2.5.

3 Defining the flow

We now define the multicommodity flow which will be used to bound the second largest
eigenvalue, and hence the mixing time, of the switch chain for regular directed graphs.

For G,G′ ∈ Ωn,d, let H = G△G′ be the symmetric difference of G and G′, together
with an arc-colouring which colours all arcs of G−G′ blue and all arcs of G′−G red. This
arc colouring means that we can think of H as the symmetric difference of the ordered
pair (G,G′).

For v ∈ V let θv be the blue in-degree of v, which equals the red in-degree of v, and let
φv be the blue out-degree of v, which equals the red out-degree of v. Choose a pairing of
the red and blue arcs around each vertex as follows: each blue arc with head v is paired
with a red arc with head v, and each blue arc with tail v is paired with a red arc with
tail v, defining two bijections (one from the set of blue arcs with head v to the set of red
arcs with head v, and one from the set of blue arcs with tail v to the set of red arcs with
tail v). Denote the set of all such pairings by Ψ(G,G′). Then

|Ψ(G,G′)| =
∏

v∈V

θv!φv! (5)

is the total number of pairings.
Write G for the underlying graph of the Markov chain M, where G = (Ωn,d,Γ) and

each edge e ∈ Γ corresponds to a transition of M. For each pairing in Ψ(G,G′) we
construct a canonical path from G to G′ in G. Each of these paths will carry 1/|Ψ(G,G′)|
of the total flow from G to G′.
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We now introduce some necessary terminology. A forward circuit in H is a string
C = w0w1 · · ·w2k−1 over the alphabet V such that the arcs

(w0, w1), (w2, w1), (w2, w3), (w4, w3), . . . (w2k−2, w2k−1), (w0, w2k−1) (6)

are all distinct, all belong to AH and alternate in colour: that is, the arcs in

{(w2i, w2i+1) : i = 0, 1, . . . , k − 1}

all have one colour and the arcs in

{(w2i+2, w2i+1) : i = 0, 1, . . . , k − 2} ∪ {(w0, w2k−1)}

all have the other colour.
The converse of H is the digraph obtained from H by reversing the direction of

every arc (but keeping the colours the same). A reverse circuit in H is a string C =
w0w1 · · ·w2k−1 over the alphabet V which forms a forward circuit in the converse of H .
That is, the arcs

(w1, w0), (w1, w2), (w3, w2), (w3, w4), . . . (w2k−1, w2k−2), (w2k−1, w0) (7)

are all distinct, all belong to AH and alternate in colour, so that the arcs in

{(w2i+1, w2i) : i = 0, 1, . . . , k − 1}

all have one colour and the arcs in

{(w2i+1, w2i+2) : i = 0, 1, . . . , k − 2} ∪ {(w2k−1, w0)}

all have the other colour. By circuit we mean either a forward circuit or a reverse circuit.
For a forward or reverse circuit C, denote by A(C) the set of arcs in (6) or (7), respectively.
It is important to note that the arcs of a circuit alternate both in colour and orientation
at each step. While a circuit may contain both the arcs (x, y) and (y, x), any three
consecutive vertices on the circuit are distinct.

We now define two operations on digraphs. Let ζ denote the operation which takes
a digraph to its converse (that is, it reverses every arc in the digraph), and let χ be
the operation which takes a digraph to its complement. Writing [n](2) for the set of all
ordered pairs of distinct elements of [n], the complement χG of a digraph G has arc set
[n](2) − A(G). Note that the operations ζ and χ commute and are both involutions.

We can also apply ζ and χ to the (arc-coloured) symmetric difference H = G△G′.
Here ζH is the result of reversing every arc in H , without changing the colour of any
arc. Similarly, χH is the result of exchanging the colour of every arc in H (so that blue
becomes red and vice-versa), without changing the orientation of any arc. To see this,
note that the set of blue arcs in H = G△G′ equals

A(G) −A(G′) = A(χG′) − A(χG),
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but this equals the set of red arcs in (χG)△(χG′) (and similarly, the set of red arcs in
G△G′ equals the set of blue arcs in (χG)△(χG′)).

Finally, we generalise these definitions so that they also apply to (arc-coloured) sub-
digraphs U of H . That is, ζU is the result of reversing every arc in U , without changing
the colour of any arc, while χU is the result of exchanging the colour of every arc in U
without changing the orientation of any arc.

3.1 Decomposition into circuits

Fix a pairing ψ ∈ Ψ(G,G′). We decompose H into a sequence of circuits depending on ψ,
as follows. Let (w0, w1) be the lexicographically least arc in H . Choose the arc (w2, w1)
which is paired with (w0, w1) at w1. (Note that if (w0, w1) is blue then (w2, w1) is red, and
vice-versa. Furthermore, w2 6= w0 since H is a symmetric difference.) Next choose the
arc (w2, w3) which is paired with (w2, w1) at w2. (This arc will have the same colour as
(w0, w1).) Continue in this fashion. Specifically, for i ≥ 1, if w2i 6= w0 then let (w2i, w2i+1)
be the arc which is paired with (w2i, w2i−1) at w2i and let (w2i+2, w2i+1) be the arc which
is paired with (w2i, w2i+1) at w2i+1. The vertices wi are not necessarily distinct, but the
arcs are distinct. The process terminates when (w0, w2k−1) is paired with (w0, w1) at w0,
giving a forward circuit C1 = w0w1 · · ·w2k−1.

If A(C1) = AH then C = {C1} and we are done. Otherwise, take the lexicographically
least arc not in C1 and generate a new circuit C2 by the above procedure. Continue
generating circuits until

AH = A(C1) ∪ A(C2) ∪ · · · ∪ A(Cs).

Then C = {C1, C2, . . . , Cs} and the circuits C1, C2, . . . , Cs are arc-disjoint. Note that,
once the pairing has been chosen, C is formed without regard to the colouring of H . This
property will be needed later.

Using C, we form a path

G = Z0, Z1, . . . , ZM = G′

from G to G′ in the underlying graph of the Markov chain (that is, to get from Za to
Za+1 we perform a switch). The path is defined by processing each circuit Ci in turn.
Processing a circuit changes its arcs from agreeing with G to agreeing with G′, with no
other arcs being permanently altered (though some may be temporarily changed while
processing the circuit Ci). The canonical path is defined inductively. If

G = Z0, Z1, . . . , Zr

is the canonical path obtained by processing the first circuit C1, and

Zr, Zr+1, . . . , ZN = G′

is the canonical path from Zr to G′ obtained by processing the circuits (C2, . . . , Cs), in
order, then the canonical path from G to G′ corresponding to ψ is given by the concate-
nation of these two paths.
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Thus it suffices to describe the canonical path corresponding to a particular circuit
C = w0w1 · · ·w2k−1. First we may need to decompose the circuit C further. A 1-circuit
S = v0v1v2 · · · vt is a string on the letters {w0, w1, . . . , w2k−1} such that v0 = w0 and w0

appears only once in S. Usually a 1-circuit will be a contiguous substring of C (allowing
reversal of direction and/or cyclic wrapping around C), but it may also contain one arc
which is not an arc of C.

We now show how to decompose a circuit into a sequence of 1-circuits (and possibly
some single switches) which will then be processed in order (as described in Section 3.3)
to form the canonical path corresponding to C.

3.2 Decomposition of a circuit

Given a circuit C = w0w1 · · ·w2k−1, let v = w0 and let C(0) = C (which is the currently
unprocessed segment of C). Suppose that the current digraph on the canonical path from
G to G′ is ZJ . If wi 6= v for i = 1, . . . , 2k − 1 then C(0) is a 1-circuit which we process
(using the procedure described in Section 3.3), extending the canonical path as

G = Z0, . . . , ZJ , ZJ+1, . . . , ZJ+t. (8)

This completes the processing of C. Otherwise, v appears θ times on C(0), where 2 ≤ θ ≤
θv + φv. Relabel the vertices on C(0) as

C(0) = vx1 · · · y1vx2 · · · y2v · · · vxθ · · · yθ.

By construction, C(0) is a forward circuit, so (v, x1) ∈ A(C(0)).
Firstly, suppose that S = vx1 · · · y1 is a 1-circuit. That is, arcs (v, x1) and (v, y1) are

present on S, with opposite colours. Process the 1-circuit S, extending the canonical path
as in (8), leaving the forward circuit

C(1) = vx2 · · · y2v · · · vxθ · · ·yθ

as the unprocessed section of C. Then process C(1) inductively.
Next, suppose that we are not in the above situation (so that the arcs (v, x1) and

(y1, v) are present on S, with the same colour), but that S = vxθ · · · yθ is a 1-circuit.
That is, the arcs (v, xθ) and (v, yθ) are present on S, with opposite colours. Process the
1-circuit S, extending the canonical path as in (8), and leaving the forward circuit

C(1) = vx1 · · ·y1v · · · vxθ−1 · · ·yθ−1

to be processed inductively.
Finally, suppose that neither of the two situations above apply. Then the arcs (v, x1)

and (y1, v) have one colour while (xθ, v) and (v, yθ) have the other colour. We will process
S ′ = vx1 · · ·y1vxθ · · · yθ (which we call a 2-circuit), extending the canonical path as in (8)
and leaving

C(1) = vx2 · · ·y2v · · · vxθ−1 · · ·yθ−1
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to be processed inductively. Here C(1) is a reverse circuit and we process it using the same
procedure as described above, but with all arcs reversed.

All 1-circuits and 2-circuits created by the above procedure are called raw. The order
in which we detect and process raw 1-circuits and raw 2-circuits implies that both the
processed and unprocessed sections of C are contiguous whenever the processing of a raw
1-circuit or raw 2-circuit is complete. (That is, these sections form contiguous substrings
of C, where a substring is allowed to wrap around in a cyclic fashion.)

Suppose that S is a raw 1-circuit or raw 2-circuit with substring abc. Fix i ∈ {0, 1}
such that the corresponding arcs are ζ i(a, b) and ζ i(c, b). These arcs are called successive
arcs along S. Every raw 1-circuit or raw 2-circuit S has the following property: successive
arcs along S are paired under ψ at their common endvertex b, except possibly when b = v
and the arcs are the first and last arcs of S. We call this the well-paired property, which
will be used in Lemma 4.1 below.

Raw 1-circuits are processed using the method described in Section 3.3. In most cases,
raw 2-circuits must be further decomposed (into a sequence of 1-circuits and/or switches)
before they can be processed, as described in Section 5. It is here that extra difficulties
arise here when working with directed graphs.

Recall the notation for switches introduced after Figure 1. Let Q = αβγδ be a circuit
in H which is also a 4-cycle. Set

i =

{

0 if Q is a forward circuit,

1 otherwise.

We now define notation for the switch which processes this 4-cycle, starting from the
current digraph ZJ and producing the next digraph ZJ+1 on the canonical path. Let
h = 0 if ζ i(α, β) ∈ ZJ and h = 1 otherwise. Then define

ζ iχh[αβγδ] =



















[αβγδ] if i = 0, h = 0,

[αδγβ] if i = 0, h = 1,

[βαδγ] if i = 1, h = 0,

[βγδα] if i = 1, h = 1.

If h = 0 then the switch ζ iχh[αβγδ] deletes the arcs ζ i(α, β), ζ i(γ, δ) and replaces them
with ζ i(α, δ), ζ i(γ, β), while the opposite occurs if h = 1.

Finally, we define the status of an arc (x, y) in a digraph Z to equal 0 if (x, y) 6∈ A(Z)
and to equal 1 if (x, y) ∈ A(Z). We say that two arcs have matching status if their status
is equal in Z, and say that they have opposite status otherwise.

3.3 Processing a 1-circuit

Let S be a 1-circuit. (If S is not raw then S has resulted from the decomposition of a raw
2-circuit: see Sections 4.1 and 4.2.) The method for processing a 1-circuit is very similar
to that used in [6], and some of the discussion and figures given there may be helpful.
(See also the worked example in Section 6.)
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Label the 1-circuit as S = x0x1 . . . x2k−1 where k ≥ 2, such that x0 is the minimum
vertex on S and x1 = min{x1, x2k−1}. Set

i =

{

0 if S is a forward circuit,

1 if S is a reverse circuit.

Also set

h =

{

0 if ζ i(x0, x1) ∈ A(ZJ),

1 otherwise.

Then ζ i(x2t, x2t+1) ∈ A(χhZJ) and ζ i(x2t+2, x2t+1) 6∈ A(χhZJ) for t = 0, 1, . . . , k − 1
(identifying x2t with x0). Note that any three consecutive vertices on S are distinct.

Define the set

B = {t = 1, 2, . . . , k − 1 : ζ i(x0, x2t+1) 6∈ A(χhZJ)

and x2ℓ+1 6= x2t+1 for ℓ with ℓ = t+ 1, . . . , k − 1.}

(This definition ensures that exactly one value t is stored for each distinct vertex x2t+1 with
ζ i(x0, x2t+1) 6∈ A(χhZJ), ensuring that vertices which are repeated along S are treated
correctly.) Note that k − 1 ∈ B always. The arcs ζ i(x0, x2t+1) are called odd chords. The
number of phases in the processing of S will be p = |B|. For the first phase, choose the
minimum t ∈ B. There will be t steps in the first phase, which proceeds as follows:

for j := t, t− 1, . . . , 1 do
form ZJ+t−j+1 from ZJ+t−j by performing the switch ζ iχh[x0x2j−1x2jx2j+1];

If t = k − 1 then there is only one phase and the processing of S is complete. Otherwise,
ζ i(x0, x2t+1) ∈ A(χhZJ+t) but all odd chords ζ i(x0, x2ℓ+1) with x2ℓ+1 6= x2t+1 have been
reinstated to match their status in ZJ (that is, they belong to ZJ+t if and only if they
belong to ZJ).

For subsequent phases, if t was the starting point of the previous phase then choose
q > t minimum such that q ∈ B. The odd chord ζ i(x0, x2t+1) has been switched in the
previous phase but will be restored to its original state by the end of this phase. There
will be q − t steps in this phase, performing the sequence of switches

ζ iχh[x0x2q−1x2qx2q+1], ζ iχh[x0x2q−3x2q−2x2q−1], . . . , ζ iχh[x0x2t+1x2t+2x2t+3].

Note that every switch involves x0, the start-vertex of S.
At any point during the processing of the 1-circuit, at most three odd chords have

been switched (that is, temporarily disturbed). This is illustrated in the worked example
in Section 6.
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4 Decomposition of a raw 2-circuit

We now show how to process a raw 2-circuit S, given the method for processing a 1-
circuit described in Section 3.3. Suppose that we have reached the digraph ZJ on the
canonical path from G to G′ in G. Note that ZJ agrees with G on the 2-circuit S before
the processing of S begins. We relabel the vertices on S as

S = vx0,0 · · ·x1,0vx1,1 · · ·x0,1, (9)

where (v, x0,0) is the lexicographically least arc in A(S). Treat the indices (i, j) on the
vertex labels as elements of Z

2
2, with addition performed modulo 2. In the undirected

case [6], the vertices x0,0, x0,1, x1,0, x1,1 are all distinct. However, this is no longer the
case in the directed setting, which complicates the definition of the canonical paths. Also
note that there may be as few as two vertices between two successive occurrences of v on
the 2-circuit S. This is explained in more detail below Figure 5, once we have introduced
some useful notation.

Recall that χ is the complementation operation for digraphs. Set

h =

{

0 if the arc (v, x0,0) is present in ZJ ,

1 if the arc (v, x0,0) is absent in ZJ .

Then

(v, x0,0) ∈ A(χhZJ), (x1,0, v) ∈ A(χhZJ), (x1,1, v) 6∈ A(χhZJ), (v, x0,1) 6∈ A(χhZJ).

Figure 2 depicts χhS, where the curved lines (from x0,0 to x1,0 and from x0,1 to x1,1)
represent any odd number of alternating arcs. Solid arcs represent arcs which are present
in χhZJ and dashed arcs represent arcs which are absent in χhZJ . That is, if h = 0 then
solid arcs belong to ZJ and dashed arcs belong to G′, while if h = 1 then solid arcs belong
to G′ and dashed arcs belong to ZJ .

v

x0,0

x1,0x1,1

x0,1

Figure 2: The 2-circuit χhS

For (i, j) ∈ Z
2
2, let yi,j be the unique vertex such that vxi,jyi,j or yi,jxi,jv is a contiguous

substring of S (allowing cyclic wrapping in the case of y0,1). If y0,j = x1,j for some j
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then y1,j = x0,j and there is only one arc between x0,j and x1,j . This means that the
corresponding curved line in Figure 2 can be replaced by a single arc. There are four
possibilities for χhS in which y0,j = x1,j for j = 1, 2. These are shown in Figure 3. The
leftmost 2-circuit involves 5 distinct vertices and the middle two 2-circuits each involve
4 distinct vertices, with one coincidence of the form x0,j = x1,j+1, where j ∈ Z2. The
rightmost 2-circuit involves 3 distinct vertices: we will call it a triangle.

v

vv

v x0,0

x0,0

x1,0

x1,0

x1,1

x1,1

x0,1

x0,1
x0,0 = x1,1

x0,0 = x1,1
x0,1 = x1,0

x0,1 = x1,0

Figure 3: The four 2-circuits χhS with at most 5 distinct vertices. The rightmost 2-circuit
is a triangle.

In the undirected analysis [6], a critical observation was that vertex y0,0 must be distinct
from x0,1 (without loss of generality). This fact underpinned the definition of the canonical
paths in [6]. For directed graphs this property does not necessarily hold, as can be seen
from the last two 2-circuits in Figure 3.

We will say that S is normal if yi,j 6= xi,j+1 for some (i, j) ∈ Z
2
2. In Section 4.1

we describe how to process a normal 2-circuit. The procedure is analogous to that used
in [6], which is the motivation for the definition of normal 2-circuits. Note that the triangle
(shown at the rightmost of Figure 3) is not normal but the remaining 2-circuits in Figure 3
are normal.

For (i, j) ∈ Z
2
2, let zi,j be the unique vertex such that vxi,jyi,jzi,j or zi,jyi,jxi,jv is a

contiguous substring of S (allowing cyclic wrapping in the case of z0,1). We will need the
following lemma.

Lemma 4.1. Suppose that S is a raw 2-circuit which is not normal and such that v = zi,j
for some (i, j) ∈ Z

2
2. Then S is a triangle.

Proof. Without loss of generality (by reversing arcs and/or taking the complement if
necessary) we may suppose that v = z0,0. (This means we cannot assume that (v, x0,0)
is the lexicographically least arc in S, but we do not need to use that property in this
proof.) Colour arcs around the 2-circuit orange, purple in an alternating fashion, starting
with the orange arc (v, x0,0). By assumption, S has initial substring v x0,0 y0,0 v. By the
well-paired property of 2-circuits, we know that the orange arc (v, x0,0) is paired with the
purple arc (y0,0, x0,0) at x0,0 under ψ, and the purple arc (y0,0, x0,0) is paired with the
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orange arc (y0,0, v) at y0,0 under ψ. Now v is incident with exactly four arcs of S, one of
each colour and orientation (see Figure 2.) Hence the presence of the orange arc (y0,0, v)
on S shows that y0,0 = x1,0. But then we obtain

y0,0 = x1,0 = y1,1 = x0,1,

as S is not normal.
Now y0,0 = x1,0 and the purple arc (y0,0, x0,0) is paired with the orange arc (v, y0,0).

This implies that x0,0 = y1,0, and since S is not normal it follows that

x0,0 = y1,0 = x1,1 = y0,1.

This gives all pairing information around the 2-circuit except for pairings at v. (For
example, since y0,0 = x0,1 and x0,0 = y0,1, we know that the purple arc (v, y0,0) is present
on S and is paired with the orange arc (x0,0, y0,0) at y0,0. This arc is paired at x0,0 with
the purple arc (x0,0, v), since x0,0 = x1,1 and y0,0 = y1,1.) But as v is only incident with
four arcs of S there can be no other vertices involved in S. So by the well-paired property,
at least one of the pairs of arcs (v, x0,0), (v, y0,0) and (x0,0, v), (y0,0) must be paired at v.
It follows that S is a triangle on {v, x0,0, y0,0}.

Call S eccentric if it is not normal and not a triangle. If S is eccentric then v 6= zi,j for
all (i, j) ∈ Z

2
2, by Lemma 4.1. Hence χhS is as shown in Figure 4. (Remember that arcs

must alternate in both colour and orientation, giving a unique way to navigate around this
figure, or see Figure 6 below for an unravelled version.) Again the curved lines represent
an odd number of alternating arcs (from x0,0 to x1,0 and from x0,1 to x1,1). Recall also
that the vertices xi,j are not necessarily distinct.

v
x0,0 = y0,1

x0,1 = y0,0

x1,0 = y1,1

x1,1 = y1,0

Figure 4: The 2-circuit χhS when S is eccentric

We describe how to process an eccentric 2-circuit in Section 4.2 and in Section 4.3
we explain how to process a triangle. This will complete the description of the canonical
path from G to G′ corresponding to the pairing ψ.
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4.1 Decomposing a normal 2-circuit

Let S be a normal 2-circuit, with vertices labelled as in (9), where (v, x0,0) is the lexico-
graphically least arc in A(S). Recall the notation zi,j defined before Lemma 4.1. A normal
2-circuit was depicted in Figure 2 but now we need a more detailed picture (Figure 5).
Recall however that there can be as few as three arcs in the left or right half of this figure:
for example, if there were only three arcs on the right then yi,0 = xi+1,0 and zi,0 = v for
i ∈ Z2. Again the curved lines in Figure 5 represent an odd number of alternating arcs.

v

x0,0 y0,0

y1,0x1,0x1,1y1,1

y0,1 x0,1

z1,1

z0,1

z1,0

z0,0

Figure 5: A normal 2-circuit χhS, in more detail

Let (i, j) be the lexicographically least index such that xi,j 6= yi,j+1. (Here we use the
ordering 0 < 1 on Z2.) Define the arc ai,j = (yi,j+1, xi,j). The shortcut arc of S is ζ iai,j
(that is, it equals ai,j itself if i = 0 and equals the reversal of ai,j if i = 1).

Suppose that ZJ is the current digraph on the canonical path from G to G′ before we
start decomposing S. There are three cases, called (Na), (Nb), (Nc), where the ‘N’ stands
for ‘normal’.

(Na) the shortcut arc ζ iai,j belongs to A(S).

(Nb) the shortcut arc ζ iai,j does not belong to A(S), and ζ iai,j is not an arc of χh+jZJ .

(Nc) the shortcut arc ζ iai,j does not belong to A(S), and ζ iai,j is an arc of χh+jZJ .

We consider these cases in order. (A more detailed description of the analogous process
in the undirected case, with figures, can be found in [6] and may also be helpful.)

(Na) In case (Na), the 2-circuit S can be split into two 1-circuits, S1 and S2. There are
four subcases to consider, depending on which “half” of the 2-circuit contains the
shortcut arc and whether the shortcut arc belongs to ZJ . In all subcases, the arcs
of S1 and S2 form a partition of the arcs of S.

Once the two 1-circuits S1 and S2 have been identified, they are processed in that
order, extending the canonical path from G to G′ as

G = Z0, . . . , ZJ , ZJ+1, . . . , ZJ+k
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after processing S1, and

G = Z0, . . . , ZJ , ZJ+1, . . . , ZJ+k, ZJ+k+1, . . . , ZJ+k+ℓ

after processing S2.

(Na1) Suppose that S can be rewritten (allowing cyclic wrapping if necessary) as

v xi,j+1, yi,j+1zi,j+1 · · · yi,j+1xi,j · · · zi+1,j+1yi+1,j+1xi+1,j+1vxi+1,j · · ·xi,j
and ζ iai,j 6∈ A(χh+jZJ). Split S into two 1-circuits

S1 = vxi,j+1 yi,j+1zi,j+1 · · · yi,j+1xi,j,

S2 = vxi+1,j+1yi+1,j+1zi+1,j+1 · · ·xi,jyi,j · · · yi+1,jxi+1,j .

(Na2) Suppose that S can be rewritten (allowing cyclic wrapping if necessary) as

v xi,j+1yi,j+1zi,j+1 · · ·xi,j yi,j+1 · · · zi+1,j+1yi+1,j+1xi+1,j+1v xi+1,j · · ·xi,j
and ζ iai,j ∈ A(χh+jZJ). Split S into two 1-circuits

S1 = vxi,j+1yi,j+1zi,j+1 · · ·xi,j ,
S2 = vxi+1,j+1yi+1,j+1zi+1,j+1 · · · yi,j+1 xi,jyi,j · · · yi+1,jxi+1,j.

(Na3) Suppose that S can be rewritten (allowing cyclic wrapping if necessary) as

vxi,j+1 · · ·xi+1,j+1vxi+1,jyi+1,jzi+1,j · · · yi,j+1xi,j · · · zi,j+1yi,j+1xi,j+1

and ζ iai,j 6∈ A(χh+jZJ). Split S into two 1-circuits

S1 = vxi,j+1yi,j+1xi,j · · · zi,jyi,jxi,j ,
S2 = vxi+1,j+1yi+1,j+1 · · · yi,j+1 · · · zi+1,jyi+1,jxi+1,j.

(Na4) Suppose that S can be rewritten (allowing cyclic wrapping if necessary) as

vxi,j+1 · · ·xi+1,j+1vxi+1,jyi+1,jzi+1,j · · ·xi,jyi,j+1 · · · zi,jyi,jxi,j
and ζ iai,j ∈ A(χh+jZJ). Split S into two 1-circuits

S1 = vxi,j+1yi,j+1 · · · zi,jyi,jxi,j,
S2 = vxi+1,j+1yi+1,j+1 · · · yi,j+1xi,j · · · zi+1,jyi+1,jxi+1,j .

(Nb) Now suppose that S is a normal 2-circuit, the shortcut arc ζ iai,j is not an arc of
S and ζ iai,j is not an arc of χh+jZJ . Then we can use the shortcut arc to give an
alternating 4-cycle vxi,jyi,j+1xi,j+1. First process this alternating 4-cycle using the
switch ζ iχh+j[vxi,j, yi,j+1xi,j+1], extending the canonical path by one step to give

G = Z0, . . . , ZJ , ZJ+1.
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(Call this step the shortcut switch.) Now ζ iai,j is an arc of χh+jZJ+1 and we can
form a 1-circuit S1 from S, specifically

S1 = vxi+1,j+1yi+1,j+1 · · ·yi,j+1 xi,jyi,j · · · yi+1,jxi+1,j . (10)

Process this 1-circuit (as described in Section 3.3) to extend the canonical path
further, giving

G = Z0, . . . , ZJ , ZJ+1, ZJ+2, . . . , ZJ+k.

Note that ζ iai,j is not an arc of χh+jZJ+k after the 1-circuit S1 has been processed,
so it has been restored to the same state as in χh+jZJ , before the processing of the
2-circuit S began.

(Nc) Finally assume that S is a normal 2-circuit, the shortcut arc ζ iai,j is not an arc of
S and ζ iai,j is an arc of χh+jZJ . Then the shortcut arc completes the 1-circuit S1

defined in (10), which is processed (as described in Section 3.3). This extends the
canonical path to give

G = Z0, . . . , ZJ , ZJ+1, . . . , ZJ+k.

Last we process the alternating 4-cycle vxi,jyi,j+1xi,j+1, using the shortcut switch
ζ iχh+j[vxi,j , yi,j+1xi,j+1], extending the canonical path by one step to give

G = Z0, . . . , ZJ , ZJ+1, . . . , ZJ+k, ZJ+k+1.

Note that ζ iai,j is not an arc of χh+jZJ+k but it is an arc of χh+jZJ+k+1, so it has
been restored to the same state as in χh+jZJ .

4.2 Decomposing an eccentric 2-circuit

Now we may assume that S is an eccentric 2-circuit. Then yi,j = xi,j+1 for all (i, j) ∈ Z
2
2,

by definition, and v 6= zi,j for all (i, j) ∈ Z
2
2, by Lemma 4.1. Call (z1,0, v) the eccentric

arc. Note that z1,0 6∈ {x1,0, x1,1} which is the set of in-neighbours of v on S. Hence the
eccentric arc is never an arc of S, so that the analogue of Case (Na) never arises. The
remaining possibilities are below, called Case (Ea) and (Eb) (these are similar to cases
(Nb) and (Nc) for normal 2-circuits, respectively).

(Ea) Suppose that (z1,0, v) 6∈ A(χhZJ). Then z1,0x1,1x1,0v forms an alternating 4-cycle
which we process using the switch χh[z1,0x1,1x1,0v], extending the canonical path by
one step to give

G = Z0, · · · , ZJ , ZJ+1.

We call this step the eccentric switch. After performing the eccentric switch we have
the 2-circuit

S ′ = vx0,0 · · · z1,0vx1,1x1,0 · · ·x0,0x0,1. (11)
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Indeed, since z1,0 6= x1,0 it follows that S ′ is a normal 2-circuit, which we can process
using the method described in Section 4.1. This extends the canonical path as

G = Z0, · · · , ZJ , ZJ+1, ZJ+2 · · · , ZJ+1+k.

Note that (z1,0, v) 6∈ A(χhZJ+1+k), so the eccentric arc has been restored to the
same state as in χhZJ , before the processing of S began.

(Eb) Suppose that (z1,0, v) ∈ A(χhZJ). Then S ′ defined in (11) is a normal 2-circuit
which we first process using the method described in Section 4.1. This extends the
canonical path as

G = Z0, · · · , ZJ , ZJ+1, · · · , ZJ+k.

Then z1,0x1,1x1,0v forms an alternating 4-cycle which we process using the eccentric
switch χh[z1,0x1,1x1,0v], extending the canonical path by one step to give

G = Z0, · · · , ZJ , ZJ+1, · · · , ZJ+k, ZJ+k+1.

Now (z1,0, v) ∈ A(χhZJ+1+k), so the eccentric arc has been restored to the same
state as in χhZJ .

This procedure for still works even for eccentric 2-circuits with only five vertices. These
arise when zi,j = xi+1,j+1 for all (i, j) ∈ Z

2
2 (matching Figure 4 with both curved lines

replaced by one arc each.)
The following information will be needed when analysing the flow.

Lemma 4.2. Let S be an eccentric 2-circuit with the labelling of (9) and let S ′ be the
normal 2-circuit used to process S. Suppose that S ′ falls into case (Nb) or (Nc). Then
the following all hold:

(i) Neither of the arcs (v, x0,1), (x1,1, v) are involved in the eccentric switch.

(ii) Using the labelling from Figure 4, the shortcut arc used to process S ′ is (z1,0, x1,0)
and the shortcut switch is [x1,1x1,0z1,0v].

(iii) The eccentric arc is involved in the shortcut switch and does not lie on the 1-circuit
used to process S ′.

Proof. Recall that the eccentric arc is (z1,0, v). The first statement is immediate as the
eccentric switch processes the alternating 4-cycle z1,0x1,1x1,0v.

For the remainder of the proof, we use labels x̂i,j , ŷi,j, . . . to denote the labelling of S ′

obtained as in (9). See Figure 6. As S is eccentric we have yi,j+1 = xi,j for all (i, j) ∈ Z
2
2.

By choice of the eccentric switch we have x̂i,j = xi,j and ŷi,j = yi,j for (i, j) 6= (1, 0), while
x̂1,0 = z1,0.
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v

v

x0,0

x0,0

x0,0

x0,0x0,1

x0,1

x0,1

x0,1

x1,0

x1,0x1,0

x1,1

x1,1x1,1

z0,0

z0,0

z0,1

z0,1

z1,0

z1,1

z1,1

z1,0 = x̂1,0

Figure 6: An eccentric 2-circuit χhS (above) and the normal 2-circuit χhS ′ used to process
it (below)

Now z1,0 6= x1,0 since z1,0x1,1x1,0 is a contiguous substring of S. Hence (1, 0) is the
lexicographically least (i, j) such that x̂i,j 6= ŷi,j+1. It follows that the shortcut arc is
(x̂1,0, ŷ1,1) = (z1,0, x1,0). Notice that the eccentric arc is incident with the shortcut arc at
z1,0 (with the same orientation). Furthermore, the shortcut switch involves a switch to
the alternating 4-cycle

vx̂1,1ŷ1,1x̂1,0 = vx1,1x1,0z1,0

which includes the eccentric arc. Specifically, the switch is [x1,1x1,0z1,0v], proving (ii).
Since the eccentric arc (z1,0, v) is one of the arcs involved in the shortcut switch, it does
not lie on the 1-circuit used to process S ′. This establishes (iii), completing the proof.

4.3 Processing a triangle

Now suppose that S is a triangle, with vertices labelled v0, v1, v2 where v0 is the least
vertex on S and (v0, v1) is an arc in the current digraph ZJ . Define the sets W(i,j) =
W(i,j)({v0, v1, v2}, ZJ) for (i, j) ∈ Z

2
2. There are two cases, depending on whether a useful

neighbour of S exists.

(T1) First suppose that there exists a useful neighbour of S. Let x be the minimum useful
neighbour of S, and set (i, h) according to the first condition in this list which is
satisfied by x:

(i, h) =



















(0, 0) if x is an out-neighbour of exactly one vertex of S,

(0, 1) if x is an out-neighbour of exactly two vertices of S,

(1, 0) if x is an in-neighbour of exactly one vertex of S,

(1, 1) if x is an in-neighbour of exactly two vertices of S.
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Then the sequence of three switches given by LaMar [15, left half of Figure 2] can
be used to process S. For completeness we describe these switches here. Relabel
the vertices of the triangle with a, b, c so that

• ζ i(a, x) ∈ A(χhZJ),

• ζ i(b, x) 6∈ A(χhZJ), ζ i(c, x) 6∈ A(χhZJ),

• ζ i(a, b), ζ i(b, c), ζ i(c, a) ∈ A(χhZJ).

(Once x, i, h are chosen using the above procedure, the labelling of the triangle is
uniquely determined.) Then the sequence of switches

ζ iχh[axbc], ζ iχh[bxca], ζ iχh[abcx]

processes the triangle and restores all arcs between x and the triangle to their
original state. See Figure 7 for the case (i, h) = (0, 0): the diagram for the other
cases can be obtained by reversing all arcs if i = 1, and/or by exchanging solid lines
and dashed lines if h = 1. Call arcs ζ i(a, x), ζ i(b, x), ζ i(c, x) the auxilliary arcs.

aaaa bbbb

ccc c

xxxx

Figure 7: Processing a triangle using a useful neighbour

Use this sequence of switches to process the triangle, extending the canonical path
as

G = Z0, . . . , ZJ , ZJ+1, ZJ+2, ZJ+3.

(T2) Suppose that there is no useful neighbour of S in ZJ . Then using Lemma 2.3,
there must exist a useful arc for S. Let (x, y) be the lexicographically least such
arc. Recall that (x, y) satisfies one of the properties (U1), (U2) given just before
Lemma 2.3. Define

h =

{

0 if (U1) holds,

1 if (U2) holds.

Then (x, y) ∈ A(χh ZJ) with x ∈ W(h,h)∪W(h,h+1) and y ∈ W(h,h)∪W(h+1,h). Relabel
the vertices of the triangle as a, b, c, where a = v0 and (a, b) ∈ A(χhZJ). (Once h
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is defined, this labelling is completely determined.) The sequence of switches given
by LaMar [15, right side of Figure 2] will be used to process S. For completeness
we give this sequence of switches in our notation:

χh[xyab], χh[aybc], χh[byca], χh[xbcy].

These switches are also displayed in Figure 8 in the case that h = 0: the diagram for
h = 1 can be obtained by exchanging solid lines and dashed lines. The arcs (x, y),
(x, b), (a, y), (b, y), (c, y) are called auxilliary arcs. Use this sequence of switches to
process the triangle, extending the canonical path as

G = Z0, . . . , ZJ , ZJ+1, ZJ+2, ZJ+3, ZJ+4.

aa

aaa

bb

bbb

cc

ccc

xx

xxx

yy

yyy

Figure 8: Processing a triangle using a useful arc

5 Analysing the flow

We now analyse the multicommodity flow so that we can apply Lemma 1.5 to give a
bound on the second-largest eigenvalue of the switch chain. In this section we assume
that 1 ≤ d = d(n) ≤ n/2 for all n. This implies the general result for any (d(n)), by
complementation where necessary.
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Fix a pairing ψ ∈ Ψ(G,G′) and let γψ(G,G′) be the canonical path from G to G′ with
respect to ψ. Let (Z,Z ′) be any transition on γψ(G,G′), and let S be the raw 1-circuit
or raw 2-circuit which is currently being processed. (That is, the transition (Z,Z ′) is
performed while processing S.) Let ZJ be the digraph on the canonical path from G to
G′ just before the processing of S began. Any arc which does not belong to S but which
has distinct status in Z and ZJ is called an interesting arc for Z with respect to (G,G′, ψ).
(That is, the arc does not belong to S but is present in Z but absent in ZJ , or vice-versa.)
The only arcs that can be interesting are:

• odd chords which are switched while processing a 1-circuit,

• the shortcut arc and/or eccentric arc, switched while processing a normal or eccentric
2-circuit,

• auxilliary arcs which are switched while processing a triangle.

We will label an interesting arc by −1 (respectively, 2) if it is absent (respectively, present)
in ZJ but present (respectively, absent) in Z. (The reason for this choice of labels will be
made clear shortly.)

Interesting arcs play a key role in our analysis. The following lemma describes the
possible subdigraphs of Z that can be formed by interesting arcs in Z. It proves that
the labelled digraph consisting of the interesting arcs is a subdigraph of one of the eight
labelled digraphs shown in Figure 9, up to symmetries. Here {µ, ν} = {−1, 2} and
{ξ, ω} = {−1, 2} independently, giving four symmetries obtained by exchanging these
pairs. Furthermore, ζ may also be applied to reverse the orientation of all arcs. Hence
each digraph shown in Figure 9 represents up to eight possible digraphs. Note, the label
for a given arc is shown next to the head of that arc.

Lemma 5.1. Let Z be a digraph which lies on the canonical path from G to G′ with
respect to the pairing ψ ∈ Ψ(G,G′). There are at most five interesting arcs in Z with
respect to (G,G′, ψ). The digraph consisting of the interesting arcs in Z is a subdigraph
of one of the digraphs in Figure 9. If there are five interesting arcs then the following
statements all hold:

(i) There exists a vertex w which is the head (respectively, tail) of three interesting arcs,
and these three interesting arcs do not all have the same label.

(ii) There is a fourth interesting arc which has w as tail (respectively, head). Let u be
the head (respectively, tail) of the fourth interesting arc.

(iii) The fifth interesting arc is not incident with w but has u as its head (respectively,
tail).
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µ
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ν

ν
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ν

ν
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ξ

ξ
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ω

ωωω ω
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Figure 9: Possible configurations of interesting arcs, up to symmetries

Proof. While processing a triangle, at most three interesting arcs are used, namely the
two or three auxilliary arcs. It follows from Figures 7, 8 that the auxilliary arcs always
form subdigraphs of a configuration from Figure 5.1.

When processing a normal 2-circuit, the situation is very similar to that in [6], with
at most four interesting arcs. Up to three interesting arcs arise from the processing of a
1-circuit. They are all odd chords, and hence are all incident with the start-vertex of the
1-circuit with consistent orientation. However, they do not all have the same label. The
fourth interesting arc corresponds to the shortcut arc, which may be labelled −1 or 2 and
may be incident with none, one or two of the other interesting arcs (but not incident with
the start vertex of the 1-circuit).

The fifth possible interesting arc is the eccentric arc, in the case that we are processing
an eccentric 2-circuit S. Let S ′ be the normal 2-circuit containing the eccentric arc which
is used to process S. If S ′ falls into case (Na) then the eccentric arc may be a interesting
arc for part (either the start or end) of the processing of S1, the 1-circuit which contains
it. But the configuration of interesting arcs in this case looks just the same as those which
may arise from the processing of a normal 1-circuit, since the eccentric arc is involved in
either the first switch of the last phase or the last switch of the first phase, and hence
plays the same role as an interesting arc left over from a previous phase. However, if S ′

falls into case (Nb) or (Nc) then by Lemma 4.2 (iii), the eccentric arc does not lie on the
1-circuit S1 which arises from S ′. But the eccentric arc be an interesting arc throughout
the processing of S1. Hence S1 may have up to five interesting arcs, including the shortcut
arc and the eccentric arc. In this case the eccentric arc is incident with the start-vertex v
of S1 (which equals the start-vertex of S) and it has the opposite orientation to the other
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interesting arcs incident with v, if any. Let u be the endvertex of the eccentric arc which
is not v. If the shortcut arc is present then it must be incident with the eccentric arc at
u, with consistent orientation. This completes the proof.

Now identify a digraph with its n × n adjacency matrix (which has zero diagonal),
and define the n× n matrix L by L+ Z = G+G′. Entries of L belong to {−1, 0, 1, 2}.
We may also think of L as the complete digraph on [n] with each arc labelled by the
corresponding entry of L. An arc in L is called bad if its label is −1 or 2. Note that L
is independent of ψ. Call L an encoding for Z with respect to (G,G′). Note that an arc
receives label −1 if it is absent in both G and G′ but is present in Z, while an arc receives
label 2 if it is present in both G and G′ but is absent in Z. Thus arcs in the symmetric
difference G△G′ are never bad arcs. Furthermore, every bad arc is an interesting arc,
and an interesting arc is bad if and only if it does not belong to the symmetric difference
G△G′. This observation will be used many times in our analysis. In particular, it means
that the digraph of bad arcs in an encoding L for Z is a subdigraph of one of the digraphs
in Figure 9. This also explains our choice of labels for interesting arcs, since a bad arc
with label 2 (respectively, −1) is also an interesting arc with label 2 (respectively, −1).

In the undirected setting [6, Lemma 1] it is always possible to uniquely recover (G,G′)
if (Z,Z ′), L and ψ are known. We prove a slightly weaker result in the directed setting.

Lemma 5.2. Given (Z,Z ′), L, ψ, there are at most four possibilities for (G,G′) such
that (Z,Z ′) is a transition along the canonical path from G to G′ corresponding to ψ and
L is an encoding for Z with respect to (G,G′).

Proof. The matrix G+G′ equals Z + L. From this matrix we can identify all arcs which
are present in both G and G′ (entries with value 2 in G+G′) and all arcs which are absent
in both G and G′ (entries with value 0 in G + G′). We can also identify the symmetric
difference H = G△G′, corresponding to entries with value 1 in G + G′. It remains to
assign colours blue and red to the arcs of H so that blue arcs come from G and red arcs
come from G′.

From the uncoloured version of H together with ψ we can construct the circuit de-
composition C. Let S be the sequence of raw 1-circuits and raw 2-circuits obtained by
decomposing the circuits in C in order, as described in Section 3.2. The elements of S are
pairwise arc-disjoint and their union is H .

Suppose that the transition (Z,Z ′) deletes the arcs (α, β), (δ, γ) and replaces them
with (α, γ), (δ, β). Call (α, β), (α, γ), (δ, β), (δ, γ) the switch arcs. We classify transitions
along the canonical paths into three types as follows:

Type 1: the transition is any step in the processing of a 1-circuit used to process
S ∈ S. At least one of the switch arcs belong to S. (This includes the case of a raw
1-circuit, in which case the 1-circuit equals S.)

Type 2: the transition is a shortcut switch or an eccentric switch used while pro-
cessing the normal or eccentric 2-circuit S ∈ S. At least two of the switch arcs
belong to S.
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Type 3: the transition is a step in the processing of a triangle S ∈ S. At least one
of the four switch arcs belong to S.

In all cases, at least one of the switch arcs belongs to the element S ∈ S currently being
processed. Therefore, there are at most four possiblities for S, namely, at most one
possibility for each switch arc. (This follows as elements of S are pairwise arc-disjoint.)

Now fix one of the (at most four) possibilities for S. We will show that given this
choice (or guess) for S, we can uniquely determine (G,G′) by colouring the edges of H .
Note that if S is a 2-circuit, its labelling (as in Figure 5) can be determined uniquely.
Hence we can determine whether S is normal, eccentric or a triangle.

Furthermore, in the first two cases we can identify exactly which arcs will be used as
odd chords, shortcut arcs or eccentric arcs during the processing of S. We now claim that
if S is a triangle then we can uniquely determine the useful neighbour x or the useful
arc (x, y) which is used to process S, and hence identify all auxilliary arcs used while
processing S. To see this, note that when processing a triangle, each switch involves
either two or three vertices of the triangle. If all three vertices of the triangle are involved
in the switch then the other vertex is either a useful neighbour, or an endvertex of a useful
arc. Fix one orientation around the triangle and call it “clockwise”, with the opposite
orientation called “anticlockwise”. Consider the number of clockwise and anticlockwise
arcs on the triangle in Z and Z ′: if they are equal in Z or in Z ′ then we are using a
useful arc and otherwise we are using a useful neighbour. (See Figures 7, 8.) In the latter
situation it is easy to identify the useful neighbour x: it is the only vertex involved in the
switch which does not belong to S. This determines the auxilliary arcs (their orientation
matches the orientation of the switch arcs at x). Now suppose that we are using an useful
arc (x, y). Then we are in case (T2), which means that no useful neighbour of S existed
at the start of processing S. Then y is the only vertex incident with the switch arcs
which does not belong to S, and x and y are the unique vertices in Z which are useful
neighbours of S. That is, x and y are the only vertices not in S which do not belong to
the set ∪(i,j)∈Z

2
2
W(i,j)(S, Z). If only two vertices of the triangle are involved in the switch

then the unique switch arc which is not incident with either of these vertices is the useful
arc, and the switch is the first or last in processing S. This shows that all auxilliary arcs
for S can be identified, as claimed.

Suppose that S comes from the decomposition of the circuit Cr ∈ C. The digraph
induced by all interesting arcs contains no circuits, as can be seen from Figure 9. Hence
for any ℓ 6= r we can find at least one arc on Cℓ which is not an interesting arc for S: call
this a helpful arc for Cℓ. Colour the helpful arc for Cℓ blue if it does not belong to Z and
ℓ < r, or if it does belong to Z and ℓ > r; otherwise colour it red. Then the colouring
of the rest of Cℓ is forced, since colours alternate around the circuit. In the same way
we can assign colours to the arcs of every raw 1-circuit and raw 2-circuit obtained in the
decomposition of Cr, other than the element S ∈ S (which we have assumed is) being
switched in the current transition (Z,Z ′). It remains to explain how to assign colours to
the arcs of S.

If S is a triangle then (Z,Z ′) is a Type 3 transition. By observing the number of
clockwise and anticlockwise arcs in Z and Z ′, we can determine the orientation of the
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triangle in G and in G′ and hence assign colours to the arcs in S.
Hence for the remainder of the proof we can assume that S is either a 1-circuit or a

normal or eccentric 2-circuit. Therefore the vertices α, β, γ, δ all belong to S and without
loss of generality α = min{α, β, γ, δ} is the start-vertex of S (since the start-vertex is
involved in every switch). The argument for 1-circuits and normal 2-circuits is very
similar to that given in [6].

First suppose that (Z,Z ′) is a Type 1 transition, performed while processing the 1-
circuit S ′. Now S ′ may be a raw 1-circuit (in which case S ′ = S ∈ S), or S ′ may have
arisen while processing a raw (normal or eccentric) 2-circuit S. Hence S ′ may contain a
shortcut arc (but note, no 1-circuit contains an eccentric arc, by Lemma 4.2). The arcs
of S ′ can be partitioned into sections, separated from each other by two consecutive arcs
that are either both in Z or both absent from Z. Each section contains at least two arcs,
so at least one arc which is not the shortcut arc. Then at least one arc of S ′ is actually
switched in the current transition, which allows us to label the section containing that
arc as switched, and alternately label the remaining sections around S ′ as switched or
unswitched. Then colour an arc of S ′ blue if it belongs to Z and is unswitched or it
is absent from Z and is switched, and colour an arc of S ′ red if it belongs to Z and is
switched or it is absent from Z and is unswitched. Finally, if S ′ is not raw but arose from
a 2-circuit S, there is a unique way to colour the remaining arcs of S, keeping the colours
alternating.

For the remainder of the proof we assume that (Z,Z ′) is Type 2 transition for S; that
is, a shortcut switch or an eccentric switch. Let ZJ denote the digraph on the canonical
path from G to G′ just before we start decomposing S. We consider three subcases.

Firstly, suppose that (Z,Z ′) is an eccentric switch. Then we know that the arcs
(v, x0,1) and (x1,0, x1,1) have the same status in ZJ . The former is not involved in the
eccentric switch, by Lemma 4.2 (i), while the latter is involved in the eccentric switch.
Hence if these two arcs have matching status in Z then we are in Case (Ea) and the
current transition is the first in processing S. Colour the arcs of S according to Z: arcs
of S ∩ Z should be coloured blue and the remaining arcs of S should be coloured red. If
these arcs have opposite status in Z then we are in case (Eb) and the current transition
is the last in processing S. Colour the arcs of S according to Z ′: arcs of S ∩Z ′ should be
coloured red and the remaining arcs of S should be coloured blue.

We proceed similarly if (Z,Z ′) is a Type 2 transition for S which is a shortcut switch.
For now, assume that S is a normal 2-circuit, so the shortcut switch does not involve
the eccentric arc (if any). If the shortcut arc is ζ i(yi,j+1, xi,j) then the arcs ζ i(xi+1,j , v)
and ζ i(v, xi,j) have matching status in ZJ . The former arc is not involved in the shortcut
switch but the latter arc is. Hence if these two arcs still have matching status in Z then
we are in Case (Nb) and the current transition is the first in processing S. Colour the
arcs of S according to Z, as described in the previous paragraph. If these two arcs have
opposite status in Z (one absent and one present) then we have already processed the
1-circuit using the shortcut arc, so we are in case (Nc) and the current transition is the
last in processing S. Colour the arcs of S according to Z ′, as described in the previous
paragraph.
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The third subcase is that (Z,Z ′) is a shortcut switch which also involves an eccentric
arc. Then S is an eccentric 2-circuit which has been decomposed into an eccentric switch
and a normal 2-circuit S ′, where S ′ contains the eccentric arc. The current transition
is the shortcut switch which has arisen while processing S ′. Now the arcs (v, x0,1) and
(x1,1, v) have matching status in ZJ . From Lemma 4.2 (i) we know that neither of these
arcs are involved in the eccentric switch. The former arc is not involved in the shortcut
switch but the latter arc is, by Lemma 4.2 (ii). Hence, these two arcs also have matching
status at the start of processing S ′, and we can colour the arcs of S according to Z if
these arcs have matching status in Z, and colour the arcs of S according to Z ′ otherwise.
This completes the proof.

Let L(α, β) denote the label of arc (α, β) in the encoding L. The arc-reversal operator
ζ acts on an encoding L by mapping L to its transpose ζL = LT . If ζ iL(α, β) = 2 and
ζ iL(α, γ) = −1 for some i ∈ {0, 1} then (i, α, β, γ) is called a handy tuple with centre α.
If (i, α, β, γ) is handy and at most one of β, γ is the head, when i = 0 (respectively, the
tail, when i = 1) of two bad arcs with distinct labels then (i, α, β, γ) is said to be very
handy. We now collect together some structural information about bad arcs in encodings.

Lemma 5.3. Given G,G′ ∈ Ωn,d with symmetric difference H = G△G′, suppose that Z
is a digraph on the canonical path from G to G′ with respect to some pairing ψ. Let L be
the corresponding encoding, defined by L + Z = G + G′. Then the following statements
all hold.

(i) Viewed as the arcs of a labelled digraph, the set of bad arcs in L forms a subdigraph
of one of the digraphs given in Figure 9.

(ii) If L contains a handy tuple then L contains a very handy tuple.

(iii) If there are five bad arcs in L then there exists a very handy tuple (i1, α1, β1, γ1),
and a handy tuple (i1, α2, β2, γ2) in L such that α1 6= α2 and

{ζ i1(α1, β1), ζ
i1(α1, γ1)} ∩ {ζ i2(α2, β2), ζ i2(α2, γ2)} = ∅. (12)

(iv) If there are four bad arcs in L then there is at least one handy tuple in L.

(v) If d = 1 then no arc in H is incident with a bad arc with label 2. If L has a bad
arc with label 2 which is not the only bad arc in L then L has a handy tuple and L
has at most three bad arcs, exactly one of which has label 2. Furthermore, if L has
three bad arcs, exactly one of which has label 2 then each endvertex of the bad arc
with label 2 is the centre of a handy tuple in L.

(vi) If d = 2 then every vertex which has nonzero degree in H is the head of at most one
bad arc with label 2 and is the tail of at most one bad arc with label 2.

Proof. Every bad arc is interesting, so (i) follows immediately from Lemma 5.1. State-
ments (ii)–(iv) follow from (i), by inspection of Figure 9. Now the head (respectively,
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tail) of a bad arc is also the head (respectively, tail) of an arc in G − G′ and an arc in
G′ −G, unless the bad arc is the useful arc used to process a triangle in case (T2). This
follows from the definition of odd chords, shortcut arc, eccentric arc and auxilliary arcs
in Sections 3.3, 4.1– 4.3. Hence (vi) and the first statement of (v) holds, since a bad arc
with label 2 is present in both G and G′. Furthermore, inspection of Figure 8 shows that
the remaining statements of (v) hold, completing the proof.

The notion of an encoding is now generalised to mean any n × n matrix L with
entries in {−1, 0, 1, 2} such that every row and column sum equals d. Given Z ∈ Ωn,d,
an encoding L is called Z-valid if every entry of L + Z belongs to {0, 1, 2} and L,Z,H
satisfy statements (i)–(vi) of Lemma 5.3, where H is the digraph defined by the entries
of L + Z which equal 1. We also define the set F(L) of all bad arcs in L by

F(L) = {(i, j) ∈ [n]2 | L(i, j) ∈ {−1, 2}}.

Lemma 5.4. Let Z ∈ Ωn,d and let L be a Z-valid encoding. Suppose that L′ is another
encoding such that F(L′) ⊆ F(L). Then L′ is also Z-valid.

Proof. If L′(i, j) = −1 then L(i, j) = −1 and hence Z(i, j) = 1, as L is Z-valid. Similarly,
if L′(i, j) = 2 then L(i, j) = 2 and hence Z(i, j) = 0. This shows that every entry of
L′ + Z belongs to {0, 1, 2}. Checking properties (i)–(vi) of Lemma 5.3 we see that they
all hold for L′, Z,H ′, completing the proof.

Switches can be applied to encodings, as follows. By definition, the sum of all labels
on arcs with head v add up to d, and the sum of all labels on arcs with tail v add up to
d, for all vertices v. If x, y, z, w are vertices with L(x, y) > −1, L(w, z) > −1, L(x, z) < 2
and L(w, y) < 2 then we may perform the switch [xywz] by decreasing L(x, y) and L(w, z)
by one and increasing L(x, z) and L(w, y) by one, giving a new encoding L′.

Lemma 5.5. Let Z ∈ Ωn,d. Given a Z-valid encoding, one can obtain a digraph (with no
bad arcs) using at most three switches.

Proof. Let L be a Z-valid encoding and let H be the digraph given by the entries of L+Z
which equal 1.

First suppose that L contains a handy tuple. Then L contains a very handy tuple,
by Lemma 5.3 (ii). If L contains a very handy tuple (i1, α1, β1, γ1) and a handy tuple
(i2, α2, β2, γ2) such that α1 6= α2 and (12) holds, then we choose (i, α, β, γ) to be the very
handy tuple (i1, α1, β1, γ1). Otherwise, let (i, α, β, γ) be any very handy tuple in L.

If i = 0 (respectively, i = 1) then the sum of the labels on the bad arcs with β as
head (respectively, tail) is strictly greater than the sum of the labels on the bad arcs with
γ as head (respectively, tail). By construction, each row of L adds up to d and each
column of L adds up to d. Hence γ is the head (respectively, tail) of strictly more good
arcs (with label 1) than β. It follows that there exists a vertex δ such that ζ iL(δ, γ) = 1
and ζ iL(δ, β) = 0. Now we can perform the switch ζ i[αβδγ] to give an encoding L′
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with ζ iL′(α, β) = ζ iL′(δ, β) = 1 and ζ iL′(α, γ) = ζ iL′(δ, γ) = 0. Note that L′ is a Z-
valid encoding by Lemma 5.4, and that |F(L′)| = |F(L)| − 2. We call this operation a
(−1, 2)-switch.

Next suppose that no vertex is the head (respectively, tail) of two bad arcs with distinct
labels, but that an arc exists in L with label 2. By Lemma 5.3 (iii), (iv), there are at
most three bad arcs in L. Choose vertices α, β such that for some i ∈ {0, 1} we have
ζ iL(α, β) = 2 and if i = 0 (respectively, i = 1) then α is the tail (respectively, head) of
exactly one bad arc. (That such an α exists follows from Lemma 5.3 (i).) Let U be the
set of vertices x 6= α with ζ iL(α, x) = 0. Since α is the tail (respectively, head) of exactly
d− 2 arcs labelled 1 and one arc labelled 2, it follows that |U | = n− d ≥ d.

We claim that there exists a vertex γ ∈ U which is not the head (respectively, tail)
of a bad arc with label 2. If d ≥ 3 then there are at most 3 vertices which are at the
head (respectively, tail) of a bad arc labelled 2, and one of these is β. Since β 6∈ U and
|U | ≥ 3, we can choose a vertex γ ∈ U which is not the head of a bad arc with label 2,
as claimed. If d = 2 then by Lemma 5.3 (vi), each vertex in H is head (respectively, tail)
of at most one bad arc labelled 2. Hence there are at most 2 bad arcs labelled 2 in L, by
Lemma 5.3 (i). Therefore at most one vertex other than β is the head (respectively, tail)
of a bad arc labelled 2 in L. The claim then follows since β 6∈ U and |U | ≥ 2. If d = 1
then by Lemma 5.3 (v) there is exactly one bad arc in L, namely ζ i(α, β). Hence we can
let γ be any element of U since β 6∈ U , and the claim follows as |U | ≥ 1 in this case.

Now β is the head (respectively, tail) of at most d − 2 good arcs and γ is the head
(respectively, tail) of at least d good arcs. Hence we can choose a vertex δ such that
ζ iL(δ, β) = 0 and ζ iL(δ, γ) = 1. Perform the switch ζ i[αβδγ] to produce an encoding L′

with ζ iL′(α, β) = ζ iL′(α, γ) = ζ iL′(δ, β) = 1 and ζ iL′(δ, γ) = 0. Then L′ is Z-valid by
Lemma 5.4, and |F(L′)| = |F(L)| − 1. Call this operation a 2-switch.

Finally, suppose that the only remaining bad arcs are labelled −1. Let α and γ be
vertices such that ζ iL(α, γ) = −1 for some i ∈ {0, 1}, choosing α to be a vertex at the tail,
when i = 0 (respectively head, when i = 1) of two bad arcs with label −1, if such a vertex
exists. Note that when L contains three bad arcs with label −1 then such a choice of α
exists, by Lemma 5.3 (i). We claim that there exists a vertex β such that ζ iL(α, β) = 1
but β is not the head, when i = 0 (respectively tail, when i = 1) of any bad arc. To
see this, note that there are at least d + 1 ≥ 2 choices for β, and there is at most one
vertex which is at the head (respectively, tail) of a bad arc which is not incident with α,
by choice of α. Hence we can avoid this vertex when choosing β, proving the claim. Then
β is the head (respectively, tail) of exactly d good arcs, while γ is the head (respectively,
tail) of at least d+ 1 good arcs. Hence there is at least one way to choose a vertex δ such
that ζ iL(δ, β) = 0 and ζ iL(δ, γ) = 1. Perform the switch ζ i[αβδγ] to produce an encoding
L′, with ζ iL′(α, β) = ζ iL′(δ, γ) = ζ iL′(α, γ) = 0, ζ iL′(δ, β) = 1. Again Lemma 5.4 shows
that L′ is Z-valid, and |F(L′)| = |F(L)| − 1. Call this operation a (−1)-switch.

If the original encoding L has five bad arcs then by Lemma 5.3 (iii), we can find a
very handy tuple (i1, α1, β1, γ1) in L and perform the (−1, 2)-switch ζ i1[α1β1γ1δ1], where
δ1 is a vertex found using the procedure above. It follows from (12) and Figure 5.3 (i)
that (i2, α2, β2, γ2) is a very handy tuple in the resulting Z-valid encoding L′. Hence we

the electronic journal of combinatorics 18 (2011), #P234 36



may perform the (−1, 2)-switch ζ i2[α2β2γ2δ2] to transform L′ into the Z-valid encoding
L′′ with at most one bad arc. At most one further switch is required to transform L′′ into
an encoding with no bad arcs. Thus at most 3 switches are needed to process L when L
has five bad arcs.

Similarly, if L has four bad arcs then by Lemma 5.3 (iv), we can transform L into
a Z-valid encoding L′ with at most two bad arcs, using a (−1, 2)-switch. At most two
further switches are needed to produce an encoding with no bad arcs. Thus at most 3
switches are needed to process L when L has four bad arcs. Clearly, if L has at most 3
bad arcs then at most 3 switches are required. This completes the proof.

For Z ∈ Ωn,d let L(Z) be the set of all Z-valid encodings. We obtain the following
upper bound on |L(Z)| using a relatively simple proof. It is possible that an improved
bound can be found using a more careful analysis, probably saving a factor of n.

Lemma 5.6. For any Z ∈ Ωn,d we have

|L(Z)| ≤ 25 d6n6 |Ωn,d|.

Proof. Fix Z ∈ Ωn,d and let L ∈ L(Z) be a Z-valid encoding. By Lemma 5.5 there exists
a sequence

L = L0, L1, . . . , Lr = A

where A ∈ Ωn,d is a digraph with no bad arcs, r ≤ 3 and each of L1, . . . , Lr is Z-valid.
We can turn this into a function ϕ : L(Z) → Ωn,d by performing these switches in a
canonical way: as in Lemma 5.5 perform all (−1, 2)-switches first, then all 2-switches, then
all (−1)-switches, following the extra conditions described in Lemma 5.5 and breaking
ties using lexicographic ordering on the 5-tuple (i, α, β, γ, δ). It suffices to prove that
|ϕ−1(A)| ≤ 25 d6 n6 for all A ∈ Ωn,d.

Now fix A ∈ Ωn,d. Define a reverse X-switch to be the reverse of a X-switch, for
X ∈ {(−1, 2), −1, 2}. For an upper bound we count all encodings which can be obtained
from A using at most three reverse switches, regardless of whether A is the canonical
image of that encoding under ϕ. We will perform the reverse switchings in order: first the
reverse (−1)-switches, if any, then any reverse 2-switches and finally any reverse (−1, 2)-
switches. Note that a reverse switching alters four entries of the current encoding, none
of which are bad entries. So a bad arc created by a reverse switch will never be changed
by a later reverse switch.

Fix an encoding B ∈ L(Z) (which may not have any bad arcs). Let NX(B) be the
number of distinct 5-tuples (i, α, β, γ, δ) which define a reverse X-switch that may be
performed in B, for X ∈ {(−1, 2), −1, 2}. The result of each of the reverse switches
counted by NX(B) is a Z-valid encoding. Our next task is to calculate upper bounds on
NX(B) which hold for all encodings B ∈ L(Z).

We only perform (−1)-switches on encodings B ∈ L(Z) which have no bad arc with
label 2. For such encodings we claim that

N−1(B) ≤ 2d2n(n− 2). (13)
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With notation as in Lemma 5.5, the factor of 2 counts the two choices of orientation
i ∈ {0, 1}. We prove the bound assuming that i = 0, and the proof for i = 1 follows by
symmetry. There are n choices for vertex α, and d choices for γ since ζ i(α, γ) ∈ A(Z) as
B is Z-valid. Then choose β 6= α so that B(α, β) = 0 and β is not the head of any bad
arc. There are at most n− 2 choices for β since β 6∈ {α, γ}. Then there are d choices for
δ such that B(δ, β) = 1, since β is the head of exactly d good arcs. This gives the claimed
bound on N−1(B) when B has no bad arcs labelled 2.

Now suppose that B ∈ L(Z) may contain bad arcs with distinct labels, but no vertex
is the head (respectively, tail) of two bad arcs with distinct labels in B. We also ensure
that the reverse 2-switchings that we perform never create any such pair of bad arcs, in
order to maintain the canonical order in which forward switches are performed. We claim
that

N2(B) ≤ 2d(d− 1)2n. (14)

The factor of 2 counts the two choices of orientation i ∈ {0, 1}. We prove the bound
assuming that i = 0, and the proof for i = 1 follows by symmetry. There are at most n
choices for α which is not the tail of a bad arc labelled −1. Then distinct out-neighbours
β, γ of α in B can be chosen in at most d(d − 1) ways such that β is not the head of a
bad arc labelled −1 and γ is not the head of a bad arc labelled 2. (Note, α is the tail of
at most d good arcs, since α is not the tail of any bad arc labelled −1.) Then there are
at most d− 1 choices for a neighbour δ of β in B, since β is the head of at most d good
arcs. This gives the claimed bound on N2(B).

Finally, we claim that for all B ∈ L(Z) we have

N(−1,2)(B) ≤ 2d2(d+ 1)n. (15)

Again, the factor of 2 counts the two choices of orientation i ∈ {0, 1} and we assume
i = 0 below, without loss of generality. There are n ways to choose a vertex α which
may be the tail of at most one bad arc in B. There are d choices for γ, as B is Z-valid
so ζ i(α, γ) ∈ A(Z). Then there are at most d + 1 choices for β such that β is an out-
neighbour of α and is not the head of any arc labelled −1. (There are at most d choices
for β if there is no bad arc incident with α in B.) Finally, there are at most d choices
for δ 6= α such that B(δ, β) = 1, since β is the head of at most d good arcs. (The d here
arises since β may itself be the head of at most one bad arc in B, and the bad arc may
be labelled −1.) This gives the claimed bound on N(−1,2)(B).

Each sequence of reverse switches which may arise is given a type, defined by the cor-
responding sequence of labels in {−1, 2, (−1, 2)}. It follows from the proof of Lemma 5.5
that the only types of reverse switchings which occur are given by the following 9 sequences
and all distinct subsequences of these (including the empty sequence):

[ −1, (−1, 2), (−1, 2) ], [ 2, (−1, 2), (−1, 2) ], [ −1, −1, (−1, 2) ],
[ −1, 2, (−1, 2) ], [ 2, 2, (−1, 2) ], [ −1, −1, −1 ],
[ −1, −1, 2 ], [ −1, 2, 2 ], [ 2, 2, 2 ].

This gives 19 possible types in all. We calculate the contribution of a type by simply
multiplying the upper bounds obtained in (13)–(15) corresponding to each reverse switch
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in the sequence. (It is at this step that a more careful analysis may lead to an improved
bound, but we are satisfied by the bound given by this simple calculation.) For example,
the contribution from the type [ −1, (−1, 2), (−1, 2)] is

2d2n(n− 2)(2d2(d+ 1)n)2 = 8d6(d+ 1)2n3(n− 2).

Finally we simply sum the contribution from each of the 19 types and find that the
resulting expression is bounded above by 25d6n6, using the inequalities 1 ≤ d ≤ n/2. This
shows that

|ϕ−1(A)| ≤ 25 d6n6,

completing the proof.

For each pair (G,G′) of distinct digraphs in Ωn,d, let PG,G′ be the set of |Ψ(G,G′)|
canonical paths which we have defined from G to G′, one for each pairing ψ ∈ Ψ(G,G′).
Let P = ∪G 6=G′PG,G′ . Define

f(γ) = |Ωn,d|−2 |Ψ(G,G′)|−1

for each path γ ∈ PG,G′. Then

∑

γ∈PG,G′

f(γ) = |Ωn,d|−2 = π(G) π(G′)

where π is the stationary distribution of the Markov chain, which is uniform on Ωn,d.
Thus f : P → [0,∞) is a flow. We want to apply Lemma 1.5. First we bound f(e) for all
transitions e of the Markov chain.

Lemma 5.7. For any transition e = (Z,Z ′) of the Markov chain,

f(e) ≤ 100 d22 n6 |Ωn,d|−1.

Proof. Fix a transition e = (Z,Z ′) of the Markov chain. Let (G,G′) be a pair of distinct
digraphs in Ωn,d and suppose that e lies on γψ(G,G′), the canonical path from G to G′

corresponding to the pairing ψ ∈ Ψ(G,G′). From Z and (G,G′) we can construct L and
the digraph H = Z△L = G△G′. We colour arcs of H green if they belong to Z and yellow
if the corresponding entry in L is 1. (Recall that the symmetric difference H consists of
those arcs with entry 1 in L + Z = G+G′.)

From the pairing ψ we obtain the circuit decomposition C of H , with colours alter-
nating green, yellow almost everywhere. A vertex x is bad with respect to ψ if two arcs
of the same colour are paired at x under ψ. If a vertex is not bad it is called good. Every
bad vertex lies on the circuit currently being processed. Specifically, bad vertices may
only be found incident to interesting arcs. Lemma 5.1 shows that there are at most five
interesting arcs and at most six potentially bad vertices.
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A yellow-yellow or green-green pair at a bad vertex x is called a bad pair with respect
to ψ. Careful consideration of the possibilities reveals that there can be at most 16 bad
pairs with respect to ψ. In the worst case, there are five interesting arcs which all belong to
H . An interesting arc e which belongs to H creates two bad pairs in the circuit containing
e, one at each endvertex of e (both of the same colour). A bad pair is also created in the
current circuit C incident with each endvertex of each interesting arc, giving at most six
further bad pairs. (The worked example in Section 6 gives an example of a digraph, Z4,
containing the maximum number of bad pairs: see Figure 14.)

Note also that a bad vertex may be the head (respectively, tail) of at most two bad
pairs of each colour. This follows from Lemma 5.1 since no vertex is head (respectively,
tail) of more than two interesting arcs with the same label. Hence a bad vertex may be
the head (respectively, tail) of at most four bad pairs in total. This is true even if there
are some coincidences between the bad vertices, which may occur when the interesting
arcs have one of the configurations other than the first one in Figure 9. To see this, note
that for all the configurations in Figure 9, the only vertex which is the head (or tail) of
more than two interesting arcs is v, the start-vertex of the current circuit, and v is always
distinct from all other bad vertices.

Given the uncoloured digraph H , we can form a pairing ψ by pairing up all in-arcs
around v and pairing up all out-arcs around v, for each vertex v. Let the set of all these
pairings be Ψ(H). Say that a pairing ψ ∈ Ψ(H) is consistent with L if there are at most
16 bad pairs in the yellow-green colouring of H with respect to L, and at each vertex u
and for each choice of orientation there are at most two bad pairs of each colour with
that orientation at u. Let Ψ′(H,L) be the set of all pairings ψ of H which are consistent
with L. Given any (G,G′) with G△G′ = H , any pairing ψ ∈ Ψ(G,G′) is consistent with
the yellow-green colouring of H , as proved above. Therefore each triple (G,G′, ψ) with
ψ ∈ Ψ(G,G′) and e ∈ γψ(G,G′) gives rise to at least one pair (L, ψ) with L ∈ L(Z) and
ψ ∈ Ψ′(H,L).

Conversely, we can start with L ∈ L(Z) and find an upper bound for |Ψ′(H,L)|. Once
ψ and (Z,Z ′) are given, there are at most four possibilities for (G,G′) with e ∈ γψ(G,G′),
by Lemma 5.2. Recall from (5) that

|Ψ(G,G′)| =
∏

v∈V

θv!φv!

where 2θv is the in-degree of v in H and 2φv is the out-degree of v in H . Similarly, each
good vertex v contributes a factor θv!φv! to |Ψ′(H,L)|, but a bad vertex may contribute
more. The contributions from in-arcs and out-arcs are independent, so we consider only
in-arcs below.

Recall that no vertex can be the head of more than two bad pairs of a given colour.
First suppose that a vertex v is the head of θv + 2 green arcs and θv−2 yellow arcs. Then
v must be bad, with two bad green pairs and no bad yellow pairs. The number of ways
to pair up the in-arcs around v is

3

(

θv + 2

4

)

(θv − 2)! =
(θv + 2)(θv + 1)

8
θv! ≤ θ2

v · θv! ≤ d2θv!.
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Next suppose that v is the head of θv + 1 green arcs and θv − 1 yellow arcs. Then v must
be a bad vertex. Now v may be the head of two bad green pairs and one bad yellow pair,
or v may be the head of one bad green pair and no bad yellow pairs. The number of ways
to pair up the in-arcs around v with two bad green pairs and one bad yellow pair is

3

(

θv + 1

4

)(

θv − 1

2

)

(θv − 3)! =
(θv + 1)(θv − 1)(θv − 2)

16
θv! ≤ θ3

v θv! ≤ d3 θv!,

while the number of pairings of in-arcs around v with one bad green pair and no bad
yellow pairs is

(

θv + 1

2

)

(θv − 1)! =
θv + 1

2
θv! ≤ θv θv! ≤ d θv!.

Finally, suppose that v is the head of θv arcs of each colour. Then v may be good, or
it may be the head of one bad pair of each colour, or the head of two bad pairs of each
colour. The number of pairings of in-arcs around v with two bad pairs of in-arcs of each
colour is

9

(

θv
4

)2

(θv − 4)! =
θv(θv − 1)(θv − 2)(θv − 3)

64
θv! ≤ θ4

v · θv! ≤ d4 θv!,

while the number of pairings of in-arcs around v with one bad pair of each colour is

(

θv
2

)2

(θv − 2)! =
θ(θv − 1)

4
θv! ≤ θ2

v θv! ≤ d2 θv!.

By symmetry, the same bounds hold for out-arcs and also hold after exchanging green
and yellow. Since there are at most 16 bad pairs, it follows that

|Ψ′(H,L)| ≤ d16 |Ψ(G,G′)|. (16)

Now write 1(e ∈ γψ(G,G′)) to denote the indicator variable which is 1 if e ∈ γψ(G,G′)
and is 0 otherwise, for (G,G′) ∈ Ωn,d and ψ ∈ Ψ(G,G′). Then

|Ωn,d|2f(e) =
∑

(G,G′)

∑

ψ∈Ψ(G,G′)

1(e ∈ γψ(G,G′)) |Ψ(G,G′)|−1

≤ 4
∑

L∈L(Z)

∑

ψ∈Ψ′(H,L)

1(e ∈ γψ(G,G′)) |Ψ(G,G′)|−1

≤ 4
∑

L∈L(Z)

∑

ψ∈Ψ′(H,L)

|Ψ(G,G′)|−1

≤ 4
∑

L∈L(Z)

d16

≤ 100 d22 n6 |Ωn,d|.

The first inequality follows by Lemma 5.2, the third inequality follows from (16), and
applying Lemma 5.6 gives the last inequality. This completes the proof.
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We can now complete our argument by proving Proposition 2.5.

Proof of Proposition 2.5. For any transition e = (Z,Z ′) of the switch chain we have

1/Q(e) = |Ωn,d|/P (Z,Z ′) =

(

dn

2

)

|Ωn,d|.

Therefore, by Lemma 5.7,
ρ(f) ≤ 50d24 n8. (17)

Next, observe that ℓ(f) ≤ dn, since each step along a canonical path replaces at least one
arc of G by an arc of G′. The result follows from Lemma 1.5.

6 An illustrative example

Let (G,G′) ∈ Ωn,d be any pair of digraphs with the symmetric difference H given in
Figure 10, where vertices of degree 0 in H are not shown. To avoid congestion in the
figure, some vertices are depicted as black rectangles. Solid arcs belong to G and dashed
arcs belong to G′, so they play the role of blue and red arcs.

v

x0,0

x0,1

x1,1

x1,0 z0,0z0,1 z1,1 z1,0

u1

u2

w1w2

r1 r2
t1

t2

p1

p2

q1

q2

s1

s2

Figure 10: The symmetric difference H of G and G′.

Let ψ which be the pairing which produces the forward circuits

vx0,0x0,1z0,0w1w2z1,0x1,1x1,0vx1,1x1,0z1,1z0,1x0,0x0,1, vp2p1z0,1, vx1,0q1q2,

z1,0x1,0r1r2, z1,0vs2s1, vw2t1t2, vu2u1z0,0,
(18)

in the given order. Set Z0 = G and start processing H . The first circuit to process is the
eccentric 2-circuit

S = vx0,0x0,1z0,0w1w2z1,0x1,1x1,0vx1,1x1,0z1,1z0,1x0,0x0,1.

We have (i, h) = (0, 0), and the eccentric arc (z1,0, v) does not belong to A(S). Hence
S falls into case (Ea) and we must first perform the eccentric switch [z1,0x1,1x1,0v]. This
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produces the next digraph Z1 in the canonical path γψ(G,G′). The eccentric arc (z1,0, v)
has been used in the eccentric switch, so it is now an interesting arc. Initially it belonged
to G′ −G, and now it belongs to Z1 ∩G′, so it does not belong to the current symmetric
difference Z1△G′. However, we include all interesting arcs in our figures, denoted by
thicker arcs (either solid or broken, as appropriate). Hence Figure 11 shows the symmetric
difference of Z1 and G′, together with the eccentric arc.

v

x0,0

x0,1

x1,1

x1,0 z0,0z0,1 z1,1 z1,0

u1

u2

w1w2

r1 r2
t1

t2

p1

p2

q1

q2

s1

s2

Figure 11: The symmetric difference of Z1 and G′, together with the single interesting arc
(the eccentric arc), after the eccentric switch.

The arcs (z1,0, x1,1), (x1,0, x1,1), (x1,0, v) have disappeared because they have now been
switched to agree with G′. They play no further part in the formation of the canonical
path.

Next, we must process the normal 2-circuit

S ′ = vx0,0x0,1z0,0w1w2z1,0vx1,1x1,0z1,1z0,1x0,0x0,1

which the eccentric switch has produced (see Figure 6). From Lemma 4.2 we know that
the shortcut arc is (z1,0, x1,0), and again (i, h) = (0, 0). Now (z1,0, x1,0) ∈ A(Z1) so S ′ falls
into case (Nc), and we will perform the shortcut switch last. Our next task is to process
the 1-circuit

S1 = vx0,0x0,1z0,0w1w2z1,0x1,0z1,1z0,1x0,0x0,1.

The set B of end-vertices of odd chords which are absent in Z1 is B = {x0,1 z0,1, z0,0}.
Now z0,1x0,0x0,1 is a contiguous substring of S, so these vertices are all distinct, and hence
B has three elements. Thus there will be three phases in the processing of S1. The first
phase is over after just one switch, namely [vx0,0x0,1z0,0]. This produces the next digraph
Z2 on the canonical path: see Figure 12.

The odd chord (v, z0,0) has become an interesting arc, so it is included in Figure 12
together with the eccentric arc. Both belong to Z2 ∩G′, and hence they are depicted by
a thick unbroken arc. The arcs (v, x0,0), (x0,1, x0,0), (x0,1, z0,0) have now been switched
to agree with G′, so they play no further role. Hence we have omitted these arcs from
Figure 12.
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Figure 12: The symmetric difference of Z2 and G′, together with the two interesting arcs
(the eccentric arc and one odd chord), after Phase 1.

We now start Phase 2 with the switch [vx1,0z1,1z0,1], producing the next digraph Z3 on
the canonical path. See Figure 13. Note that there are four interesting arcs in Z3, namely
three odd chords and the eccentric arc. The vertex z1,1 is omitted from Figure 13 since
it has degree zero in the symmetric difference of Z3 and G′. (We will make no further
comments on the inclusion of interesting arcs or the omission of isolated vertices for the
remaining figures.)
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x0,0

x0,1

x1,1

x1,0 z0,0z0,1 z1,0

u1

u2

w1w2

r1 r2
t1
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p1

p2

q1

q2

s1

s2

Figure 13: The symmetric difference of Z3 and G′, together with the four interesting arcs
(the eccentric arc and three odd chords), after the first step of Phase 2.

The next step in Phase 2 is the switch [vw2z1,0x1,0], which involves the shortcut arc. This
produces the digraph Z4 on the canonical path. See Figure 14. Note that Z4 has five
interesting arcs, namely

(z1,0, v), (z1,0, x1,0), (v, z0,1), (v, w2), (v, z0,0).

This is the maximum possible, by Lemma 5.1. Later we will show that Z4 also has the
maximum number of bad pairs.
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Figure 14: The symmetric difference of Z4 and G′ together with the five interesting arcs
(the eccentric arc, the shortcut arc and three odd chords), after the second step of Phase
2.
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Figure 15: The symmetric difference of Z5 and G′, together with the three interesting
arcs (the eccentric arc, the shortcut arc and one odd chord), after Phase 2.

The final step in Phase 2 is the switch [vz0,0w1w2], producing the digraph Z5. See Fig-
ure 15. Now only one odd chord is interesting, as two have been restored to their original
state.
Then we perform Phase 3, which consists of one step: the switch [vz0,1x0,0x0,1]. This
produces the digraph Z6 which has no interesting odd chords, but still has two interesting
arcs, namely the eccentric arc and shortcut arc. See Figure 16.
This completes the processing of the 1-circuit S1. To complete the processing of the
normal 2-circuit S ′ we must perform the shortcut switch [x1,1x1,0z1,0v]. This produces the
digraph Z7 as in Figure 17, with no interesting arcs.

This completes the processing of the normal 2-circuit S ′, and hence it also completes the
processing of the eccentric 2-circuit S.

It remains to process the remaining circuits in the given order. Each remaining circuit
is an alternating 4-cycle, which is processed by a single switch, removing it from the
symmetric difference. This gives 6 more switches, specifically

[vp2p1z0,1], [vx1,0q1q2], [z1,0x1,0r1r2], [z1,0s1s2v], [vw2t1t2], [vu2u1z0,0].
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Figure 16: The symmetric difference of Z6 and G′ together with the two eccentric arcs
(the eccentric arc and the shortcut arc), after Phase 3: the processing of the 1-circuit is
complete.
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Figure 17: The symmetric difference of Z7 and G′.

The switches are performed in this order, producing digraphs Z8, . . . , Z13 where Z13 = G′.
This completes the construction of the canonical path γψ(G,G′) from G to G′ correspond-
ing to ψ.

Now let us return to the digraph Z4. We now show that there are 16 bad pairs in Z4

with respect to ψ. We redraw H in Figure 18, where now solid lines show arcs in H ∩ Z4

and dashed lines show arcs in H −Z4. Hence solid and dashed arcs play the role of green
and yellow arcs, in the terminology of Lemma 5.7. Interesting arcs are still shown with
thicker lines.

By tracing around this figure using the circuits given in (18) determined by the pairing
ψ, we find that there are 16 bad pairs in Z4 with respect to ψ. This is the maximum
possible number of bad pairs, as proved in Lemma 5.7. Table 1 shows the bad vertices
and the bad pairs of arcs incident with each one.

We now make two final comments.

(i) In this relatively small example, not many coincidences between the bad vertices
are possible. For instance, we know that w2 6= z0,0 since z0,0w1w2 is a contiguous
substring of S, while w2 6= x1,0 since (v, w2) is a blue arc in H and (v, x1,0) is a red
arc in H . In our example, the only coincidences that may occur are that z1,0 may
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Figure 18: The symmetric difference H , where now solid lines are arcs in H ∩ Z4 and
dashed lines are arcs in H − Z4.

bad vertex bad green pairs bad yellow pairs

v (z1,0, v), (s2, v) (x1,1, v), (x1,0, v)

(v, z0,0), (v, u2) (v, x0,0), (v, x0,1)

(v, z0,1), (v, p2) (v, w2), (v, t2)

z1,0 (z1,0, v), (z1,0, s1) (z1,0, x1,0), (z1,0, r2)

x1,0 (x1,1, x1,0), (z1,1, x1,0) (z1,0, x1,0), (r1, x1,0)

z0,0 (v, z0,0), (u1, z0,0) (x0,1, z0,0), (w1, z0,0)

z0,1 (v, z0,1), (p1, z0,1) (z1,1, z0,1), (x0,0, z0,1)

w2 (w1, w2), (z1,0, w2) (v, w2), (t1, w2)

Table 1: The bad vertices and bad pairs of arcs in Z4 with respect to ψ.

equal z0,0 or it may equal z0,1. If either holds then the vertex z0,0 is incident with
four bad pairs in Z4, one of each colour and orientation.

(ii) This example was constructed to produce a digraph with the maximum number
of bad pairs (namely Z4, with 16 bad pairs). This was achieved by letting the
interesting arcs all belong to H , so that they did not become bad arcs when they
became interesting, but instead they created extra bad pairs with respect to ψ. If
instead H just consisted of the arcs of the eccentric 2-circuit S, then any interesting
arc would also be a bad arc. (For example, if the eccentric arc had not been an arc
of H but was absent in both G and G′ then in Z1 it would become a bad arc with
label −1.) Then the analogue of Z4 would be an example of a digraph with the
maximum number of bad arcs.

the electronic journal of combinatorics 18 (2011), #P234 47



References

[1] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications, 2nd
edn., Springer, New York, 2008.

[2] A. Berger and M. Müller-Hannemann, Uniform sampling of digraphs with a fixed
degree sequence, in Graph Theoretic Concepts in Computer Science, Lecture Notes
in Computer Science vol. 6410, Springer, Berlin, 2010, pp. 220–231.

[3] J. Besag and P. Clifford, Generalized Monte Carlo significance tests, Biometrika 76

(1989), 633–642.

[4] B. Bollobás, A probabilistic proof of an asymptotic formula for the number of labelled
regular graphs, European Journal of Combinatorics 1 (1980), 311–316.

[5] T. Chiang, D. Scholtens, D. Sarkar, R. Gentleman and W. Huber, Coverage and
error models of protein-protein interaction data by directed graph analysis, Genome
Biology 8 (2007), R186.

[6] C. Cooper, M.E. Dyer and C. Greenhill, Sampling regular graphs and a peer-to-peer
network, Combinatorics, Probability and Computing 16 (2007), 557–593.

[7] C. Cooper, M. Dyer and A. Handley, The flip Markov chain and a randomising P2P
protocol, in Proceedings of the 28th ACM Symposium on Principles of Distributed
Computing, ACM Press, New York, 2009.

[8] P. Diaconis, R. Graham and S.P. Holmes, Statistical problems involving permutations
with restricted positions, in State of the Art in Probability and Statistics, Lecture
Notes-Monograph Series vol. 36, Institute of Mathematical Statistics, Beachwood,
OH, 2001, pp. 195–222.

[9] P. Diaconis and D. Stroock, Geometric bounds for eigenvalues of Markov chains,
Annals of Applied Probability 1 (1991), 36–61.

[10] P. Diaconis and B. Sturmfels, Algebraic algorithms for sampling from conditional
distributions, Annals of Statistics 26 (1998), 363–397.

[11] T. Feder, A. Guetz, M. Mihail and A. Saberi, A local switch Markov chain on given
degree graphs with application in connectivity of peer-to-peer networks, in Proceed-
ings of the 47th Annual IEEE Symposium on Foundations of Computer Science,
IEEE Press, New York, 2006, pp. 69–76.

[12] C. Hall and A. Carzaniga, Uniform sampling for directed P2P networks, in Proceed-
ings of EURO-PAR 2009 Parallel Processing, Lecture Notes in Computer Science
Vol. 5705, Springer, Berlin, 2009, pp. 511–522.

[13] R. Kannan, P. Tetali and S. Vempala, Simple Markov-chain algorithms for generating
bipartite graphs and tournaments, Random Structures and Algorithms 14 (1999),
293–308.

[14] H. Kim, C.I. Del Genio, K.E. Bassler and Z. Toroczkai, Constructing and sampling
directed graphs with given degree sequences, Preprint, 2011. arXiv:1109.4590v1
[physics.soc-ph]

the electronic journal of combinatorics 18 (2011), #P234 48



[15] M.D. LaMar, On uniform sampling simple directed graph realizations of degree se-
quences (preprint, 2009). arXiv:0912.3834v1 [cs.DM]

[16] T.  Luczak and J.E. Cohen, Stratigraphy of a random acyclic directed graph: the
size of trophic levels in the cascade model, Annals of Applied Probability 3 (1993),
403–420.

[17] P. Mahlmann and C. Schindelhauer, Peer-to-peer networks based on random trans-
formations of connected regular undirected graphs, in Proceedings of the 17th Annual
ACM Symposium on Parallelism for Algorithms and Architectures, ACM Press, New
York, 2005, pp. 155–164.

[18] P. Mahlmann and C. Schindelhauer, Distributed random digraph transformations
for peer-to-peer networks, in Proceedings of the 18th annual ACM Symposium on
Parallel Algorithms and Architectures, ACM Press, New York, 2006, pp. 308–317.

[19] C. Mart́ınez, A. Panholzer and H. Prodinger, Generating random derangements,
in Proceedings of the Fifth Workshop on Analytic Algorithmics and Combinatorics
(ANALCO), SIAM, Philadelphia, PA, 2008, pp. 234–240.

[20] B.D. McKay, Asymptotics for 0-1 matrices with prescribed line sums, in Enumeration
and Design, Academic Press, Toronto, 1984, pp. 225–238.

[21] B.D. McKay and N.C. Wormald, Uniform generation of random regular graphs of
moderate degree, Journal of Algorithms 11 (1990), 52–67.

[22] R. Milo, N. Kashtan, S. Itzkovitz, M.E.J. Newman and U. Alon, On the uniform
generation of random graphs with prescribed degree sequences, Preprint, 2004.
arXiv:cond-mat/0312028v2 [cond-mat.stat-mech]
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