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Abstract

The chromatic number χ(G) of a graph G is the minimum number of colors
in a proper coloring of the vertices of G. The biclique partition number bp(G) is
the minimum number of complete bipartite subgraphs whose edges partition the
edge-set of G.

The Rank-Coloring Conjecture (formulated by van Nuffelen in 1976) states that
χ(G) ≤ rank(A(G)), where rank(A(G)) is the rank of the adjacency matrix of G.
This was disproved in 1989 by Alon and Seymour. In 1991, Alon, Saks, and Seymour
conjectured that χ(G) ≤ bp(G) + 1 for any graph G. This was recently disproved
by Huang and Sudakov. These conjectures are also related to interesting problems
in computational complexity.

In this paper, we construct new infinite families of counterexamples to both the
Alon-Saks-Seymour Conjecture and the Rank-Coloring Conjecture. Our construc-
tion is a generalization of similar work by Razborov, and Huang and Sudakov.

1 Introduction

Our graph theoretic notation is standard (see West [20]). In this paper, all the graphs are
simple and undirected. The biclique partition number bp(G) of a graph G is the minimum
number of complete bipartite subgraphs (also called bicliques) whose edges partition the
edge set of G. The chromatic number χ(G) is the minimum number of colors needed in
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a proper coloring of the vertices of G. The adjacency matrix A(G) of G has its rows and
columns indexed after the vertices of G and its (u, v)-th entry equals 1 if the vertices u and
v are adjacent in G and 0 otherwise. The rank of A(G) will be denoted by rank(A(G)).

Motivated by network design problems, Graham and Pollak [7] proved that the edge-
set of a complete graph on n vertices cannot be partitioned into fewer than n−1 bicliques.
This result can be restated as χ(Kn) = bp(Kn) + 1. Over the years, several proofs of this
fact have been discovered (see [13, 17, 18, 19]). A natural generalization of the Graham-
Pollak Theorem is to ask if any graph G can be properly colored with bp(G) + 1 colors.
This question was first posed by Alon, Saks, and Seymour (cf. Kahn [9]) .

Conjecture 1.1 (Alon-Saks-Seymour). For any simple graph G, χ(G) ≤ bp(G) + 1.

This conjecture was confirmed by Rho [15] for graphs G with n vertices and bp(G) ∈
{1, 2, 3, 4, n − 3, n − 2, n − 1} and by Gao, McKay, Naserasr and Stevens [6] for graphs
with bp(G) ≤ 9. The Alon-Saks-Seymour Conjecture remained open for twenty years
until recently when Huang and Sudakov [8] constructed the first counterexamples.

In 1976, van Nuffelen [12] (see also Fajtlowicz [5]) stated what became known as the
Rank-Coloring Conjecture.

Conjecture 1.2 (Rank-Coloring). For any simple graph G, χ(G) ≤ rank(A(G)).

The Rank-Coloring Conjecture was disproved in 1989 by Alon and Seymour [1].
Razborov [14] found counterexamples with a superlinear gap between rank(A(G)) and
χ(G). Other counterexamples were constructed from the Kasami graphs by Roy and
Royle [16]. To our knowledge, Nisan and Wigderson’s construction from [11] yields the
largest gap between the chromatic number and the rank at present time. The Alon-Saks-
Seymour Conjecture and the Rank-Coloring Conjecture are closely related to computa-
tional complexity problems (see [8, 10, 11]).

In this paper, we construct infinitely many graphs that are counterexamples to both
the Alon-Saks-Seymour Conjecture and the Rank-Coloring Conjecture. More precisely,
we construct infinite families of graphs G(n, k, r) with n2k+2r+1 vertices for all integers
n ≥ 2, k ≥ 1, r ≥ 1 such that

χ(G(n, k, r)) ≥
n2k+2r

2r + 1
(1)

and for k ≥ 2

2k(2r + 1)(n − 1)2k+2r−1 ≤ bp(G(n, k, r)) < 22k+2r−1n2k+2r−1 (2)

and
2k(2r + 1)(n − 1)2k+2r−1 ≤ rank(A(G(n, k, r))) < 2k(2r + 1)n2k+2r−1 (3)

These inequalities imply that for fixed k ≥ 2 and r ≥ 1 and n large enough, the
graphs G(n, k, r) are counterexamples to both the Alon-Saks-Seymour Conjecture and
the Rank-Coloring Conjecture. Our construction extends the constructions of Huang and
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Sudakov [8] and Razborov [14]. Taking k = 2 and r = 1, we get Huang and Sudakov’s
graph sequence from [8]. When k = 1 and r = 1, we obtain Razborov’s construction from
[14].

In Section 2, we describe the construction of the graphs G(n, k, r) and we prove in-
equality (1) and the upper bound on bp(G(n, k, r)) from (2). In Section 3, we obtain the
bounds (3) on the rank of the adjacency matrix of G(n, k, r) and deduce the lower bound
on bp(G(n, k, r)) from (2).

2 The graphs G(n, k, r)

Let Qn be the n-dimensional cube with vertex set {0, 1}n and two vertices x, y in Qn

adjacent if and only if they differ in exactly one coordinate. A k-dimensional subcube of
Qn is a subset of Qn which can be written as

{x = (x1, ..., xn) ∈ Qn|xi = bi, ∀i ∈ B} (4)

where B is a set of n−k fixed coordinates and each bi ∈ {0, 1}. We represent the all ones
and all zeros vectors as 1n and 0n respectively, and we define Q−

n = Qn \ {1n, 0n}. For
any integer n ≥ 1, we denote {1, . . . , n} by [n].

For given integers n ≥ 2, k ≥ 1, and r ≥ 1, we define the graph G(n, k, r) as follows.
Its vertex set is

V (G(n, k, r)) = [n]2k+2r+1 = {(x1, ..., x2k+2r+1)|xi ∈ [n], ∀i, 1 ≤ i ≤ 2k + 2r + 1}.

For any two vertices x = (x1, ..., x2k+2r+1), y = (y1, ..., y2k+2r+1) let

ρ(x, y) = (ρ1(x, y), ..., ρ2k+2r+1(x, y)) ∈ {0, 1}2k+2r+1 (5)

where ρi(x, y) = 1 if xi 6= yi and ρi(x, y) = 0 if xi = yi.
We define adjacency in G(n, k, r) as follows: the vertices x and y are adjacent in

G(n, k, r) if and only if ρ(x, y) ∈ S where

S = Q2k+2r+1 \ [(12k × Q−
2r+1) ∪ {02k × 02r+1} ∪ {02k × 12r+1}] (6)

We will prove now the lower bound (1) for the chromatic number of G(n, k, r).

Proposition 2.1. For n ≥ 2 and k, r ≥ 1, χ(G(n, k, r)) ≥ n2k+2r

2r+1
.

Proof. In this proof we will refer to G(n, k, r) as G.
For x = (x1, . . . , x2k, x2k+1, . . . , x2k+2r+1) ∈ V (G), let f(x) = (x1, . . . , x2k) be the pro-

jection to the first 2k coordinates of x and t(x) = (x2k+1, . . . , x2k+2r+1) be the projection
to the last 2r + 1 coordinates of x.

Let I be an independent set in G. Any two vertices x and y of G which agree on one
of the first 2k coordinates and satisfy f(x) 6= f(y) are adjacent in G. This implies that
any two distinct vectors in f(I) differ in all of the first 2k of their coordinates and thus,
|f(I)| ≤ n.
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If for every u ∈ f(I), |f−1(u) ∩ I| ≤ 2r + 1, then |I| ≤ (2r + 1)n. Otherwise, there is
a β ∈ [n]2k and distinct x1, x2, ..., x2r+2 ∈ I such that f(xi) = β for 1 ≤ i ≤ 2r + 2. Then
ρ(t(xi), t(xj)) = 12r+1 for any 1 ≤ i 6= j ≤ 2r + 2. From the definition (6) of S, we know
that any two vertices that differ in all 2k + 2r + 1 coordinates are adjacent in G. If there
exists a z ∈ I such that f(z) and β differ on every coordinate, then t(z) and t(xi) are
equal in at least one coordinate for each i. Thus at least two of x1, x2, ..., x2r+2 must agree
in at least one coordinate of t(z), contradicting that t(xi) must differ in every coordinate
for distinct i. Thus, there must be only one element in f(I). Again, the vertices in I

must differ in all of the last 2r + 1 coordinates, and thus |I| = |f(I)| ≤ n.
Thus, we proved that the independence number of G satisfies the inequality α(G) ≤

(2r + 1)n. This fact and χ(G) ≥ |V (G)|
α(G)

complete our proof.

To prove the upper bound (2) on the biclique partition number of G(n, k, r), we need
some auxiliary lemmas.

Lemma 2.2. The set Q−
2k+1 can be partitioned into a disjoint union of 1-dimensional

subcubes for k ≥ 1.

Proof. We prove the lemma by induction on k.
In the base case when k = 1, we can write

Q−
3 = {(0, 0, 1), (0, 1, 1)} ∪ {(0, 1, 0), (1, 1, 0)} ∪ {(1, 0, 0), (1, 0, 1)}. (7)

This proves the base case.
Assume now that Q−

2k+1 can be partitioned into 1-dimensional subcubes. Then

Q2k+3 = (Q2k+1 × 1 × 0) ∪ (Q2k+1 × 1 × 1) ∪ (Q2k+1 × 0 × 1) ∪ (Q2k+1 × 0 × 0)

= (Q2k+1 × 1 × 0)

∪ (Q−
2k+1 × 1 × 1 ∪ {12k+1 × 1 × 1} ∪ {02k+1 × 1 × 1})

∪ (Q−
2k+1 × 0 × 1 ∪ {12k+1 × 0 × 1} ∪ {02k+1 × 0 × 1})

∪ (Q−
2k+1 × 0 × 0 ∪ {12k+1 × 0 × 0} ∪ {02k+1 × 0 × 0})

This implies

Q−
2k+3 = (Q2k+1 × 1 × 0)

∪ (Q−
2k+1 × 1 × 1 ∪ {02k+1 × 1 × 1})

∪ (Q−
2k+1 × 0 × 1 ∪ {12k+1 × 0 × 1} ∪ {02k+1 × 0 × 1})

∪ (Q−
2k+1 × 0 × 0 ∪ {12k+1 × 0 × 0})

which equals

(Q2k+1 × 1 × 0) ∪ (Q−
2k+1 × 1 × 1) ∪ (Q−

2k+1 × 0 × 1) ∪ (Q−
2k+1 × 0 × 0)∪

{12k+1 × 0 × 1, 12k+1 × 0 × 0} ∪ {02k+1 × 1 × 1, 02k+1 × 0 × 1}.

By induction hypothesis, it follows that Q−
2k+3 can be partitioned into 1-dimensional

subcubes.
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We use the previous lemma to prove that the set S defined in (6) can be partitioned
into 2-dimensional subcubes.

Lemma 2.3. For k ≥ 2 and r ≥ 1, the set

S = Q2k+2r+1 \ [(12k × Q−
2r+1) ∪ {02k × 02r+1} ∪ {02k × 12r+1}]

can be partitioned into 2-dimensional subcubes.

Proof. We claim that the following three sets form a partition of S:

S ′ = (02k−1 × 0 × Q−
2r+1) ∪ (02k−1 × 1 × Q−

2r+1) ∪ (Q−
2k−1 × 1 × Q−

2r+1) (8)

S ′′ = (Q2k−1 × 1 × 02r+1) ∪ (Q2k−1 × 1 × 12r+1) (9)

and
S ′′′ = (Q2k−1 \ {0

2k−1}) × 0 × Q2r+1. (10)

To show this is a partition, we first prove S ⊆ S ′ ∪ S ′′ ∪ S ′′′. To see this, consider the
2k-th coordinate of any vector s = (s1, ..., s2k+2r+1) in S. As before, let f(s) = (s1, ..., s2k)
and t(s) = (s2k+1, ..., s2k+2r+1). If s2k = 0, and f(s) 6= 02k, then s ∈ S ′′′. If f(s) = 02k

then s ∈ S ′. Now take s ∈ S such that s2k = 1. If t(s) = 12r+1 or t(s) = 02r+1, then
s ∈ S ′′. Otherwise, s ∈ S ′. Thus S ⊆ S ′ ∪ S ′′ ∪ S ′′′. Since S ′, S ′′, S ′′′ are disjoint subsets
of S, they must partition S.

The set Q2r+1 can be partitioned into 2-dimensional subcubes. It follows that for any
β ∈ Q2k, the set β×Q2r+1 can also be partitioned into 2-dimensional subcubes. For any x1

adjacent to x2 in Q2k, y1 adjacent to y2 in Q2r+1, the set {(x1, y1), (x1, y2), (x2, y1), (x2, y2)}
is a 2-dimensional subcube. By Lemma 2.2, Q−

2r+1 can be decomposed into 1-dimensional
subcubes. This implies that for any x1 adjacent to x2 in Q2k, (x1 ×Q−

2r+1)∪ (x2 ×Q−
2r+1)

can be decomposed into 2-dimensional subcubes.
These remarks imply that S ′, S ′′, S ′′′ and thus S can be partitioned into 2-dimensional

subcubes.

Using the previous lemma, we are ready to prove the upper bound (2) for the biclique
partition number of the graph G(n, k, r).

Proposition 2.4. For n ≥ 2, k ≥ 2, r ≥ 1, bp(G(n, k, r)) < 22k+2r−1n2k+2r−1.

Proof. In this proof we will refer to G(n, k, r) as G.

By Lemma 2.3, S = ∪t
i=1Si, where t = 22k+2r+1−22r+1

4
= 22k+2r−1 − 22r−1 and each

Si is a 2-dimensional subcube. For 1 ≤ i ≤ t, let Gi be the subgraph of G such that
x, y ∈ V (Gi) = V (G) = [n]2k+2r+1 are adjacent if and only if ρ(x, y) ∈ Si. Then the
edge sets of the subgraphs G1, G2, . . . , Gt partition the edge set of the graph G. For
each Si there is a set Ti = {t1, ..., t2k+2r−1} ⊂ {1, ..., 2k + 2r + 1} of fixed coordinates
a1, ..., a2k+2r−1 ∈ {0, 1} so that Si = {(x1, ..., x2k+2r+1)|xtj = aj, ∀1 ≤ j ≤ 2k + 2r − 1}.

Define G′
i with vertex set [n]2k+2r−1 such that x′ and y′ adjacent in G′

i if and only if
ρ(x′, y′) = (a1, ..., a2k+2r−1). Then Gi is an n2-blowup of G′

i which means that Gi can be
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obtained from G′
i by replacing each vertex v of G′

i by an independent set Iv of n2 vertices
and by adding all edges between Iu and Iv in Gi whenever u and v are adjacent in G′

i.
Note that a partition of G′

i into complete bipartite subgraphs becomes a partition into
complete bipartite subgraphs in any blowup of G′

i. Thus bp(Gi) ≤ bp(G′
i) ≤ |V (G′

i)|−1 ≤
n2k+2r−1 − 1. Since the edge set of G is the disjoint union of the edge sets of G1, ..., Gt,
we have that

bp(G) ≤
t

∑

i=1

bp(Gi) ≤ (22k+2r−1 − 22r−1)(n2k+2r−1 − 1) < 22k+2r−1n2k+2r−1.

3 The rank of A(G(n, k, r))

In this section, we obtain asymptotically tight bounds for the rank of the adjacency matrix
of G(n, k, r). We will use the following graph operation called NEPS (Non-complete
Extended P-Sum) introduced by Cvetković in his thesis [3] (see also [4] page 66).

Definition 3.1. For given B ⊂ {0, 1}t \ {0t} and graphs G1, . . . , Gt, the NEPS with basis

B of the graphs G1, ..., Gt is the graph whose vertex set is the cartesian product of the sets

of vertices of the graphs G1, ..., Gt and in which two vertices (x1, ..., xt) and (y1, ..., yt) are

adjacent if and only if there is a t-tuple (b1, ..., bt) in B such that xi = yi holds exactly

when bi = 0 and xi is adjacent to yi in Gi exactly when bi = 1.

Note that when all the graphs G1, . . . , Gt are isomorphic to the complete graph Kn,
then the NEPS with basis B of G1, . . . , Gt will be the graph whose vertex set is [n]t with
(x1, . . . , xt) ∼ (y1, . . . , yt) if and only if ρ((x1, . . . , xt), (y1, . . . , yt)) = (b1, . . . , bt) for some
(b1, . . . , bt) ∈ B.

Hence, the graph G(n, k, r) is the NEPS of 2k + 2r + 1 copies of Kn with basis

S = Q2k+2r+1 \ [(12k × Q−
2r+1) ∪ {02k × 02r+1} ∪ {02k × 12r+1}].

Another important observation (see Theorem 2.21 on page 68 in [4]) is that the adja-
cency matrix of the NEPS with basis B of G1, . . . , Gt equals

∑

(b1,...,bt)∈B

A(G1)
b1 ⊗ · · · ⊗ A(Gt)

bt ,

where X ⊗ Y denotes the Kronecker product of two matrices X and Y .
These facts will enable us to compute the eigenvalues of G(n, k, r) and to obtain the

bounds from (3) on the rank of the adjacency matrix of G(n, k, r).

Proposition 3.2. For n ≥ 2, k ≥ 1, r ≥ 1,

2k(2r + 1)(n − 1)2k+2r−1 ≤ rank(A(G(n, k, r))) < 2k(2r + 1)n2k+2r−1.
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Proof. By Theorem 2.23 on page 69 in [4] or by the previous observations, the spectrum
of the adjacency matrix of G(n, k, r) has the following form:

Λ(G) = {f(λ1, ..., λ2k+2r+1)|λ1, . . . , λ2k+2r+1 eigenvalues of Kn} (11)

where

f(x1, ..., x2k+2r+1) =
∑

(s1,...,s2k+2r+1)∈S

2k+2r+1
∏

i=1

xsi

i (12)

Using the definition of S, we can simplify f(x1, ..., x2k+2r+1) as follows

f(x1, ..., x2k+2r+1) =

2k+2r+1
∏

i=1

(1+xi)−1−

2k
∏

i=1

xi

[

2k+2r+1
∏

i=2k+1

(1 + xi) − 1 −

2k+2r+1
∏

i=2k+1

xi

]

−

2k+2r+1
∏

i=2k+1

xi.

(13)
Whenever the last 2r + 1 positions are −1, f evaluates as

f(x1, ..., x2k,−1, ...,−1) = −1 −

2k
∏

i=1

xi[−1 − (−1)2r+1] − (−1)2r+1 = 0. (14)

Whenever the first 2k positions are −1, f evaluates as

f(−1, . . . ,−1, x2k+1, . . . , x2k+2r) = −1 − (−1)2k

[

−1 −

2k+2r+1
∏

i=2k+1

xi

]

−

2k+2r+1
∏

i=2k+1

xi = 0. (15)

Thus, we obtain 0 as an eigenvalue for G(n, k, r) when all of the last 2r + 1 positions
are −1 or when the first 2k positions are −1. The eigenvalues of Kn are n − 1 with
multiplicity 1 and −1 with multiplicity n − 1. We will make use of the following simple
inequality: nt − (n − 1)t < tnt−1 for any integers n, t ≥ 1.

These facts imply that G(n, k, r) has eigenvalue 0 with multiplicity at least

n2k(n − 1)2r+1+(n − 1)2kn2r+1 − (n − 1)2k+2r+1

= n2k+2r+1 − (n2k − (n − 1)2k)(n2r+1 − (n − 1)2r+1)

> n2k+2r+1 − 2kn2k−1 · (2r + 1)n2r+1−1

= n2k+2r+1 − 2k(2r + 1)n2k+2r−1.

which shows that
rank(A(G(n, k, r))) < 2k(2r + 1)n2k+2r−1. (16)

To prove the other part, note that for fixed u ∈ {1, .., 2k} and v ∈ {2k+1, .., 2k+2r+1},
evaluating f when xi = −1 for i 6= u, v (by using (13)), we get

f(−1, . . . , xu, . . . , xv, . . . ,−1) = −1 + xu(−1 − xv) − xv = −(xu + 1)(xv + 1). (17)

If xu = xv = n − 1, we obtain f(−1, . . . , xu, . . . , xv, . . . ,−1) = −n2. Since Kn has
eigenvalue −1 with multiplicity n−1, we deduce that G(n, k, r) has the negative eigenvalue
−n2 with multiplicity at least

(

2k
1

)(

2r+1
1

)

(n− 1)2k+2r−1. This shows rank(A(G(n, k, r))) ≥
2k(2r + 1)(n − 1)2k+2r−1 and completes our proof.
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A result of Witsenhausen (cf. Graham and Pollak [7]) states that for any graph H

bp(H) ≥ max(n+(A(H)), n−(A(H))) (18)

where n+(A(H)) and n−(A(H)) denote the number of positive and the number of negative
eigenvalues of the adjacency matrix of H , respectively.

From the last part of the proof of Proposition 3.2, we deduce that n−(A(G(n, k, r))) ≥
2k(2r + 1)(n − 1)2k+2r−1. This result and inequality (18) imply

bp(G(n, k, r)) ≥ 2k(2r + 1)(n − 1)2k+2r−1.

As bp(A(G(n, k, r))) ≤ 22k+2r−1n2k+2r−1, this shows that bp(A(G(n, k, r))) = Θ(n2k+2r−1)
for fixed k ≥ 2 and r ≥ 1.

4 Conclusion

In this paper, we constructed new families of counterexamples to the Alon-Saks-Seymour
Conjecture and to the Rank-Coloring Conjecture. We computed the eigenvalues of the
adjacency matrices of these graphs and obtained tight bounds for the rank of their ad-
jacency matrices. We used these results to determine the asymptotic behavior of their
biclique partition number. It would be interesting to determine other properties of these
graphs.

It remains an open problem to see how large the gap between the biclique partition
number and the chromatic number of a graph can be in general. At present time, Huang
and Sudakov’s construction from [8] gives the biggest gap between biclique partition num-
ber and chromatic number. Their construction yields an infinite sequence of graphs Gn

such that χ(Gn) ≥ c(bp(Gn))6/5 for some fixed constant c > 0. Huang and Sudakov con-
jecture in [8] that there exists a graph G with biclique partition number k and chromatic
number at least 2c log2 k, for some constant c > 0.
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