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Abstract

If ~λ is a composition of the positive integer n, define B(~λ) to be the product
of the parts of ~λ. We present a modified version of Hitczenko’s stopped sequence
construction that leads to a proof of the asymptotic lognormality of B for random
1-free compositions (compositions containing no parts of size 1).

1 Introduction

A composition of n is a sequence of positive integers whose terms, referred to as parts,
sum to n. In recent years, there has been considerable interest in compositions with
restrictions on the sizes of the parts. One set of restricted compositions that has been
studied extensively is that of Carlitz compositions, whose adjacent part sizes cannot be
equal [8, 13, 15]. A generalization of Carlitz compositions is introduced by Bender and
Canfield in [2, 3, 4] where the authors study locally restricted compositions, whose part
sizes are restricted to a certain set depending on the position of the part. A variety of
other restricted compositions have been studied, including complete and gap-free compo-
sitions, whose part sizes form an interval [10]; compositions with distinct part sizes [14];
compositions with the largest part in the first position [16]; compositions with no parts
of size 2 [6]; and compositions whose parts sizes are restricted to a general set [1, 5].

Problems that are straightforward for unrestricted compositions can become quite
complicated when such restrictions are imposed. In [18] it is proven that, for unrestricted
compositions, the product of parts is asymptotically lognormal. The proof relies heav-
ily on a construction, devised by Hitczenko and others, that models compositions with
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stopped sequences of geometric random variables. However, the proof does not extend
immediately to any restricted part-size setting of which we are aware. In particular, one
might expect the proof to extend to compositions with no parts of size 1, since those
parts do not contribute to the product. However, non-trivial adaptations are needed to
make Hitczenko’s technique usable in this setting. The main result in this manuscript is
Theorem 1.

Theorem 1. Let Pn be the uniform probability measure on the set of 1-free compositions

of n, and let φ = 1+
√

5
2

be the golden ratio. Define the constants µ =
∞
∑

k=2

log k
φk , ν =

∞
∑

k=2

k log k
φk ,

µ̄ =
∞
∑

k=2

(log k)2

φk , and γ2 =
(

1 + φ
5

)

µ2 −
(

2
1+φ2

)

µν + µ̄. Then

Pn





log B − nµ
1+φ2

√

nγ2

1+φ2

≤ x



 =
1√
2π

x
∫

−∞

e−t2/2dt + O

(

(

log n√
n

)1/3
)

.

The rate of convergence is uniform for |x| ≤
( √

n
log n

)2/3

.

We present the new construction used for modeling 1-free compositions, as well as
some preliminary results, before presenting the proof of the main theorem. Throughout
this manuscript, we denote the set of 1-free compositions of n as Λn and an individual
composition having κn parts as ~λ = (λ1, . . . , λκn). Pn denotes the uniform probability
measure on Λn, and En denotes the expected value with respect to Pn. If F is a formal
power series in x, then we write [xn]F to denote the coefficient of xn in F .

2 Expected value of B and log B

Moments of B can be computed using the following lemma. Let ΛS
n denote the set of all

compositions of n with parts from some set of positive integers S, and let ΛS
n,d denote the

set of all such compositions having d parts.

Lemma 1. For a ∈ C, define αn =
∑

~λ∈ΛS
n

B(~λ)a. The generating function for the sequence

αn is
∑

n

αnxn =
1

1 −
∑

k∈S

kaxk
.

Proof. Let Ga(x) =
∑

k∈S

kaxk. Then the coefficient of xn in Ga(x)d is the sum of the a-th

power of the part-products over all compositions with d parts:

[xn]Ga(x)d = [xn]
∑

~λ∈ΛS
n,d

∏

i

λa
i x

λi = [xn]
∑

~λ∈ΛS
n,d

B(~λ)axn.
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Summing on d we get

αn = [xn]

n
∑

d=1

Ga(x)d = [xn]
1

1 − Ga(x)
.

Lemma 1 is a new generalization of the following widely known generating function
for the number of compositions with parts from a general set [7].

Corollary 1. The generating function for the number of compositions of n with parts
from the set S is

∑

n

|ΛS
n|xn =

1

1 − ∑

k∈S

xk
.

Corollary 2. If ~λ is chosen from a uniform distribution on the set of compositions of n
into parts from the set S, then the expected value of the random variable B is

[xn]
1

1 −
∑

k∈S

kxk

/

[xn]
1

1 −
∑

k∈S

xk
.

In [18], a probabilistic proof is given to show that the average product over all un-
restricted compositions of n is F2n/2n−1, where F2n is the 2n-th Fibonacci number. An
alternative approach is to cite Corollary 2 with S = Z+. It is interesting that the Fi-
bonacci numbers also appear in two special cases that are important for this manuscript.
The most prominent occurrence is in the probabilistic construction that will be presented
in the next section. In addition, Corollary 1 with S = {k : k ≥ 2} gives the following
known result.

Corollary 3. The number of 1-free compositions of n is Fn−1.

Corollary 2 also yields an asymptotic formula for the expected value of B for 1-free
compositions.

Theorem 2. Let ρ1, ρ2, and ρ3 be the distinct real roots of the function x3 − x2 − 2x + 1.
If ~λ is chosen from a uniform distribution on the set of 1-free compositions of n, the
expected value of the product of parts is

En(B) =
1

Fn−1

3
∑

i=1

(1 − ρi)
2ρ−n

i

2ρi + 2ρ2
i − 3ρ3

i

.

Asymptotically, the expected value is

En(B) ∼
√

5
φn−1 · (1−ρ1)2ρ−n

1

2ρ1+2ρ2

1
−3ρ3

1

= (1.09 . . . )(1.3887 . . . )n.

As a result of Theorem 1, we know that the expected value of the log product of parts
is approximately nµ

1+φ2 . This agrees with results from [18] where the following precise
estimate is obtained.
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Theorem 3. If ~λ is chosen from a uniform distribution on the set of 1-free compositions
of n, the expected value of the log product of parts is

En(log B) =
nµ

1 + φ2
+

(

φ

5
+ 1

)

µ − ν

1 + φ2
+ O

(

n log n

φn

)

.

The proof of Theorem 3 requires the probabilistic construction presented in Section
3 as well as a detailed consideration of the distribution of the last part λκn . The proof
is omitted because it involves lengthy calculations similar to those in the proof of the
asymptotic lognormality of B.

3 Stopped sequence construction

We begin the new construction by defining an auxiliary space Λ∗
n that contains all 1-

free compositions of n as well as all compositions of n that are 1-free except for the last
part. Let Ωn be the set of all n-length sequences ~ω = (ω1, . . . , ωn) with ωi ≥ 2, and let
τn = min{t ≥ 1 : ω1 · · ·+ ωt ≥ n} be a stopping time associated with the sequence ~ω. We
can then construct random compositions of n by defining the function

Hn(~ω) =

(

ω1, · · · , ωτn−1, n −
τn−1
∑

i=1

ωi

)

.

Notice that Hn does not always return 1-free compositions of n, since it is possible for the
last part to be a 1. Moreover, if we define a probability measure on the space Λ∗

n in the
manner of [10, 11, 12], then Hn does not select compositions uniformly.

Formally, if we select the ωi’s independently with probability Qn(ωi = k) = 1
φk for

k ≥ 2 and define a probability measure on Ωn by

Qn(~ω) =
1

φω1+···+ωn
,

then we can define a probability measure Qn ◦ H−1
n on Λ∗

n, where H−1
n is described as

follows. For a composition ~λ with κn = k parts and last part j,

H−1
n (~λ) =

{

{~ω ∈ Ωn : ωi = λi, i = 1, . . . , k − 1} if j = 1

{~ω ∈ Ωn : ωi = λi, i = 1, . . . , k − 1 and ωk ≥ 2} if j > 1.

Although Qn ◦ H−1
n is not uniform, it is conditionally uniform given the size of the last

part:

Qn(H−1
n (~λ)) =















k−1
∏

i=1

1
φλi

= 1
φn−1 if j = 1

k−1
∏

i=1

1
φλi

∞
∑

i=j

1
φi = 1

φn−2 if j > 1.
(1)
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For ease of use, we let P ∗
n = Qn ◦ H−1

n and denote the expected value with respect to P ∗
n

as E∗
n. We denote the expected value with respect to Qn as EQ

n .
The following observation will complete the new construction so that it is useful for

our analysis of the product of parts. If X∗ is any random variable on Λ∗
n, then there is a

corresponding random variable X on Ωn defined in the obvious way, X(~ω) = X∗(Hn(~ω)),
and having the same distribution as X∗:

Lemma 2. If X∗ is any random variable on Λ∗
n and if X = X∗ ◦ Hn, then for all real

numbers y,
P ∗

n(X∗ = y) = Qn(X = y).

4 Number of parts

For random unrestricted compositions, the number of parts is a binomial random variable
that has an expected value of n+1

2
. A local limit theorem is proved in [1] for the number

of parts of a composition with parts from a general set, but more specific results for 1-free
compositions are needed for the proof of Theorem 1.

Theorem 4. If ~λ is chosen from a uniform distribution on the set of 1-free compositions
of n, the expected number of parts is

En(κn) =
n

1 + φ2
+

φ

5
+ O

(

n

φ2n

)

.

Proof. Observe that the total number of parts over all compositions in ΛS
n is

|ΛS
n|En(κn) =

n
∑

k=1

k|ΛS
n,k| =

n
∑

k=1

n
∑

d=k

|ΛS
n,d|.

Using the fact that the coefficient of xn in G0(x)d is equal to |ΛS
n,d|, as in the proof of

Lemma 1, we have

n
∑

k=1

n
∑

d=k

|ΛS
n,d| = [xn]

n
∑

k=1

n
∑

d=k

G0(x)d = [xn]
G0(x)

(1 − G0(x))2
. (2)

Letting S = {k : k ≥ 2}, so that G0(x) =
∞
∑

k=2

xk, and combining (2) with Corollary 3, we

obtain

En(κn) =
1

Fn−1
[xn]

G0(x)

(1 − G0(x))2

=
1

Fn−1

(

n

(

3

5
Fn−1 −

1

5
Fn

)

+
Fn

5

)

=
n

1 + φ2
+

φ

5
+ O

(

n

φ2n

)

.
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A pertinent part of the lognormality proof is to show that the number of parts of a
composition is concentrated around its mean. For unrestricted compositions, Chernoff
bounds can be applied directly to obtain an exponentially small upper bound. For 1-free
compositions, we present the following result.

Lemma 3. There exists a constant C1 > 0 such that

Qn

(

∣

∣τn − n
1+φ2

∣

∣ >
√

n log n
)

≤ C1

n1+φ2
.

Proof. For positive integers α, define Sα =
α
∑

i=1

ωi. Then for t > 0,

Qn(τn ≤ α) = Qn(Sα ≥ n) = Qn(etSα ≥ etn).

By Markov’s inequality and the independence of the ωi’s,

Qn(etSα ≥ etn) ≤ EQ
n (etSα)

etn
=

EQ
n (etω1)α

etn
.

We compute the moment generating function of ω1 to get, for 0 < t < log φ,

EQ
n (etω1) =

∞
∑

k=2

etkQn(ω1 = k) =
∞
∑

k=2

(

et

φ

)k

=

(

et

φ

)2

1 − et

φ

=
e2t

1 − et−1
φ−1

.

If we let u = et−1
φ−1

, then

Qn(τn ≤ α) ≤

(

e2t

1−u

)α

etn
=

e2tα

eα log(1−u)etn
= e−tn+2tα−α log(1−u). (3)

Now it remains to estimate the exponent in the right-hand side of (3). Define α =
⌊ n

1+φ2 − √
n log n⌋ and let t = 1√

n
. Then, with an application of the Taylor expansion

log(1 − u) = − 1
φ−1

(

1√
n

+ 1
2n

)

− 1
2n(φ−1)2

+ O
(

1
n3/2

)

, we have

−tn = −
√

n , (4)

2tα =
2
√

n

1 + φ2
− 2 log n + O

(

1√
n

)

, (5)

−α log(1 − u) =

√
n

(1 + φ2)(φ − 1)
− log n

φ − 1
+ O(1). (6)

Now (4), (5), and (6) can be used to make substitutions in the exponent of (3). When
like terms are combined, the coefficient of

√
n is

−1 +
2

1 + φ2
+

1

(1 + φ2)(φ − 1)
= 0
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and the coefficient of log n is

−2 − 1

φ − 1
= −(1 + φ2).

Since the remaining terms are O(1), we have for some C1 > 0,

Qn

(

τn ≤ n

1 + φ2
−
√

n log n

)

≤ e−(1+φ2) log n+O(1) ≤ C1

n1+φ2
.

A similar calculation using β = ⌈ n
1+φ2 +

√
n log n⌉ gives the inequality in the other direc-

tion.

Corollary 4. There exists a constant C2 > 0 such that

Pn

(

∣

∣κn − n
1+φ2

∣

∣ >
√

n log n
)

≤ C2

n1+φ2
.

Proof. By Lemma 2, P ∗
n(κn ≥ j) = Qn(τn ≥ j). Thus the inequality in Lemma 3 remains

unchanged for P ∗
n . Let A be the event

∣

∣κn − n
1+φ2

∣

∣ ≥ √
n log n. Then

P ∗
n(A) = 1

φn−1 |A and λκn = 1| + 1
φn−2 |A and λκn ≥ 2|

> 1
φn−2 |A and λκn ≥ 2| = Fn−1

φn−2 Pn(A)

and

Pn(A) ≤ φn−2

Fn−1
P ∗

n(A) ≤
(√

5
φ

+ O
(

1
φ2n

)) C1

n1+φ2
≤ C2

n1+φ2
.

5 Asymptotic normality of log B

The following lemma is proved in [18] with techniques from [9] and [17] and Lemma 3
from this manuscript. After the lemma, we will begin the proof of Theorem 1. In this
section, we use Φ(x) to denote the standard normal distribution.

Lemma 4. For all x,

P ∗
n





log B− nµ
1+φ2

√

nγ2

1+φ2

≤ x



 =
1√
2π

x
∫

−∞

e−t2/2dt + O

(

(

log n√
n

)1/3

+ x log n√
n

)

.

Proof of Theorem 1. For any integer t ≥ 1,

P ∗
n(B = t) = P ∗

n(B = t and λκn ≥ 2) + P ∗
n(B = t and λκn = 1)

=
1

φn−2
|Bn = t and λκn ≥ 2| +

1

φn−1
|Bn = t and λκn = 1| (7)

=
1

φn−2
|Bn = t and all λi ≥ 2| +

1

φn−1
|Bn−1 = t and all λi ≥ 2| (8)

=
Fn−1

φn−2
Pn(B = t) +

Fn−2

φn−1
Pn−1(B = t) (9)
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where the step from (7) to (8) is made by noting the bijection between the set of com-
positions of n − 1 and the set of compositions of n with last part 1. Summing over t on

both sides and letting ξn =
√

nγ2

1+φ2 x + nµ
1+φ2 , we have

P ∗
n(log B ≤ ξn) =

Fn−2

φn−1
Pn−1(log B ≤ ξn) +

Fn−1

φn−2
Pn(log B ≤ ξn). (10)

We would like to rewrite Pn−1(log B ≤ ξn) in terms of Pn−1(log B ≤ ξn−1), so we let

sn,x =
√

1 + 1
n−1

(

x + µ/γ√
1+φ2

√
n

)

and make the following calculation:

Pn−1(log B ≤ ξn) = Pn−1

(

log B ≤ nµ
1+φ2 +

√

nγ2

1+φ2 x

)

= Pn−1





log B − (n−1)µ
1+φ2

√

(n−1)γ2

1+φ2

≤ sn,x





= Pn−1 (log B ≤ ξn−1) + Pn−1



x <
log B − (n−1)µ

1+φ2

√

(n−1)γ2

1+φ2

≤ sn,x



 .

As a lower bound, we can drop the second term to get

Pn−1(log B ≤ ξn) ≥ Pn−1 (log B ≤ ξn−1) .

As an upper bound, we derive from (9) the inequality

P ∗
n(B = t) ≥ Fn−1

φn−2
Pn(B = t)

so that

Pn(B = t) ≤ φn−2

Fn−1
P ∗

n(B = t) =
(√

5
φ

+ O
(

1
φ2n

))

P ∗
n(B = t).

Then we can obtain an upper bound as follows, with the use of Lemma 4:

Pn−1



x <
log B− (n−1)µ

1+φ2

√

(n−1)γ2

1+φ2

≤ sn,x



 ≤
√

5

φ
P ∗

n−1



x <
log B − (n−1)µ

1+φ2

√

(n−1)γ2

1+φ2

≤ sn,x



+ O

(

1

φ2n

)

=

√
5

φ
(Φ(sn,x) − Φ(x)) + O

(

(

log n√
n

)1/3

+ x log n√
n

)

=

√
5

φ





1√
2π

sn,x
∫

x

e−t2/2dt



+ O

(

(

log n√
n

)1/3

+ x log n√
n

)

≤
√

5

φ
√

2π
(sn,x − x) + O

(

(

log n√
n

)1/3

+ x log n√
n

)

.
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With use of the Taylor expansion
√

1 + t = 1 + t
2

+ O(t2), we can show that

sn,x − x = O
(

1√
n

+ x
n

)

.

Therefore,

Pn−1(log B ≤ ξn) ≤ Pn−1 (log B ≤ ξn−1) + O

(

(

log n√
n

)1/3

+ x log n√
n

)

.

Going back to equation (10), we have

P ∗
n(log B ≤ ξn) =

Fn−2

φn−1
Pn−1(log B ≤ ξn−1) +

Fn−1

φn−2
Pn(log B ≤ ξn)

+ O

(

(

log n√
n

)1/3

+ x log n√
n

)

.

Letting an = Fn−1

φn Pn(log B ≤ ξn) and bn = P ∗
n(log B ≤ ξn), we rewrite this as

bn = φ2an + an−1 + O

(

(

log n√
n

)1/3

+ x log n√
n

)

.

Solving for an gives

an = 1
φ2 bn − 1

φ2 an−1 + O

(

(

log n√
n

)1/3

+ x log n√
n

)

.

Iterating ⌊n/2⌋ times, we obtain

an = 1
φ2

n
∑

k=⌈n/2⌉

(

−1
φ2

)n−k

bk +
(

−1
φ2

)⌊n/2⌋+1

a⌈n/2⌉−1

+

n
∑

k=⌈n/2⌉

(

−1
φ2

)n−k+1

· O
(

(

log k√
k

)1/3

+ x log k√
k

)

= T1 + T2 + T3.

We now look at each term separately:

|T2| =

∣

∣

∣

∣

(

−1
φ2

)⌊n/2⌋+1

a⌈n/2⌉−1

∣

∣

∣

∣

≤
∣

∣

∣

∣

(

−1
φ2

)⌊n/2⌋+1

· F⌊n/2⌋−2

φ⌊n/2⌋−1
· 1

∣

∣

∣

∣

= O
(

1
φn

)

(11)
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|T3| =

∣

∣

∣

∣

∣

∣

n
∑

k=⌈n/2⌉

(

−1
φ2

)n−k+1

· O
(

(

log k√
k

)1/3

+ x log k√
k

)

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

C ·
(

(

log n√
⌈n/2⌉

)1/3

+ x log n√
⌈n/2⌉

)

n
∑

k=⌈n/2⌉

(

−1
φ2

)n−k

∣

∣

∣

∣

∣

∣

= O

(

(

log n√
n

)1/3

+ x log n√
n

)

. (12)

With use of Lemma 4, we have

T1 = 1
φ2

n
∑

k=⌈n/2⌉

(

−1
φ2

)n−k

Φ(x) + 1
φ2

n
∑

k=⌈n/2⌉

(

−1
φ2

)n−k

· O
(

(

log k√
k

)1/3

+ x log k√
k

)

= T1,a + T1,b .

We again look at each term separately:

T1,b = O(T3) (13)

T1,a = 1
φ2

n
∑

k=⌈n/2⌉

(

−1
φ2

)n−k

Φ(x)

= Φ(x) 1
φ2

⌊n/2⌋
∑

k=0

(

−1
φ2

)k

=
Φ(x)

1 + φ2
+ O

(

1
φn

)

. (14)

Putting the estimates from (11), (12), (13), and (14) together, we get

an =
Φ(x)

1 + φ2
+ O

(

(

log n√
n

)1/3

+ x log n√
n

)

.

Recalling that an = Fn−1

φn Pn(log B ≤ ξn), we therefore have

Pn(log B ≤ ξn) = φn

Fn−1

an =
(

φ
√

5 + O
(

1
φ2n

))

an.

Finally,

Pn(log B ≤ ξn) = Φ(x)
φ
√

5

1 + φ2
+ O

(

(

log n√
n

)1/3

+ x log n√
n

)

= Φ(x) + O

(

(

log n√
n

)1/3

+ x log n√
n

)

.
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Therefore the rate of convergence is uniform as long as |x| log n√
n

≤
(

log n√
n

)1/3

, i.e. as long as

|x| ≤
( √

n
log n

)2/3

.
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