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Abstract

A conjecture of Loebl, also known as the (n/2 − n/2 − n/2) Conjecture, states
that if G is an n-vertex graph in which at least n/2 of the vertices have degree at
least n/2, then G contains all trees with at most n/2 edges as subgraphs. Applying
the Regularity Lemma, Ajtai, Komlós and Szemerédi proved an approximate version
of this conjecture. We prove it exactly for sufficiently large n. This immediately
gives a tight upper bound for the Ramsey number of trees, and partially confirms
a conjecture of Burr and Erdős.

1 Introduction

For a graph G, let V (G) (or simply V ) and E(G) denote its vertex set and edge set,
respectively. The order of G is v(G) = |V (G)| or |G|, and the size of G is e(G) = |E(G)|
or ||G||. For v ∈ V and a set X ⊆ V , N(v, X)1 represents the set of the neighbors of v in
X, and deg(v, X) = |N(v, X)| is the degree of v in X. In particular N(v) = N(v, V ) and
deg(v) = deg(v, V ).

Let G be a graph and T be a tree with v(T ) ≤ v(G). Under what condition must
G contain T as a subgraph? Applying the greedy algorithm, one can easily derive the
following fact.

Fact 1.1. Every graph G with δ(G) = min deg(v) ≥ k contains all trees T on k edges as
subgraphs.

∗A preliminary version of this paper appears in the Ph.D. dissertation (2001) of the author under the
supervision of Endre Szemerédi. Research supported in part by NSF grant DMS-9983703, NSA grants
H98230-05-1-0140, H98230-07-1-0019, and H98230-10-1-0165, a DIMACS graduate student Fellowship at
Rutgers University, and a VIGRE Postdoctoral Fellowship at University of Illinois at Chicago.

1We prefer N(v, X) to the widely used notation NX(v) because we want to save the subscript for the
underlying graph.
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Extending Fact 1.1, Erdős and Sós [7] conjectured that the same holds when δ(G) ≥ k
is weakened to a(G) > k − 1, where a(G) is the average degree of G.

Conjecture 1.2 (Erdős-Sós). Every graph on n vertices and with more than (k − 1)n/2
edges contains, as subgraphs, all trees with k edges.

This celebrated conjecture was open till the early 90’s, when Ajtai, Komlós and Sze-
merédi [1] proved an approximate version by using the celebrated Regularity Lemma of
Szemerédi [17].

Another way to strengthen Fact 1.1 is replacing δ(G) by the median degree of G. The
k = n/2 case of this direction was conjectured by Loebl [8] and became known as the
(n/2 − n/2 − n/2) Conjecture (see [9] page 44).

Conjecture 1.3 (Loebl). If G is a graph on n vertices, and at least n/2 vertices have
degree at least n/2, then G contains, as subgraphs, all trees with at most n/2 edges.

The general case was conjectured by Komlós and Sós [8].

Conjecture 1.4 (Komlós-Sós). If G is a graph on n vertices, and at least n/2 vertices
have degree at least k, then G contains, as subgraphs, all trees with at most k edges.

Conjecture 1.4 is trivial for stars and was verified by Bazgan, Li and Woźniak [3]
for paths. Applying the Regularity Lemma, Ajtai, Komlós and Szemerédi proved [2] an
approximate version of Conjecture 1.3.

Theorem 1.5 (Ajtai-Komlós-Szemerédi). For every ρ > 0 there is a threshold n0 = n0(ρ)
such that the following statement holds for all n ≥ n0: If G is a graph on n vertices, and
at least (1+ρ)n/2 vertices have degree at least (1+ρ)n/2, then G contains, as subgraphs,
all trees with at most n/2 edges.

The main goal of this paper is to prove Conjecture 1.3 exactly for sufficiently large
n. Below we add floor and ceiling functions around n/2 to make the case when n is odd
more explicit.

Theorem 1.6 (Main Theorem). There is a threshold n0 such that Conjecture 1.3 holds
for all n ≥ n0. In other words, if G is a graph of order n ≥ n0, and at least ⌈n/2⌉ vertices
have degree at least ⌈n/2⌉, then G contains, as subgraphs, all trees with at most ⌊n/2⌋
edges.

It was shown in [2] that Conjecture 1.4 is best possible when k + 1 divides n. But
the sharpness of Conjecture 1.3 appears not to have been studied before. Clearly the
n/2 as the degree condition cannot be weakened because T could be a star with n/2
edges. Is the other n/2, the number of large degree vertices, best possible? The following
construction shows that this is essentially the case, more exactly, this n/2 cannot be
replaced by n/2 −√

n − 2.
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Construction 1.7. Let T be a tree with n/2 + 1 vertices distributed in 3 levels: the
root has n/4 children, each of which has exactly one leaf. Let G be a graph such that
V (G) = V1 + V2, |V1| = |V2| = n/2 and each Vi = Ai + Bi with |Ai| = n/4 − √

n/2 − 1.
Each vertex v ∈ Ai is adjacent to all other vertices in Vi and exactly one vertex in Bj for
j 6= i. The n/4−√

n/2− 1 edges between Ai and Bj make up
√

n/2 vertex-disjoint stars
centered at Bj of size either

√
n/2 − 1 or

√
n/2 − 2.

Clearly the n/2 − √
n − 2 vertices in A1 ∪ A2 have degree n/2. We claim that G

does not contain T . In fact, by symmetry in G, we only consider two possible locations
for the root r of T : A1 or B1. Suppose that r is mapped to some u ∈ B1. Since
deg(u) ≤ |A1|+

√
n/2− 1 = n/4− 2, there is no room for the n/4 children of r. Suppose

that r is mapped to some u ∈ A1. Let m be the size of a largest family of paths of length
2 sharing only u (u-2-paths). There are two kinds of u-2-paths containing no vertices from
A1 \{u}: u to B1 to A2, and u to B2 to A2. Since the size of a maximal matching between
B1 and A2 is

√
n/2 and deg(u, B2) = 1, we conclude that m ≤ |A1|−1+

√
n/2+1 = n/4−1.

Hence there is no room for the n/4 2-paths in T .

Define ℓ(G) = |{u ∈ V (G) : deg(u) ≥ v(G)/2}|. Denote by Tk the set of trees on
k edges. We write G ⊃ Tk when the graph G contains all members of Tk as subgraphs.
Conjecture 1.4 leads us to the following extremal problem. Let m(n, k) be the smallest m
such that every n-vertex graph G with ℓ(G) ≥ m contains all trees on k edges, i.e., G ⊃ Tk.
Conjecture 1.4 says that m(n, k) ≤ n/2 for all k < n, in particular, Conjecture 1.3 says
that m(n, n/2) ≤ n/2. Theorem 1.6 confirms that m(n, n/2) ≤ n/2 for n ≥ n0 while
Construction 1.7 shows that m(n, n/2) > n/2−√

n − 2. At present, we do not know the
exact value of m(n, n/2) or m(n, k) for most values of k.

When studying an extremal problem on graphs, researchers are also interested in the
structure of graphs whose size is close to the extreme value. Let ex(n, F ) be the usual
Turán number of a graph F . The stability theorem of Erdős-Simonovits [16] from 1966
proved that n-vertex graphs without a fixed subgraph F with close to ex(n, F ) edges have
similar structures: they all look like the extremal graph. In this paper, though we can
not determine m(n, n/2) exactly, we are able to describe the structure of n-vertex graphs
G with ℓ(G) about n/2 and G 6⊃ Tn/2.

Definition 1.8. The half-complete graph Hn is a graph on n vertices with V = V1 + V2

such that |V1| = ⌊n/2⌋ and |V2| = ⌈n/2⌉. The edges of Hn are all the pairs inside V1 and
between V1 and V2. In other words, Hn = Kn − E(K⌈n/2⌉).

For a graph G and k ∈ N, we denote by kG the graph that consists of k disjoint
copies of G, in other words, V (kG) has a partition ∪k

i=1Vi such that its induced subgraph
on each Vi is isomorphic to G.

Theorem 1.9 (Stability Theorem). For every β > 0 there exist ζ > 0 and n0 ∈ N
such that the following statement holds for all n ≥ n0: if a 2n-vertex graph G with
ℓ(G) ≥ (1 − ζ)n does not contain some T ∈ Tn, then G = 2Hn ± βn2, i.e., G can be
transformed to two vertex-disjoint copies of Hn by changing at most βn2 edges.
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The structure of the paper is as follows. In the next section we discuss the application
of Theorem 1.6 on graph Ramsey theory. In Section 3 we outline the proof of Theorem 1.6,
comparing it with the proof of Theorem 1.5, and define two extremal cases. Section 4
contains the Regularity Lemma and some properties of regular pairs. Section 5 contains
a few embedding lemmas for tress and forests; an involved proof (of Lemma 5.4 Part 3)
is left to the appendix. In Section 6 we extend the ideas in [2] to prove the non-extremal
case, where Subsection 6.5 contains most of our new ideas and many technical details. The
extremal cases are covered in Section 7, in which we also give the proof of Theorem 1.9.
The last section contains some concluding remarks.

Notation: Let [n] = {1, 2, . . . , n}. For two disjoint sets A and B we sometimes write
A + B for A ∪ B. Let G = (V, E) be a graph. If U ⊂ V is a vertex subset, we write
G − U for G[V \ U ], the induced subgraph on V \ U . When U = {v} is a singleton, we
often write G − v instead of G − {v}. For a subgraph H of G, we write G − H for the
subgraph of G obtained by removing all edges in H and all vertices v ∈ V (H) that are
only incident to edges of H .2 Given two not necessarily disjoint subsets A and B of V ,
e(A, B) denotes the number of ordered pairs (a, b) such that a ∈ A, b ∈ B and {a, b} ∈ E.
The density d(A, B) between A and B and the minimum degree δ(A, B) from A to B are
defined as follows:

d(A, B) =
e(A, B)

|A||B| , δ(A, B) = min
a∈A

deg(a, B).

Trees in this paper are always rooted (though we may change roots if necessary). Let
T be a tree with root r. Then T is associated a partial order < with r as the maximum
element. In other words, for two distinct vertices x, y on T , we write x < y if and only if y
lies on the unique connecting r and x. For any vertex x 6= r, the parent p(x) is the unique
neighbor of x such that x < p(x), the set of children is C(x) = N(x) \ p(x). Furthermore,
let T (x) denote the subtree induced by {y : y ≤ x}.

A forest F is a disjoint union of trees. We write T ∈ F if the tree T is a component of
F . The number of the components of F is denoted by c(F ). Hence v(F ) = e(F ) + c(F ).
We partition the vertices of F by levels, namely, their distances to the roots such that
Leveli(F ) denotes the set of vertices whose distance to the roots is i. In particular, we
write Rt(F ) = Level0(F ), and Rt(F ) denotes the root (instead of the set of the root) if F
is a tree. We also write Level≥i(F ) =

⋃

j≥i Levelj(F ), Feven =
⋃

Leveli(F ) for all even i,
and Fodd =

⋃

Leveli(F ) for all odd i. For a tree T , Teven ∪ Todd is the unique bipartition
of V (T ). A forest with c components has 2c−1 non-isomorphic bipartitions, which are
determined by the location of its roots. Finally we define Ratio(F ) = |Fodd|/v(F ).

For two graphs G and H , we write H → G if H can be embedded into G, i.e., there is
an injection φ : V (H) → V (G) such that {φ(u), φ(v)} ∈ E(G) whenever {u, v} ∈ E(H).
For X ∈ V (H) and A ⊆ V (G), φ(X) stands for the union of φ(x), x ∈ X. When
φ : H → G and φ(X) ⊆ A, we write X → A.

2This is not a standard notation: many researchers instead define G − H := G − V (H).
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2 Ramsey number of trees

An immediate consequence of Theorem 1.6 is a tight upper bound for the Ramsey number
of trees. The Ramsey number R(H) of a graph H is the minimum integer k such that
every 2-edge-coloring of Kk yields a monochromatic copy of H . Let T be a tree on n
vertices. What can we say about upper bounds for R(T )?

It is easy to see that R(T ) ≤ 4n − 3. In fact, every 2-edge-coloring of K4n−3 yields
a monochromatic graph G on 4n − 3 vertices with at least 1

2

(

4n−3
2

)

edges. Since every
graph with average degree d contains a subgraph whose minimal degree is at least d/2, G
contains a subgraph G′ with minimal degree at least (4n− 4)/4 = n− 1. By Fact 1.1, G′

thus contains a copy of T .
Burr and Erdős [5] made the following conjecture.3

Conjecture 2.1 (Burr-Erdős). For every tree T on n vertices, R(T ) ≤ 2n− 2 when n is
even and R(T ) ≤ 2n − 3 when n is odd.

Note that [9] page 18 says that Burr and Erdős conjectured that R(T ) ≤ 2n − 2, and
[14] says that Loebl conjectured R(T ) ≤ 2n.

The bounds in Conjecture 2.1 are tight when T is a star on n vertices. For example,
when n is even, there exists an (n−2)-regular graph G1 on 2n−3 vertices. Consequently
the 2-edge-coloring K2n−3 with G1 as the red graph contains no monochromatic star on
n vertices.

It is easy to check that the Erdős-Sós Conjecture implies Conjecture 2.1. On the other
hand, Conjecture 1.3 implies that R(T ) ≤ 2n − 2. To see this, suppose a 2-edge-coloring
partitions K2n−2 into two subgraphs G1 and G2. Then either G1 contains at least n − 1
vertices of degree at least n− 1 or G2 contains at least n vertices of degree at least n− 1.
Conjecture 1.3 thus implies that either G1 or G2 contains all trees of order n. Our main
theorem (Theorem 1.6) therefore confirms Conjecture 2.1 for large even integers n.

Corollary 2.2. If n is sufficiently large and T is a tree on n vertices, then R(T ) ≤ 2n−2.

Given two graphs H1, H2, the asymmetric Ramsey number R(H1, H2) is the minimum
integer k such that every 2-edge-coloring of Kk by red and blue yields either a red H1 or
a blue H2. Theorem 1.6 actually implies that for any two trees T ′, T ′′ on n vertices and
sufficiently large n, R(T ′, T ′′) ≤ 2n− 2. Furthermore, the Komlós-Sós Conjecture implies
that R(T ′, T ′′) ≤ m+n−2, where T ′, T ′′ are arbitrary trees on n, m vertices, respectively.

Finally, when the bipartition of T is known, Burr conjectured [4] a upper bound for
R(T ) which implies Conjecture 2.1, in terms of |Teven| and |Todd|. See [4, 10, 11] for
progress on this conjecture.

3 Structure of our proofs

In this section we sketch the proofs of the main theorem and Theorem 1.9.

3This is a different conjecture from their well-known conjecture on Ramsey numbers for graphs with
degree constraints.
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Let us first recall the proof of Theorem 1.5. Given T and G as in Theorem 1.5, the
authors of [2] first prepared T and G as follows: T is folded such that it looks like a
bi-polar tree, namely, a tree having two vertices (called poles) under which all subtrees
are small, and G is treated with the Regularity Lemma which yields a reduced graph
Gr whose vertices represents the clusters of G. Then they applied the Gallai–Edmonds
decomposition to Gr and found two clusters A, B of large degree and a matching M
covering the neighbors of A and B. Finally they embedded the bi-polar version of T into
{A, B} ∪ M and showed how to convert this embedding to an embedding of T in G.

The two ρ’s in Theorem 1.5 are to compensate the following losses. Assume that ε, d, γ
are some small positive numbers determined by ρ. After applying the Regularity Lemma
with parameters ε, d, the degrees of the vertices of L are reduced by (d+ε)n. In addition,
the regularity of a regular pair (A, B) only guarantees (by a corollary of Lemma 5.1) an
embedding of a forest (consisting of small-size trees) of order (1 − γ)(|A| + |B|), instead
of |A| + |B|. Clearly the above losses are unavoidable as long as the Regularity Lemma
is applied. In other words, without these two ρ’s, we can only expect to embed trees of
size smaller than v(G)/2 by copying the proof of Theorem 1.5.

In order to prove Theorem 1.6 which contains no error terms, we have to study the
structure of G more carefully and also consider the structure of T in order to find a series
of sufficient conditions for embedding T in G. If none of these conditions holds, then G
can be split into two equal parts such that between them, there exist either almost no
edges or almost all possible edges. In such extremal cases, we show that all trees with n
edges can be found in the original graph G without using the Regularity Lemma.

Without loss of generality, we may assume that the order of the host graph G is even.
In fact, when v(G) = 2k − 1, the assumption of Theorem 1.6 says that there are at least
k vertices of degree at least k in G. After adding one isolated vertex to G, the new graph
G̃ still has at least k vertices of degree at least k. If a tree (on k edges) can be found in
G̃, then it must be a subgraph of G. From now on we assume that G is a graph of
order 2n.

Given 0 ≤ α ≤ 1, we define two extremal cases4 with parameter α. We say that G is
in Extremal Case 1 with parameter α if

EC1: V (G) can be evenly partitioned into two subsets V1 and V2 such that d(V1, V2) ≥
1 − α.

We say that G is in Extremal Case 2 with parameter α if
EC2: V (G) can be evenly partitioned into two subsets V1 and V2 with d(V1, V2) ≤ α.
Note that if G is in EC1 (or EC2) with parameter α, then G is in EC1 (or EC2)

with parameter x for any positive x < α.
Our next two results show that G ⊃ Tn, i.e., G containing all trees on n edges if

ℓ(G) ≥ n and G is in either of the extremal cases.

4As noted by a referee, we may only define one extremal case since G is in EC1 if and only if its
complement Ḡ is in EC2.
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Proposition 3.1. For any 0 < σ < 1, there exist n1 ∈ N and 0 < c < 1 such that the
following holds for all n ≥ n1. Let G be a 2n-vertex graph with ℓ(G) ≥ 2σn. If G is in
EC1 with parameter c, then G ⊃ Tn.

Theorem 3.2. There exist α2 > 0 and n2 ∈ N such that the following holds for all
0 < α ≤ α2 and n ≥ n0. Let G be a 2n-vertex graph with ℓ(G) ≥ n. If G is in EC2 with
parameter α, then G ⊃ Tn.

To prove Theorem 1.6, we only need the σ = 1/2 case of Proposition 3.1. But Theo-
rem 1.9 need the σ < 1/2 case. The core step in our proof is the following theorem, which
describes the structure of hypothetical G with ℓ(G) ≥ (1 − ε)n and G 6⊃ Tn.

Theorem 3.3. For every α > 0 there exist ε > 0 and n3 = n3(α) ∈ N such that the
following statement holds for all n ≥ n0: if a 2n-vertex graph G with ℓ(G) ≥ (1−ε)n does
not contain some T ∈ Tn, then G is in either of the two extremal cases with parameter α.

Similarly, to prove Theorem 1.6, we only need to prove Theorem 3.3 under the stronger
assumption ℓ(G) ≥ n. This general Theorem 3.3 is necessary for the proof of Theorem 1.9
and becomes useful if one wants to show that G ⊃ Tn under a (slightly) smaller value of
ℓ(G).

Proof of Theorem 1.6. Let n1, c be given by Proposition 3.1 with σ = 1/2. Let
α2, n2 be given by Theorem 3.2. We let α := min{c, α2}, and let n3 = n3(α) be given by
Theorem 3.3. Finally set n0 := max{n1, n2, n3}.

Now let G be a graph of order 2n with ℓ(G) ≥ n for some n ≥ n0. By Theorem 3.3,
either G ⊃ Tn or G is in either of the two extremal cases with parameter α. If G is in
EC1 with parameter α ≤ c, then Proposition 3.1 (with σ = 1/2) implies that G ⊃ Tn. If
G is in EC2 with parameter α ≤ α2, then Theorem 3.2 implies that G ⊃ Tn. We thus
have G ⊃ Tn in all cases.

We will prove our stability result (Theorem 1.9) in Section 7.2. It easily follows from
Proposition 3.1, Theorem 3.3, and Lemma 7.4, where Lemma 7.4 is also the main step in
the proof of Theorem 3.2.

4 Regular pairs and the Regularity Lemma

In this section we state the Regularity Lemma along with some properties of regular pairs.
Recall for two vertex sets A, B in a graph, d(A, B) = e(A, B)/(|A||B|).
Definition 4.1. Let ε > 0. A pair (A, B) of disjoint vertex-sets in G is ε-regular ( regular
if ε is clear from the context) if for every X ⊆ A and Y ⊆ B, satisfying |X| > ε|A|, |Y | >
ε|B|, we have |d(X, Y ) − d(A, B)| < ε.

We use the following version of the Regularity Lemma from [13].

Lemma 4.2 (Regularity Lemma - Degree Form). For every ε > 0 there is an M(ε) such
that if G = (V, E) is any graph and d ∈ [0, 1] is any real number, then there is a partition
of the vertex set V into ℓ + 1 partition sets V0, V1, . . . , Vℓ, and there is a subgraph G′ of G
with the following properties:
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• ℓ ≤ M(ε),

• |V0| ≤ ε|V |; all clusters Vi, i ≥ 1, are of the same size N ≤ ε|V |,

• degG′(v) > degG(v) − (d + ε)|V | for all v ∈ V ,

• Vi, i ≥ 1, is an independent set in G′,

• all pairs (Vi, Vj), 1 ≤ i < j ≤ ℓ, are ε-regular in G′, each with density either 0 or
greater than d.

Like in many other problems to which the Regularity Lemma is applied, it suffices to
consider the subgraph G′′ = G′−V0 as the underlying graph except for the extremal case.
We therefore skip the subscript G′′ unless we consider G′′ and G at the same time. Let
V ′ = V \ V0 denote the vertex set of V (G′′).

Given two vertex sets X and Y , recall that δ(X, Y ) = minv∈X deg(v, Y ) denotes the
minimum degree from X to Y . We now define the average degree from X to Y as

deg(X, Y ) =
1

|X|e(X, Y ) = d(X, Y ) |Y |.

Note the asymmetry of δ(X, Y ) and deg(X, Y ). When X = {v}, we have deg(v, Y ) =
deg(v, Y ). Finally we let deg(X) = deg(X, V ′).

We call V1, . . . , Vℓ clusters. Denote by V the family of all the clusters and use capital
letters X, Y, A, B for elements of V. For X, Y ∈ V, if d(X, Y ) 6= 0, i.e., d(X, Y ) > d, then
we write X ∼ Y and call {X, Y } a non-trivial regular pair.

Definition 4.3. After applying the Regularity Lemma to G, we define the reduced graph
Gr as follows: the vertices are 1 ≤ i ≤ ℓ, which correspond to clusters Vi, 1 ≤ i ≤ ℓ, and
for 1 ≤ i < j ≤ ℓ there is an edge between i and j if Vi ∼ Vj.

For a cluster X = Vi ∈ V, we may abuse our notation by writing degGr
(X) or N(X)

instead of degGr
(i) or NGr

(i). The degree of X, deg(X) and degGr
(X) have the following

relationship

deg(X) =
1

|X|e(X, V ) =
∑

Y ∈V ,Y ∼X

d(X, Y )N ≤
∑

Y ∈V ,Y ∼X

N = degGr
(X) N. (4.1)

Definition 4.4. • Given an ε-regular pair (A, B), a vertex u ∈ A is called ε-typical
( typical if ε is clear from the context) to a set Y ⊆ B if deg(u, Y ) > (d(A, B)−ε)|Y |.

• Given a cluster A ∈ V and a family of clusters S ⊆ V, a vertex u ∈ A is called
typical to a family Y = {Y ⊆ B : B ∈ S} if u is typical to all but at most

√
ε|Y|

sets of Y.

• In earlier cases we say u is atypical to Y or Y otherwise.
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One immediate consequence of (A, B) being regular is that all but at most ε|A| vertices
u ∈ A are typical to any subset Y of B with |Y | > ε|B|. In the following proposition,
Part 1 says that for any A ∈ V and family Y = {Y ⊆ Vi : Vi ∈ V, |Y | > εN}, most
vertices in A are typical to Y . As a corollary of Part 1, Part 2 says that the degree of a
cluster is about the same as the degree of most vertices in the cluster.

Proposition 4.5. Suppose that V1, V2, . . . , Vℓ are obtained from Lemma 4.2 and n′ = |V ′|.
Let i0 ∈ [ℓ], I ⊆ [ℓ] \ {i0} and YI = ∪i∈IYi, where each Yi is a subset of Vi containing at
least εN vertices. For every u ∈ Vi0 we define

Iu = {i ∈ I : deg(u, Yi) ≤ (d(Vi0, Vi) − ε)|Yi|}.

Then the following statements hold:
1. All but at most

√
εN vertices u ∈ Vi0 satisfy |Iu| ≤

√
ε|I|.

2. All but at most
√

εN vertices u ∈ Vi0 satisfy

deg(u, YI) > deg(Vi0 , YI) − (2ε +
√

ε)N |I| ≥ deg(Vi0 , YI) − 2
√

εn′.

All but at most
√

εN vertices u ∈ Vi0 satisfy deg(u, YI) < deg(Vi0 , YI) + 2
√

εn′.

Proof. Part 1. Suppose instead, that |{u ∈ Vi0 : |Iu| >
√

ε|I|} >
√

εN . Then

∑

i∈I

|{u ∈ Vi0 : i ∈ Iu}| =
∑

u∈Vi0

|Iu| >
√

εN
√

ε|I| = εN |I|.

Therefore we can find i1 ∈ I such that |S| > εN for S = {u ∈ Vi0 : i1 ∈ Iu}. By the
definition of Iu, we have

d(S, Yi1) =
∑

u∈S

deg(u, Yi1)

|S||Yi1|
≤ d(Vi0 , Vi1) − ε,

which contradicts the regularity between Vi0 and Vi1.
Part 2. For every u ∈ Vi0 ,

deg(u, YI) ≥
∑

i6∈Iu

deg(u, Yi) >
∑

i6∈Iu

(d(Vi0, Vi) − ε)|Yi| >
∑

i6∈Iu

(d(Vi0 , Yi) − 2ε)|Yi|

=
∑

i∈I

d(Vi0, Yi)|Yi| −
∑

i∈Iu

d(Vi0 , Yi)|Yi| − 2ε
∑

i6∈Iu

|Yi|

≥ deg(Vi0 , YI) −
∑

i∈Iu

|Vi| − 2εN |I|.

According to Part I, all but
√

εN vertices of Vi0 further satisfy

deg(u, YI) > deg(Vi0 , YI) −
√

εN |I| − 2εN |I| > deg(Vi0, YI) − 2
√

εn′.

The second claim can be proved similarly.
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5 Lemmas on embedding (small) trees and forests

In this section we give a few technical lemmas that embed trees or forests into G′′, the
resulting subgraph of G after we apply the Regularity Lemma. Some of these lemmas
(or their variations) appeared in [2] with very brief proofs. The reason why we state and
(re)prove them is to make them applicable under new assumptions (the readers who are
familiar with [2] may want to skip this section first).

Throughout this section, we assume that 0 < ε ≪ γ ≪ d < 1. Let N be an integer
such that εN ≥ 1. Let V be a family of clusters of size N such that any two clusters of
V form a regular pair with density either 0 or greater than d.

One advantage of a regular pair is that regardless of its density, it behaves like a com-
plete bipartite graph when we embed many small trees in it. This follows from repeatedly
applying the following fundamental lemma, which gives an online embedding algorithm
(embedding vertices one by one, without having the entire input available from the start).
Let us first introduce a notation to represent the flexibility of such an embedding. Sup-
pose that an algorithm embeds the vertices of a graph H1 one by one into another graph
H2. For a vertex x ∈ V (H1), a real number p 6= 0 and a set A ⊆ V (H2), we write x

p→ A
to indicate the flexibility of the embedding. When p > 0, it means that (at the moment
when we consider x), our algorithm allows at least p vertices of A to be the image of x.
When p = −q < 0, it means that all but at most q vertices of A can be chosen as the
image of x. Note that no matter which of these vertices we finally select as the image
of x, we can always embed the remaining vertices of H1 (with corresponding flexibility).
Such a flexibility is needed in Lemma 6.3 when we connect several forests into a tree. For
a set S ⊆ V (H1), we write S

p→ A if S → A and x
p→ A for every x ∈ S.

Lemma 5.1. Let X, Y ∈ V be two clusters such that X ∼ Y , namely, (X, Y ) is regular
with d(X, Y ) ≥ d. Suppose that X0, X1 ⊂ X, Y1 ⊂ Y satisfy |X0| ≥ 3εN , |X1| ≥ γN ,
|Y1| ≥ γN . Then for any tree T of order εN with root r, there exists an online algorithm

embedding V (T ) into X0 ∪X1 ∪Y1 such that r
2εN→ X0, Teven \ {r} 2εN→ X1, and Todd

2εN→ Y1.

Proof. First we embed r to a typical vertex u ∈ X0 such that deg(u, Y1) ≥ (d(X, Y )−
ε)|Y1|. Since at most εN vertices of X are atypical to Y1 and |X0| ≥ 3εN , at least 2εN
vertices of X0 can be chosen as u.

We now embed Di := Leveli(T ), i ≥ 1 into X1 ∪ Y1. Suppose that D1, . . . , Di−1 have
been embedded to X1 and Y1 by a function φ with the following property. When j < i
is even, Dj is embedded to X1 such that deg(φ(x), Y1) > (d − ε)|Y1| for every x ∈ Dj ;
when j < i is odd, Dj is embedded to Y1 such that deg(φ(y), X1) > (d − ε)|X1| for every
y ∈ Dj . Below we assume that Di−1 is embedded into X1. Consider the vertices in Di

in any order. Let y ∈ Di and assume that x = p(y) ∈ Di−1. We want to embed y to an
unoccupied vertex u ∈ N(φ(x), Y1) which is typical to X1, i.e., deg(u, X1) > (d − ε)|X1|.
If this is possible, this process may continue for all levels. By the regularity between X
and Y , at most εN vertices in Y1 are atypical to X1 (note that |X1| ≥ γN > εN). On the
other hand, at most (

∑

j≤i |Di|)−1 vertices of Y1 may already be occupied. The following
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inequality thus guarantees that at least 2εN vertices can be chosen as u:

(d − ε)|Y1| − εN −
(

∑

j≤i

|Di|
)

+ 1 ≥ 2εN.

It suffices to have (d − ε)|Y1| ≥ v(T ) + 3εN . This holds because |Y1| ≥ γN , v(T ) ≤ εN
and ε ≪ γ ≪ d.5

The following variant of Lemma 5.1 is needed for the proof of Lemma 5.9.

Lemma 5.2. Let X, Y, Z be three clusters such that X ∼ Y and X ∼ Z. Suppose
X0, X1 ⊆ X, Y1 ⊆ Y , and Z1 ⊆ Z are subsets of sizes |X0| ≥ 5εN , |X1|, |Y1|, |Z1| ≥ γN .
Then any forest F of order at most εN can be embedded into X0 ∪X1 ∪ Y1 ∪Z1 such that

Rt(F )
2εN−→ X0, Feven \ Rt(F )

2εN−→ X1, and each y ∈ Fodd can be mapped to either Y1 or
Z1, each with flexibility 2εN .

Proof. We follow the proof of Lemma 5.1 and only elaborate on what is different
here. We embed each r ∈ Rt(F ) to an unoccupied vertex u ∈ X0 that is typical to Y1

and Z1. Since at most 2εN vertices of X are atypical to either Y1 or Z1, v(F ) ≤ εN ,
and |X0| ≥ 5εN , at least 2εN vertices of X0 can be chosen as u. Suppose D0, . . . , Di−1

have been embedded for some i ≥ 1 and we need to embed Di. When i is even, we map
every x ∈ Di to an unoccupied vertex in X1 that is typical to both Y1 and Z1. As long
as (d − ε)|X1| ≥ v(T ) + 4εN , at least 2εN vertices of X1 may be chosen as the image of
x. When i is odd, for each y ∈ Di, since its parent p(y) ∈ Di−1 has been mapped to a
vertex that is typical to Y1 and Z1, we can map y to either Y1 or Z1, up to our choice.
Since (d − ε)γN ≥ v(T ) + 3εN , at least 2εN vertices of Y1 and at least 2εN vertices of
Z1 can be chosen as the image of y.

Recall that T (x) denotes the maximal subtree in a rooted tree T containing a vertex
x but not its parent p(x).

Definition 5.3. Let m > 0 be a real number.

• A tree T with root r is called an m-tree if v(T (x)) ≤ m for every x 6= r.

• A forest F is called an m-forest if all the components of F are m-trees. An ordered
m-forest is an m-forest with an ordered Rt(F ), in other words, it is a sequence of
m-trees.

Let C, X, Y be three distinct clusters in V with X ∼ Y . Let F be an ordered εN -
forest. We write F → (C, {X, Y }) if there exists an online algorithm embedding the trees

of F in order such that Rt(F )
−3εN→ C and F − Rt(F )

2εN→ {X, Y }, which means that

v
2εN→ X or v

2εN→ Y for every v ∈ V (F ) \ Rt(F ).
Given an εN -forest F , our first lemma gives three sufficient conditions for F →

(C, {X, Y }). The flexibility of the embedding will allow us to connect F into a tree

5For example, assuming 8ε < γ2 < γ < d we have (d − ε)γ > d
2
γ > γ2

2
> 4ε.
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later. The most general case, Part 1, was proved in [2] and sufficed for their purpose.
Recall that ||F || is the number of edges in a forest F , which equals to the number of
vertices in F − Rt(F ). The ratio of a tree T is |Todd|/|T |.

Lemma 5.4. Let C, X, Y be three distinct clusters in V with X ∼ Y . Write dx =
d(C, X), dy = d(C, Y ). Let F be an ordered εN-forest with s ≤ εN components. Then
F → (C, {X, Y }) if either of the following cases holds. Furthermore, the first root in F
can be embedded into any vertex u ∈ C that is typical to both X and Y .

1. ||F || ≤ (dx + dy − 2γ − 2ε)N .

2. Every tree in F−Rt(F ) has ratio between c and 1−c (inclusively) for some 0 ≤ c ≤ 1
2

and ||F || ≤ (dx + dy − 2γ − 3ε)N + c
1−c

|dy − dx|N .

3. Every tree in F − Rt(F ) contains at least two vertices, and there exists 0 ≤ λ ≤ 1
2

such that λ ≤ {dx, dy} ≤ 1 − λ, and ||F || ≤ (dx + dy + λ − 2γ − 13ε)N .

Proof. We present proofs of Part 1 and Part 2 here, and leave the proof of Part 3 to
the appendix due to its complexity.

Without loss of generality, assume that dx ≤ dy. We also assume that dy > 0 otherwise
there is nothing to prove. We will embed trees in F in order. For the ith tree in F , we
map its root ri to an unoccupied vertex ui ∈ C that is typical to both6 X and Y . In other
words, deg(ui, X) > (dx − ε)N and deg(ui, Y ) > (dy − ε)N . By the regularity of (C, X)
and (C, Y ), all but at most 2εN + s ≤ 3εN can be chosen as ui.

Let F o = F − Rt(F ). Then v(F o) = v(F ) − |Rt(F )| = ||F ||. Following the order of
Rt(F ), we may regard F o as a sequence {T1, . . . , Tt} such that T1, . . . , Ti1 are under the
first root, Ti1+1, . . . , Ti2 are under the second root of F , etc. Since F is an εn-forest, each
Ti has at most εN vertices. We claim that it suffices to show that F o has a bipartition7

(A, B) satisfying the following properties.
(I). |A|, |B| ≤ (dy − γ)N .
There exists 0 ≤ i0 ≤ t such that
(II). |Ai|, |Bi| ≤ (dx − γ)N for i ≤ i0, where Ai = A ∩ (V (T1) ∪ · · · ∪ V (Ti)) and

Bi = B ∩ (V (T1) ∪ · · · ∪ V (Ti)).
(III). Rt(Ti) ∈ B for i > i0.
Note that (II) forces i0 = 0 whenever dx = 0. If such a bipartition (A, B) exists,

we can sequentially embed T1, . . . , Tt such that A is mapped to X and B is mapped to
Y as follows. Let i ≥ 1. Suppose that T1, . . . , Ti−1 have been embedded, and the root
r ∈ Rt(F ) that is adjacent to Rt(Ti) has been embedded to a typical vertex u ∈ C.
Let X∗, Y ∗ denote the set of unoccupied vertices in X, Y , respectively, and P the set of
available vertices in N(u, X) (in N(u, Y )) if Rt(Ti) ∈ A (Rt(Ti) ∈ B). In order to embed
Ti by Lemma 5.1, we need to verify that |X∗|, |Y ∗| ≥ γN and |P | ≥ 3εN . From (I),

6If dx = 0, then all vertices u ∈ C are typical to X because deg(u, X) ≥ 0 > −εN .
7This means that there is a partition V (F o) = A ∪ B such that A, B are independent.
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|A|, |B| ≤ (dy − γ)N ≤ (1 − γ)N , thus we immediately obtain that |X∗|, |Y ∗| ≥ γN .
When i ≤ i0 (then dx > 0), since u is typical to X and Y , by (II), we have

|P | ≥
{

deg(u, X) − |Ai| > (dx − ε)N − (dx − γ)N > 3εN if P ⊆ X;
deg(u, Y ) − |Bi| > (dy − ε)N − (dx − γ)N > 3εN if P ⊆ Y.

When i > i0, by (III), we have |P | ≥ deg(u, Y ) − |B| > (dy − ε)N − (dy − γ)N > 3εN .

Finally, the embedding provided by Lemma 5.1 guarantees that v
2εN→ X or v

2εN→ Y for
every v ∈ V (Ti).

We now show that a bipartition satisfying (I)-(III) always exists under the hypothesis
of Parts 1 and 2.

Part 1. Starting with A′
0 = B′

0 = ∅, we inductively obtain a bipartition (A′
i, B

′
i) of

T1∪· · ·∪Ti for i = 1, . . . , t such that ||A′
i|−|B′

i|| < εN and |A′
i| ≥ |B′

i|. Suppose that such
a bipartition exists for some i ≥ 0, and assume that |(Ti+1)even| ≥ |(Ti+1)odd| (the other
case is analogous). Let A′

i+1 be the larger of the two sets A′
i∪(Ti+1)odd and B′

i∪(Ti+1)even,
and let B′

i+1 be the smaller one. Then

0 ≤ |A′
i+1| − |B′

i+1| =
∣

∣

∣
|A′

i| − |B′
i| −

(

|(Ti+1)even| − |(Ti+1)odd|
)

∣

∣

∣
.

Since both |A′
i| − |B′

i| and |(Ti+1)even| − |(Ti+1)odd| are non-negative and less than εN , we
have ||A′

i+1| − |B′
i+1|| < εN .

Let i0 be the largest index such that |A′
i| ≤ (dx − γ)N . We let

A := A′
i0
∪
⋃

i>i0

(Ti)odd and B := B′
i0
∪
⋃

i>i0

(Ti)even.

Clearly (III) holds. Since |B′
i0
| ≤ |A′

i0
| ≤ (dx − γ)N and {Ai, Bi} = {A′

i, B
′
i} for i ≤ i0,

(II) also holds. It remains to verify (I): |A|, |B| ≤ (dy − γ)N . If i0 = t, then |B| ≤ |A| <
(dx − γ)N ≤ (dy − γ)N , as desired. Otherwise assume i0 < t. We first show that

|A′
i0 | > (dx − γ − ε)N, and |B′

i0| > (dx − γ − 2ε)N. (5.1)

For instead, that |A′
i0 | ≤ (dx − γ − ε)N (then |B′

i0 | ≤ (dx − γ − ε)N as well). The
definition of A′

i0+1 implies that |A′
i0+1| ≤ (dx − γ − ε)N + εN ≤ (dx − γ)N , contradicting

the maximality of i0. Assuming |A′
i0
| > (dx − γ − ε)N , we obtain |B′

i0
| ≥ (dx − γ − 2ε)N

from |A′
i0 | − |B′

i0 | < εN .
By (5.1), we have |A| ≥ |A′

i0
| ≥ (dx − γ − ε)N . By assumption, we have |A| + |B| =

v(F o) = ||F || ≤ (dx + dy − 2γ − 2ε)N . Consequently |B| ≤ (dy − γ − ε)N . On the other
hand, using |B′

i0 | ≥ (dx − γ − 2ε)N , we obtain that |A| ≤ (dy − γ)N .
Part 2. Let us first rewrite the assumption on ||F || as

||F || ≤ (2dx − 2γ − 3ε)N +
1

1 − c
(dy − dx)N. (5.2)

We follow the same bipartition of F as in Part 1. Again it suffices to show that |A|, |B| ≤
(dy − γ)N . First consider the i0 = t case. We have 0 ≤ |A| − |B| < εN in this case. Since
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|A| + |B| = v(F o) = ||F ||, it follows that |A| ≤ (||F || + εN)/2. Using (5.2) and c ≤ 1/2,
we derive that

||F || ≤ (2dx − 2γ − 3ε)N + 2(dy − dx)N = (2dy − 2γ − 3ε)N,

which implies that |A| ≤ (dy − γ − ε)N .
When i0 < t, (5.1) holds. Let A′ = A − A′

i0 and B′ = B − B′
i0 . By (5.1) and (5.2),

we have |A′| + |B′| ≤ 1
1−c

(dy − dx)N . Since (A′, B′) is a bipartition of a forest of trees of
ratio between c and 1 − c, it follows that

max{|A′|, |B′|} ≤ (1 − c)(|A′| + |B′|) ≤ (dy − dx)N.

Together with |B′
i0 | ≤ |A′

i0 | ≤ (dx − γ)N , we have max{|A|, |B|} ≤ (dx − γ + dy − dx)N =
(dy − γ)N , as desired.

Definition 5.5. 1. A cluster-matching is a family M of disjoint regular pairs in V.
The set of the clusters covered by M is denoted by V (M) (hence the size |M| of
M is the half of |V (M)|).

2. For a cluster A ∈ V, we define deg(A,M) =
∑

X∈V (M) deg(A, X) to be the (average)
degree of A to M.

3. For e = {X, Y } ∈ M, a cluster A and a vertex u, we simply write deg(A, e) as
deg(A, X) + deg(A, Y ), d(A, e) as d(A, X) + d(A, Y ), and deg(u, e) as deg(u, X) +
deg(u, Y ).

Let M be a cluster-matching, A be a cluster not in V (M), F be an ordered εN -

forest. We write F
p→ (A,M) if there is an online algorithm embedding the trees in F

to A ∪⋃C∈V (M) C in order such that Rt(F )
p→ A and F − Rt(F )

2εN−→ M, which means

that for each tree T in F − Rt(F ) there exists {X, Y } ∈ M such that for each vertex

v ∈ V (T ), either v
2εN→ X, or v

2εN→ Y . We simply write F → (A,M) if p = −2
√

εN .

Definition 5.6. 1. A subtree of a tree T is called a root-subtree if it is obtained from
T by removing {T (x) : x ∈ C} for some subset C ⊆ Level1(T ). We call the root-
subtree with only one vertex (the root) trivial.

2. A root-subforest F ′ of a forest F consists of root-subtrees of some trees in F . For-
mally, if F = {T1, . . . , Ts}, then F ′ = {T ′

i : i ∈ I}, where T ′
i is a root-subtree of Ti

and I is a subset of [s].

3. In a forest F , two root-subforests F ′ and F ′′ form a root-partition of F if E(F ′) ∪
E(F ′′) is a partition of E(F ) (this implies that V (F ′) ∩ V (F ′′) ⊆ Rt(F )).

The following proposition says that if an εN -forest F has a root-partition F1 ∪ F2

such that F1 and F2 can be embedded into A and two disjoint matchings8 M1 and M2

respectively, then F can be embedded into (A,M1∪M2) under a slightly weaker flexibility.

8Two matchings are disjoint if they have no vertex in common.
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Proposition 5.7. Let F be an ordered εN-forest with c(F ) ≤ εN . Let M0, M1 be
two disjoint cluster-matchings and A be a cluster not in V (M0 ∪ M1). If there is a

root-partition F0 ∪ F1 of F such that F0 → (A,M0), F1 → (A,M1), then F
−4

√
εN−→

(A,M0 ∪M1).

Proof. For j = 0, 1, let φj be the function which embeds Rt(Fj)
−2

√
εN−→ A and

Fj − Rt(Fj)
2εN−→ Mj. We sequentially embed the trees in F by following φ0 and φ1.

Consider the ith tree T in F . Let T0, T1 be the restriction of F0, F1 on V (T ), respectively.
If say, T0 is the empty graph, then we embed T by φ1 but need to avoid the images of

Rt(F0) when embedding Rt(T ). Since |Rt(F0)| ≤ εN and Rt(F1)
−2

√
εN−→ A, all but at

most εN + 2
√

εN < 4
√

εN vertices of A can be chosen as the image of Rt(T ). Otherwise

both T0 and T1 contain Rt(T ). Since Rt(F0)
−2

√
εN−→ A and Rt(F1)

−2
√

εN−→ A, all but at
most 4

√
εN vertices of A can be chosen as the image of Rt(T ). Since M0 and M1 are

disjoint, the rest of T can be embedded by simply following φ0 or φ1.

The following lemma is the most important one in this section; in particular, Part 1 will
be frequently used in Section 6. Its three parts follow from the three parts in Lemma 5.4.

Lemma 5.8. Suppose that M is a cluster-matching of size m and A is a cluster not in
V (M). Let F be an ordered εN-forest with at most εN components. Then F → (A,M)
if any of the following holds:

1. ||F || ≤ deg(A,M) − 3γn.

2. There exist constants 0 ≤ c ≤ 1/2 and λ ≥ 0 such that |d(A, X) − d(A, Y )| ≥ λ
for all (X, Y ) ∈ M, all trees in F have ratio between c and 1 − c (inclusively), and
||F || ≤ deg(A,M) + c

1−c
λNm − 3γn.

3. There exists 0 ≤ λ ≤ 1
2

such that λ ≤ d(A, X) ≤ 1 − λ for all X ∈ V (M), every

tree in F has at least two vertices, and ||F || ≤ deg(A,M) + λNm − 3γn.

Proof. Following the corresponding part of Lemma 5.4, we define the capacity of an
edge e = {X, Y } ∈ M hosting εN -forests (with respect to A)

w(e) :=







deg(A, e) − 2(γ + ε)N for Part 1

deg(A, e) + c
1−c

λN − (2γ + 3ε)N for Part 2

deg(A, e) + (λ − 2γ − 13ε)N for Part 3.

(5.3)

It is easy to see that w(e) < 2N in all cases. For example, for Part 2, since 0 ≤ c ≤ 1/2,
we have c

1−c
≤ 1. Together with |d(A, X) − d(A, Y )| ≥ λ, this implies that

w(e) ≤ deg(A, e) + λN − (2γ + 3ε)N ≤ 2 max{d(A, X), d(A, Y )}N − (2γ + 3ε)N < 2N.

Since ε <
√

ε ≪ γ and mN ≤ n, for the three parts of the lemma, it suffices to prove
that F → (A,M) under the uniform assumption

||F || ≤
(

∑

e∈M
w(e)

)

− (4
√

ε + ε)Nm. (5.4)
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Suppose that F = {T1, . . . , Ts} with ri = Rt(Ti). Define Fi = {T1, . . . , Ti} for 1 ≤ i ≤ s
and F0 = ∅. Our goal is to prove the following claim.

Claim: For every 0 ≤ i ≤ s, there exists a sub-forest F ′
i of Fi such that the following

holds.
(i) If F ′

i 6= ∅, then there exists i0 ≤ i such that F ′
i = {T ′

i0
, Ti0+1, . . . , Ti}, where T ′

i0
is

a non-trivial root-subtree of Ti0.
(ii) If F ′

i 6= ∅, then there exists ei = {Xi, Yi} ∈ M such that 0 < ||F ′
i || ≤ w(ei) − εN ;

otherwise ei = ∅.
(iii) Fi − F ′

i → (A,M \ {ei}).9 Furthermore, for every e ∈ M, denote by Fi(e) the
portion of Fi embedded in e. Let Mi be the set of e ∈ M \ {ei} such that |Fi(e)| > 0.
Then for every e ∈ Mi,

w(e) − εN < |Fi(e)| ≤ w(e). (5.5)

Finally, if F ′
i 6= ∅ and T ′

i0 6= Ti0 (thus ri0 ∈ V (Fi − F ′
i )), then ri0 is mapped to a vertex

ai0 ∈ A that is typical to Xi and Yi.
If the claim holds for i = s, then we can derive F → (A,M) as follows. If F ′

s = ∅, then
the embedding follows from (iii) immediately. When F ′

s 6= ∅, by (i), there exists s0 ≤ s
such that F ′

s = {T ′
s0

, . . . , Ts}. By (ii), there exists es = {Xs, Ys} ∈ M such that ||F ′
s|| ≤

w(es). Since F ′
s is an εN -forest with at most εN components, we can apply Lemma 5.4

to embed F ′
s → (A, es), i.e., Rt(F ′

s)
−3εN−→ A and F ′

s − Rt(F ′
s)

2εN−→ {Xs, Ys}. Furthermore,
if rs0

has been mapped to a vertex as0
∈ A that is typical to Xs and Ys by (iii), then

Lemma 5.4 allows us to map rs0
to as0

. Together with Fs − F ′
s → (A,M \ {es}) from

(iii), this gives the desired embedding F → (A,M). Note that for each root r ∈ Rt(F ′
s),

we have r
−4εN−→ A because at most εN vertices may have been embedded into A before r.

As 2
√

εN > 4εN , this proves Lemma 5.8.
We now prove the claim by induction on i. Since F0 = ∅, the claim trivially holds for

i = 0. Suppose that it holds for some 0 ≤ i < s. We consider the following cases.
Case 1. ||Ti+1|| + ||F ′

i || ≤ w(ei) − εN .
In this case we do not need to embed anything. Simply let F ′

i+1 = F ′
i ∪ Ti+1 and

ei+1 = ei. Then the claim holds for i + 1.
Case 2. ||Ti+1|| + ||F ′

i || > w(ei) − εN .
Let M′

i+1 = Mi ∪ {ei}, M′ = M\M′
i+1, and m′ = |M′|. Since Ti+1 is an εN -tree,

we can partition it into two εN -root-subtrees T ′
i+1 and T ′′

i+1 such that

w(ei) − εN < ||T ′
i+1|| + ||F ′

i || ≤ w(ei). (5.6)

Then F ′
i ∪ T ′

i+1 is an εN -forest with at most εN components and with at most w(ei)
edges. Applying Lemma 5.4, we can embed F ′

i ∪ T ′
i+1 → (A, ei) such that ri0 → ai0 if

ri0 was mapped to ai0 when we embedded Fi − F ′
i . By Lemma 5.4, all but at most 3εN

vertices of A can be the image of ri+1. We, in particular, map ri+1 to an unoccupied
vertex ai+1 ∈ A that is typical to the cluster-set V (M′), that is, typical to at least
(1−√

ε)|V (M′)| clusters in V (M′). By Proposition 4.5, all but at most
√

εN vertices in

9Recall that if G2 is a subgraph of G1, we let G1 − G2 be the subgraph of G1 obtained by removing
all edges of G2 and all vertices that are only incident to edges of G2.
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A are typical to V (M′). Since i ≤ s − 1 roots of F have been mapped to A, all but at
most (s− 1) + 3εN +

√
εN < 2

√
εN can be chosen as ai+1. Let M∗ ⊆ M′ denote the set

of all e ∈ M′ such that ai+1 is typical to both ends of e. Then

|M′ \M∗| ≤ √
ε|V (M′)| = 2

√
εm′. (5.7)

By (5.5) and (5.6), we have ||Fi|| + ||T ′
i+1|| ≥

∑

e∈M′

i+1

(w(e) − εN). It follows that

||T ′′
i+1|| ≤ ||F || − (||Fi|| + ||T ′

i+1||)

≤
(

∑

e∈M
w(e)

)

− (4
√

ε + ε)Nm −
∑

e∈M′

i+1

(w(e) − εN) by (5.4)

≤
(

∑

e∈M′

w(e)

)

− (4
√

ε + ε)Nm′,

≤
(

∑

e∈M′

(w(e) − εN)

)

− 2N |M′ \M∗| by (5.7)

≤
∑

e∈M∗

(w(e) − εN)

We may therefore partition T ′′
i+1 into root-subtrees {Ti+1(e) : e ∈ M∗} such that

w(e) − εN < ||Ti+1(e)|| ≤ w(e) (5.8)

for all but at most one nonempty Ti+1(e). Denote by ei+1 this exceptional edge of M∗

if it exists. We have 0 < |Ti+1(ei+1)| ≤ w(ei+1) − εN . Let M′′
i+1 be the set of e ∈ M∗

satisfying (5.8). For each e = {X, Y } ∈ M′′
i+1, since ai+1 is typical to X and Y , we can

apply Lemma 5.4 embedding Ti+1(e) → (A, (X, Y )) such that ri+1 → ai+1. Now it is easy
to see that the claim holds for i + 1. In fact, (i) and (ii) hold by letting F ′

i+1 = Ti+1(ei+1)
if ei+1 exists, otherwise F ′

i+1 = ∅. Let Mi+1 = M′
i+1 ∪M′′

i+1. Then (5.5) holds for every
e ∈ Mi+1 because of the definition of T ′

i+1 and Ti+1(e). By the definition of M∗, the
image of ri+1 is typical to both ends of ei+1. Thus (iii) holds.

We need the next Lemma for Section 6.5.3. Its proof is similar to those of Lemma 5.4
and Lemma 5.8. The difference is that a forest F is embedded into three layers (A, C and
M) in Lemma 5.9 Part 2, instead of two layers as in Lemma 5.8.

Let F by an ordered εN -forest, A be a cluster, C be a family of clusters not containing
A, and M be a cluster-matching such that V (M)∩({A}∪C) = ∅. We write F → (A, C,M)
if there is an online algorithm embedding V (F ) to A ∪ ⋃X∈C∪V (M) X such that for any

set S ⊆ Fodd of size |S| ≤ εN ,

Rt(F )
−2

√
εN−→ A, Level1(F ) ∪ S

2εN−→ C′, Level≥2(F ) − S
2εN−→ M, (5.9)

where C′ = {C ∈ C : A ∼ C}. The purpose of introducing S can be seen from the proof
of Lemma 6.3, in which we need to embed at most εN vertices from Level≥3(F ) to C′.
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Lemma 5.9. 1. Let C be a cluster with a subset P ⊆ C. Suppose that M is a cluster-
matching not containing C such that d(C, e) > 0 for all e ∈ M. Let O ⊆ ⋃X∈V (M) X

be a vertex set. Suppose that F = {T1, T2, . . . , Tt} and each Ti is a trees of order εN .
Let S be a subset of Feven of size |S| ≤ εN . If t ≤ |P | − (ε + γ)N and |O|+ ||F || ≤
(1 − γ)|M|N , then F can embedded into (P,M) such that Rt(F ) ∪ S

2εN−→ P and

F − Rt(F ) − S
2εN−→ ⋃

X∈V (M) X \ O.

2. Let A be a cluster, C be a family of clusters that are adjacent to A, and M be a
cluster-matching such that V (M) ∩ ({A} ∪ C) = ∅. Let m = minC∈C |{e ∈ M :
d(C, e) > 0}|. If F = {T1, T2, . . . , Tt} is an ordered εN-forest such that

t ≤ εN, |Level1(F )| ≤ deg(A, C) − 2γ|C|N, and |Level≥2(F )| ≤ (1 − γ)mN,

then F → (A, C,M).

Proof. For both parts, we will embed T1, . . . , Tt inductively. Suppose i ≥ 1 and
T1, . . . , Ti−1 has been embedded via a function φ = φ(i).

Part 1. For each pair {X, Y } ∈ M, let X∗ and Y ∗ denote the sets of unoccupied
vertices in X \ O and Y \ O, respectively. If either |X∗| < γN or |Y ∗| < γN , then
|(X ∪ Y ) ∩ (φ(F ) ∪ O)| > (1 − γ)N . If this is the case for all {X, Y } ∈ M, then
||F || + |O| > (1 − γ)|M|N (because only vertices in F − Rt(F ) are embedded to M),
a contradiction. Hence there exists {X, Y } ∈ M such that both |X∗|, |Y ∗| ≥ γN . By
assumption, d(C, {X, Y }) > 0. Without loss of generality, suppose that d(C, X) > 0.
Let us first embed Rt(Ti) into an unoccupied vertex ui ∈ P typical to X∗, namely,
|N(ui, X

∗)| > (d(C, X) − ε)|X∗| > 4εN . Since only vertices from Rt(F ) ∪ S have been
embedded to P and |S| ≤ εN , by the assumption on |P |, at least |P |−t−|S|−εN > 2εN
vertices of P can be chosen as ui. Let P ∗ be the set of unoccupied vertices in P after
selecting ui. We know that |P ∗| ≥ |P | − t − |S| ≥ γN . We now apply Lemma 5.2 with
X0 = N(ui, X

∗), X1 = X∗, Y1 = Y ∗, and Z1 = P ∗ to embed the forest Ti − Rt(Ti) into

P ∗ ∪ X∗ ∪ Y ∗ such that S
2εN→ P ∗ and Ti − Rt(Ti) − S

2εN→ {X∗, Y ∗}.
Part 2. Without loss of generality, assume that every C ∈ C is adjacent to A (otherwise

remove such C from C and deg(A, C) does not change). Let S ⊆ Fodd be a set of at most
εN vertices that we will embed to C.

We first embed Rt(Ti) into an unoccupied vertex ai ∈ A that is typical to C, namely,
there exists a subfamily Ci ⊆ C of size at least (1−√

ε)|C| such that deg(ai, C) > (d(A, C)−
ε)N for every C ∈ Ci. By Proposition 4.5, all but

√
εN + (i − 1) < 2

√
εN vertices of A

can be chosen as ai. For each cluster C ∈ Ci let PC denote the set of unoccupied vertices
in N(ai, C). Define Fj = Tj − Rt(Tj) for all j ≤ i. Since {Rt(Fj) ∪ (S ∩ V (Fj)), j < i}
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has been embedded to C, we have
∑

C∈Ci

|PC | ≥
∑

C∈Ci

|N(ai, C)| −
∑

j<i

|Rt(Fj)| − |S|

≥ deg(A, C) − ε|Ci|N −√
ε|C|N −

∑

j<i

|Rt(Fj)| − εN

≥ deg(A, C) − 2
√

ε|C|N −
∑

j<i

|Rt(Fj)|.

Together with the assumption

|Rt(Fi)| +
∑

j<i

|Rt(Fj)| ≤ |Level1(F )| ≤ deg(A, C) − 2γ|C|N,

this implies that |Rt(Fi)| ≤
∑

C∈Ci
(|PC | − (ε + γ)N). We then partition Fi into forests

⋃

C∈Ci
FC such that |Rt(FC)| ≤ |PC | − (ε + γ)N for all C ∈ Ci.

We will apply Part 1 to embed each FC to PC ∪ ⋃X∈V (M) X. Consider a cluster

C ∈ Ci. Let MC denote the set of those e ∈ M such that d(C, e) > 0. By assumption,
|MC| ≥ m. Let O denote the set of the vertices in

⋃

X∈V (M) X occupied by T1, . . . , Ti−1

and the trees in Fi embedded before FC . In order to embed FC by Part 1, it suffices to have
||FC ||+ |O| ≤ (1− γ)|MC |N . Since only the vertices in Level≥2(F ) are embedded to the
clusters in V (M), this is guaranteed by the assumption |Level≥2(F )| ≤ (1 − γ)mN .

6 The non-extremal case

The purpose of this section is to prove Theorem 3.3. We use the following parameters:

0 < ε ≪ γ ≪ d ≪ η ≪ ρ ≪ α ≪ 1, (6.1)

where a ≪ b can be specified as, for example, 105a ≤ b12.
We assume that n is sufficiently large, in particular,

n ≥
(

M(ε)

ε

)2

, (6.2)

where M(ε) is given by the Regularity Lemma.
Let G = (V, E) be a 2n-vertex graph with ℓ(G) ≥ (1 − ε)n, i.e., at least (1 − ε)n

vertices of degree at least n. We assume that G is not in EC1 or EC2 with parameter α.
We apply the Regularity Lemma (Lemma 4.2) to G, and obtain the subgraph G′′ and

the reduced graph Gr. Then G′′ contains ℓ clusters V1, . . . , Vℓ, each of which is of size N .
We first observe that both εN and

√
dℓ are large. By Lemma 4.2, we have ℓ ≤ M(ε) and

|V0| ≤ ε(2n). Thus ℓN ≥ (1 − ε)2n, which gives N ≥ (1 − ε)2n/M(ε). By (6.2), we have

εN ≥ 2(1 − ε)

(

M(ε)

ε

)2
ε

M(ε)
≥ M(ε)

ε
. (6.3)
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On the other hand, since N ≤ ε(2n), we have 2n ≤ (ℓ + 1)ε(2n) or ℓ ≥ 1
ε
− 1. Since

ε ≪ d ≪ 1, both εN and
√

dℓ are large.
Now let k = ⌊ℓ/2⌋. We have

k ≥ ℓ − 1

2
≥ 1

2ε
− 1. (6.4)

If ℓ is odd, then we eliminate one cluster by moving all the vertices in this cluster to
V0. As a result, V ′ = V (G′′) contains 2k clusters and |V0| ≤ 2ε|V | = 4εn. Hence
|V ′| = 2Nk ≥ 2n − 4εn, which implies that

n − 2εn ≤ Nk ≤ n (6.5)

Throughout Section 6, we assume omit floors and ceilings unless they are crucial. For
example, we assume that error terms, such as εN,

√
dN , are integers. In fact, if εN is not

an integer, then we can replace ε by ε′ such that ε − 1
N

< ε′ ≤ ε and ε′N is an integer.
As 1

N
is very small, the new parameter ε′ still satisfies (6.1).

The rest of the proof is divided into five subsections. In Section 6.1 we prove G′′ and
Gr have similar properties to G. In Section 6.2 we partition a tree T into a forest F such
that F −Rt(F ) consists of small trees. In Section 6.3 we give several sufficient conditions
for embedding F and correspondingly T into G′′. In Section 6.4 we prove a Tutte-type
one-factor theorem, which provides a large matching in Gr. Since EC1 does not hold in
G, this immediately provides an embedding of trees of size near n into G′′. In Section 6.5
we carefully check case by case when we can embed a tree of size n and conclude that
EC2 is the only exception.

6.1 Preparation of G

The goal of this subsection is to prove Claim 6.1, which gives the properties of G′′ and
Gr. Before stating the Lemma, we need the following preliminaries. Let L be the set
of vertices in G of degree at least n. We call these large vertices, and call vertices in
V \ L small vertices. Since deleting edges between small vertices does not change our
assumption, we assume that there is no edge between any two small vertices.

We call a cluster large if it contains 2
√

dN large vertices (though the reason we set
the threshold as 2

√
dN can only be seen in the proof of Claim 6.17). The set of large

clusters is denoted by L. We delete all the edges of G between two small clusters and thus
assume every (non-trivial) regular-pair (of clusters) contains at least one large cluster.

Claim 6.1. 1. For every X ∈ L, we have deg(X) > n− 4dn and degGr
(X) ≥ (1− 4d)k.

Furthermore, all but at most
√

εN vertices in X have degree in G′′ greater than n− 5dn.
2. |L| ≥ (1 − 4

√
d)k.

3. L is not independent.

Proof. Part 1. Applying Proposition 4.5 Part 2 to X and YI = V ′ \X, we know that
all but at most

√
εN vertices u ∈ X satisfy

deg(u, V ′ \ X) < deg(X, V ′ \ X) + 2
√

ε|V ′|.
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Note that the underlying graph is G′′. Since degG′′(u) = deg(u, V ′ \ X) and deg(X) =
deg(X, V ′ \ X), it follows that

degG′′(u) < deg(X) + 4
√

εn. (6.6)

Since |X ∩L| ≥ 2
√

dN >
√

εN , we let u be a vertex of X ∩L. The definitions of G′′ and
L imply that

degG′′(u) ≥ degG(u) − (d + ε)2n − |V0| ≥ n − (d + 3ε)2n > n − 3dn, (6.7)

where the last inequality holds because ε ≪ d from (6.1). By putting (6.6) and (6.7)
together, we conclude that deg(X) > (1 − 3d)n − 4

√
εn > n − 4dn. Because of (4.1) and

(6.5), we also have degGr
(X) ≥ (1−4d)n/N ≥ (1−4d)k. Furthermore, by Proposition 4.5

Part 2, all but at most
√

εN vertices in X have degree in G′′ at least deg(X) − 4
√

εn >
n − 5dn.

Part 2. From |L| ≥ (1 − ε)n and the definition of L, we have

n − 5εn ≤ |L| − |V0| = |L ∩ V ′| ≤ |L|N + 2
√

dN (2k − |L|) ,

or (N − 2
√

dN)|L| ≥ n− 5εn− 4
√

dNk, which implies that |L| ≥ (1− 4
√

d)k because of
(6.1) and (6.5).

Part 3. Suppose instead, that L is an independent set in Gr. Let U1 be the set of
the vertices of G contained in all the large clusters, and U2 := V \ U1. For all v ∈ U1,
we have degG′′(v, U1) = 0, which implies that degG′′(v, U2) = degG′′(v). By Part 1, at
least (1 − √

ε)N vertices v in a large cluster satisfy degG′′(v) > n − 5dn. By using
|L| ≥ (1 − 4

√
d)k from Part 2, we have

eG′′(U1, U2) > (n − 5dn)(1 −√
ε)N |L|

≥ (n − 5dn)(1 −√
ε)N(1 − 4

√
d)k > (1 − 10

√
d)n2.

Since |U1| = |L|N ≥ (1 − 4
√

d)kN > (1 − 5
√

d)n, we can move at most 5
√

dn vertices
from U2 to U1 such that |U1| = n. The resulting sets U1, U2 satisfy

eG(U1, U2) ≥ eG′′(U1, U2) > (1 − 10
√

d)n2 − 5
√

dn2 > (1 − α)n2

since d ≪ α. This contradicts our assumption that G is not in EC1 with parameter
α.

6.2 Partition a tree into a forest

In this subsection we associate every tree with an ordered εN -forest. Recall that F is an
ordered m-forest if Rt(F ) is ordered, and any tree in F − Rt(F ) has at most m vertices.

Definition 6.2. Fix a positive integer m and a rooted tree T . An ordered m-forest F =
{T1, T2, . . . , Ts} is called an m-forest of T if it satisfies the following properties.
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• F contains s − 1 (not necessarily distinct) special vertices p2, . . . , ps (we call them
parent-vertices). Suppose ri = Rt(Ti) for 1 ≤ i ≤ s. Then F is obtained from T by
removing the s − 1 edges r2p2, . . . , rsps.

• Let Ra = Rt(F ) ∩ Teven and Rb = Rt(F ) ∩ Todd. Then |Ra|, |Rb| ≤ v(T )+m
m+1

.

• For each j ≥ 2, pj is contained in Ti for some i < j. Furthermore, if ri ∈ Ra (resp.
Rb), then either pj = ri or rj ∈ Ra (resp. Rb).

Following the definitions of Ra and Rb, we partition F into two ordered m-forests Fa and
Fb, e.g., Fa = {Ti ∈ F : Rt(Ti) ∈ Ra}.

T1
p2

r3

T3

T4

T5

r4

r5

p4=p5

r2=p3 T2

Figure 1: An m-forest of T (ovals = trees in Fa, rectangles = trees in Fb)

Note that Fa, Fb are interchangeable because Teven and Todd are interchangeable (by
pick Rt(T ) differently).

Given a tree T , we now describe an algorithm which returns an ordered m-forest of
T . In a tree t, a vertex x is called an m-vertex of t if |t(x)| > m and |t(y)| ≤ m for
every y ∈ C(x). Let us start with F = ∅ and add subtrees of T to F as follows. We first
remove subtrees T (x) for each m-vertex x (note that these subtrees are disjoint in T ),
and then add them in an arbitrary order to F . Naturally each m-vertex x is the root of
T (x). Let T ′ denote the remaining part of T . We next remove subtrees T ′(x) for each
m-vertex x of T ′, and add them (in an arbitrary order) to F . We repeat this procedure
till at most m vertices remain.10 We add the subtree on these remaining vertices to F
with Rt(T ) as its root. Label the trees in F by T1, . . . , Tt in the reversing order that they
were added to F , e.g., the tree added at last is T1. Except for T1, every tree in F has
at least m + 1 vertices, consequently t ≤ v(T )−1

m+1
+ 1 = v(T )+m

m+1
. The roots of F form an

ordered set R0 = {v1, . . . , vt} with vi = Rt(Ti).
In order to obtain item 3 in Definition 6.2, we refine F as follows. We call a vertex

in F even (or odd) if the distance from it to Rt(T ) in T is even (or odd), for example,

10It is easy to see that any tree with more than m vertices must contain an m-vertex.
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v1 = Rt(T ) is even. We call two roots vi, vj ∈ R0, i < j, linked if the parent uj of vj is a
vertex of Ti. we now cut the subtree Ti(uj) from Ti whenever two linked roots vi, vj have
different parity and uj 6= vi. The new tree is inserted right before Tj in F ; the new root
uj has the same parity as vi. Let R = {r1, . . . , rs} be the set of roots in the resulting
F , with subsets Ra and Rb of the even roots and the odd roots, respectively. We have
|Ra|, |Rb| ≤ |R0| because, for example, each vertex of Ra is either an even vertex from R0

or the parent of some odd vertex in R0.

Let T be a rooted tree with n edges. Let ε be as in (6.1) and N be the size of
clusters. Suppose that F is an ordered εN -forest of T . By item 2 in Definition 6.2 and
v(T ) + εN < 2n − 4εn, we have

|Ra|, |Rb| ≤
v(T ) + εN

εN + 1
≤ 2n − 4εn

εN

(6.5)

≤ 2Nk

εN
≤ M(ε)

ε

(6.3)

≤ εN. (6.8)

6.3 Sufficient conditions for embedding large trees

In this subsection we prove several lemmas which give sufficient conditions for embedding
large trees into G′′ (and thus in G). Our first lemma gives two sufficient conditions for
T ⊆ G based on the embedding of Fa and Fb.

Lemma 6.3. Let T be a tree of order n and F = Fa ∪ Fb be an ordered εN-forest of T .
Let A, B be two adjacent clusters of size N in G with subsets A0 ⊆ A and B0 ⊆ B such
that |A0|, |B0| ≥

√
dN . Then T can be embedded into G with Rt(F ) → A0 ∪ B0 if any of

the following holds.

1. There are two disjoint cluster-matchings Ma and Mb from V \ {A, B} such that

Fa
−4

√
εN−→ (A,Ma) and Fb

−4
√

εN−→ (B,Mb).

2. There are two sub-forests F0 and F1 of Fa such that E(F0)∪E(F1) is a partition of
E(Fa) and V (F0) ∩ V (F1) ⊆ Rt(Fa). There are a cluster-set C ⊂ V \ {A, B} and
three disjoint cluster-matchings M0, M1 and Mb from V \ ({A, B} ∪ C) such that
F0 → (A, C,M0), F1 → (A,M1), and Fb → (B,Mb).

Proof. Suppose that F = {T1, . . . , Ts} with roots r1, . . . , rs and parent-vertices
p2, . . . , ps. Let φ be the given embedding function of Fa and Fb (into Ma, Mb or M0).
The key point in our proof is to select φ(pi), φ(ri) carefully such that φ(pi) and φ(ri) are
adjacent for all i ≥ 2. More precisely, we will sequentially embed T1, T2, . . . such that

each pi is mapped to a vertex typical to A0 (resp. B0) if Ti ∈ Fa (resp. Ti ∈ Fb). (6.9)

Given i ≥ 1, suppose that T1, . . . , Ti−1 have been embedded and (6.9) holds for all
parent-vertices in V (T1 ∪ · · · ∪ Ti−1). It suffices to show that Ti can be embedded such
that (6.9) holds for all parent-vertices contained in Ti.

Part 1. Without loss of generality, assume that Ti ∈ Fa. Since pi ∈ V (T1 ∪ · · · ∪Ti−1),

by (6.9), pi has been mapped to a vertex wi typical to A0. As Fa
−4

√
εN−→ (A,Ma), all but
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at most 4
√

εN vertices of A can be chosen as φ(ri). Since at most εN vertices of A are
atypical to B0 and |N(wi, A0)| ≥ (d − ε)

√
dN > 4

√
εN + εN , we can choose φ(ri) from

N(wi, A0) such that it is typical to B0.
Let pj , j > i, be a parent-vertex in Ti. If Tj ∈ Fb, then by Definition 6.2 item 3, we

have pj = ri. Then (6.9) holds by our choice of φ(ri). Otherwise Tj ∈ Fa. Then the
distance between ri and pj is odd (at least 1). Assume that φ embeds the subtree of Ti

containing pj into {X, Y }, and say, φ(pj) ∈ X. Then X ∼ A since the ancestor of pj in

Level1(Ti) is also embedded into X. Since pj
2εN−→ X and at most εN vertices from X are

atypical to A0, we can choose φ(pj) to be a vertex typical to A0. Therefore (6.9) holds.
Part 2. Let S be the set of all parent-vertices pi ∈ V (F0) such that ri ∈ V (Fa). Then

|S| ≤ c(Fa) ≤ εN . By the definition of F0 → (A, C,M0), φ maps S to {C ∈ C : C ∼ A}.
Suppose we want to embed Ti ∈ F0 (the cases when Ti ∈ Fb and when Ti ∈ F1 are

similar to Part 1). The embedding of ri is the same as in Part 1. Consider a parent-vertex
pj ∈ V (Ti) such that Tj ∈ Fa (otherwise pj = ri and (6.9) automatically holds). Thus

pj ∈ S. By (5.9), φ maps pj
2εN−→ C for some cluster C ∈ C such that C ∼ A. We can

therefore choose φ(pj) to be a vertex typical to A0 such that (6.9) holds.

Lemma 6.5 gives more sufficient conditions for embedding a tree. Its proof needs the
following simple fact (stated in [2] without a proof).

Fact 6.4. Let {ai}m
i=1, {bi}m

i=1 be two finite sequences such that 0 ≤ ai, bi ≤ ∆ for all i.
Suppose that

∑

ai = a and
∑

bi = b. Let s, t be positive real numbers such that s
a
+ t

b
≤ 1.

Then there is a partition of [m] into I1 and I2 such that

∑

i∈I1

ai > s − ∆, and
∑

i∈I2

bi > t − ∆.

Proof. We first reorder the two sequences such that ci = ai

a
− bi

b
is non-increasing.

Then
∑j

i=1 ci ≥ 0 for any j because
∑m

i=1 ci = 0. Choose j ∈ [m] such that s − ∆ <
∑j

i=1 ai ≤ s. Then

∑

i>j

bi

b
= 1 −

j
∑

i=1

bi

b
≥ 1 −

j
∑

i=1

ai

a
≥ 1 − s

a
≥ t

b
,

which gives
∑

i>j bi ≥ t.

Lemma 6.5. Let A and B be two adjacent clusters of size N with subsets A0 ⊆ A and
B0 ⊆ B such that |A0|, |B0| ≥

√
dN . Let M be a cluster-matching on V \ {A, B}. Given

a tree T ′ of size at most n, then T ′ can be embedded to A0 ∪ B0 ∪
⋃

X∈V (M) X such that

Rt(F ) → A0 ∪ B0 if either of the following conditions holds.

1. There are an ordered εN-forest F = Fa ∪ Fb of T ′ and a partition Ma ∪Mb of M
such that

||Fa|| ≤ deg(A,Ma) − 3γn and ||Fb|| ≤ deg(B,Mb) − 3γn, (6.10)
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2. ||T ′|| ≤ min{deg(A,M), deg(B,M)} − 8γn.

Proof. Part 1. By (6.8), |Ra|, |Rb| < εN . So by (6.10), we can apply Lemma 5.8
Part 1 to embed Fa → (A,Ma) and Fb → (B,Mb). Next we apply Lemma 6.3 Part 1
embedding T ′ to G such that Rt(F ) → A0 ∪ B0.

Part 2. Let F = Fa ∪ Fb be an ordered εN -forest of T ′. By Part 1, it suffices to have
(6.10). Let fa = ||Fa|| and fb = ||Fb||. Then fa + fb ≤ ||T ′||. Let s = fa + 4γn and
t = fb + 4γn. Suppose that M = {ei}i∈I . Let ai = deg(A, ei), bi = deg(B, ei), a =

∑

ai,
and b =

∑

bi. We have 0 ≤ ai, bi ≤ ∆ := 2N , and a, b ≥ ||T ′|| + 8γn. Then

s

a
+

t

b
≤ fa + 4γn + fb + 4γn

||T ′|| + 8γn
≤ 1.

Fact 6.4 thus provides a partition of M into Ma and Mb such that deg(A,Ma) ≥
fa + 4γn − 2N > fa + 3γn, and deg(B,Mb) ≥ fb + 4γn − 2N > fb + 3γn, which gives
(6.10).

6.4 Tutte’s one-factor theorem

In this subsection we apply Tutte’s one-factor theorem to prove Claim 6.7, which provides
a large matching in Gr. This lemma was proved in [2] without introducing the set O,
whose role can only be seen in Section 6.5.3, where we need the matching M to cover
not only the neighbors of O but also the neighbors of N(O) :=

⋃

u∈O N(u). When M
is a matching and u 6∈ V (M), we let M1(u) = {(x, y) ∈ M : deg(u, {x, y}) = 1} and
M2(u) = {(x, y) ∈ M : deg(u, {x, y}) = 2}.

Lemma 6.6. Let H be a graph on 2k vertices and c be a real number such that 0 < c < 1
and ck ≥ 1. Suppose L is the set of vertices of H with degree greater than (1 − c)k. If
|L| ≥ (1− c)k and L is not independent, then there is either a matching in H that misses
at most 2ck + 1 vertices of H or a matching M and a set O ⊆ V (H) such that

• L ∩ O contains two adjacent vertices,

• all but at most one vertex of N(O) are covered by M ,

• for any u ∈ O, all but at most one vertex covered by M2(u) are also contained in
O.

Proof. We apply the Gallai–Edmonds decomposition to H . Let S denote the usual
cut-set such that the following holds: every even component has a complete matching;
every odd component has a matching covering all but one vertex xi; and there is a
matching {sixi : i = 1, . . . , |S|} from S to |S| odd components, where si ∈ S and each xi

is from a different odd component. Let M be the union of these matchings. Then

|M | = |S| +
∑

C

⌊ |C|
2

⌋

, (6.11)
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where the sum is over all components C of H −S. It suffices to prove the following claim.
Claim. Either |V (M)| ≥ 2(1 − c)k − 1, or there is a component C in H − S that

contains two adjacent vertices of L.
The former case of the claim proves our lemma immediately. Suppose the latter holds.

Let O = V (C). Since N(O) ⊆ O ∪ S, by the definition of M , all but at most one vertex
in N(O) are covered by M . In addition, for any u ∈ O and any xy ∈ M2(u), we have
x, y ∈ O, unless x = xi ∈ O and y = si ∈ S.

We now prove this claim. If no component of H − S contains any vertex of L, then
L ⊆ S and consequently (1 − c)k ≤ |L| ≤ |S|. Using (6.11), we obtain the desired bound
|V (M)| ≥ 2|S| ≥ 2(1−c)k. On the other hand, if there are two components C1, C2 ∈ H−S
and two vertices v1, v2 ∈ L such that vi ∈ Ci, then (1 − c)k ≤ deg(vi) ≤ |Ci| − 1 + |S| for
i = 1, 2. Consequently 2(1 − c)k ≤ |C1| + |C2| + 2|S| − 2. Using (6.11), we again derive
that |V (M)| ≥ 2|S| + |C1| + |C2| − 2 ≥ 2(1 − c)k.

We may therefore assume there is one component C of H −S such that V (C)∩L 6= ∅
and V (C ′)∩L = ∅ for all other components C ′ of H−S. If there are two adjacent vertices
in V (C)∩L, then we are done. Otherwise, letting a = |V (C)∩L| and b = |V (C) \L|, we
have (1 − c)k ≤ |L| = a + |S|. Furthermore, for any v ∈ V (C) ∩ L, we have (1 − c)k ≤
deg(v) ≤ b + |S|. Consequently 2|S|+ |C| = 2|S|+ a + b ≥ 2(1− c)k. By (6.11), we have
|V (M)| ≥ 2|S| + |C| − 1 ≥ 2(1 − c)k − 1.

We apply Lemma 6.6 to the reduced graph Gr and obtain the following claim.

Claim 6.7. The reduced graph Gr contains a set O ⊆ V and a matching M such that the
following holds.

1. There are A, B ∈ L ∩ O with A ∼ B.

2. For any U ∈ O, all but at most 9
√

dk neighbors of U are covered by M.

3. For any U ∈ O, all but at most one cluster from M2(U) are also contained in O.

Proof. Claim 6.1 implies that the reduced graph Gr satisfies the conditions of
Lemma 6.6 with L = L and c = 4

√
d, where ck = 4

√
dk ≫ 1 follows from (6.1) and (6.4).

By Lemma 6.6, Gr either contains a matching covering all but at most 2(4
√

d)k+1 < 9
√

dk
clusters, or a matching M and a set O satisfying the three properties of the lemma. The
latter case immediately yields the three desired assertions. In the former case, we let
O = V (Gr). It is easy to see that the three assertions holds; in particular, the first asser-
tion follows from Claim 6.1 Part 3, which says that L contains two adjacent clusters.

6.5 Embedding a tree of size n

In this subsection we finish the proof of Theorem 3.3.
Let T be a tree of size n. Recall that G is a 2n-vertex graph satisfying ℓ(G) ≥ (1−ε)n

and G is not in EC1 or EC2 with parameter α. Assume that T cannot be embedded in
G and our goal is to conclude a contradiction.
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Let F = Fa ∪ Fb be an εN -forest of T . Then R := Rt(F ) is partitioned into Ra

and Rb satisfying (6.8), which implies that cf := |R| ≤ 2εN . Let p2, . . . , pcf
denote the

parent-vertices and fa := ||Fa|| and fb := ||Fb||. Without loss of generality, assume that
fa ≥ fb. Since fa + fb = ||F || = n + 1 − cf and cf ≥ 1, we have fb ≤ n

2
.

By Claim 6.7, the reduced graph Gr contains a set O, two adjacent clusters A, B ∈
L∩O, and a cluster-matching M. For any cluster X ∈ L∩O, including A, B, Claim 6.1
Part 1 says that deg(X) ≥ (1 − 4d)n. By item 2 in Claim 6.7,

deg(X,M) ≥ deg(X) − 9
√

dkN ≥ (1 − 4d)n − 9
√

dkN ≥ (1 − 10
√

d)n. (6.12)

Thus, by Lemma 6.5 Part 2 with A0 = A and B0 = B, any tree of size at most (1 −
10
√

d)n − 8γn can be embedded into G.
We divide the rest of proof into three subsections. In Section 6.5.1 we study the

structure of F and conclude that most trees in F −Rt(F ) have at least two vertices, and
reasonably many trees in Fa − Rt(Fa) have ratio not close to 0 or 1. In Section 6.5.2
we partition V into V1 ∪ V2 such that |V1| ≈ |V2| and V1 is covered by regular pairs
e ∈ M such that d(A, e) ≈ 2. In Section 6.5.3, we show that there are not many dense
regular pairs between V1 and V2, and therefore there are not many edges of G between
the two vertex sets covered by the clusters of V1,V2. This implies that G is in EC2, a
contradiction. Throughout the proof, a complication occurs when fb is very small; we
have to use different strategies for the cases when fb is small and when fb is large.

6.5.1 Structure of F

Let us analyze the structure of F carefully. We first observe that there are not many
leaves of F in Level1(F ). Let Leaf1(F ) denote the set of leaves of F that are located in
Level1(F ). Define F̃ = F − Leaf1(F ) and F̃a = Fa − Leaf1(F ).

Claim 6.8. ||F̃ || ≥ (1 − 12
√

d)n, and ||F̃a|| > n/2 − 12
√

dn.

Proof. We first show that |Leaf1(F )| ≤ 11
√

dn+cf . By Definition 6.2, F is obtained
from T by removing edges ripi, 2 ≤ i ≤ cf . Then a vertex in Leaf1(F ) is either a leaf in
T or a parent-vertex pi. We may therefore partition Leaf1(F ) into W1 ∪W ′

1, where W1 is
the set of the leaves of T located in Level1(F ), and W ′

1 is the set of parent-vertices that
are contained in Leaf1(F ). Clearly |W ′

1| ≤ cf ≤ 2εN . If |W1| ≥ 11
√

dn, then because
of (6.12), T − W1 can be embedded by Lemma 6.5 Part 2 with A0, B0 as the set of large
vertices in A, B, respectively (the definition of L implies that |A0|, |B0| ≥ 2

√
dN). The

vertices in W1 can be added greedily at last. Thus we assume that |W1| < 11
√

dn. Since
||F || = n + 1 − cf and cf ≪

√
dn,

||F̃ || = ||F || − |Leaf1(F )|| ≥ n + 1 − cf − 11
√

dn − cf > (1 − 12
√

d)n.

Since ||Fa|| ≥ ||F ||/2,

||F̃a|| = ||Fa|| − |Leaf1(F ) ≥ n + 1 − cf

2
− 11

√
dn − cf >

n

2
− 12

√
dn.
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Next we show that reasonably many trees in F −Rt(F ) have ratio not close to 0 or 1
by using the assumption that G is not in EC1. Let us first recall a simple fact on trees.

Fact 6.9. Given a tree T , if V (T ) can be partitioned into a nonempty subset U1 and an
independent subset U2, then U2 contains at least |U2| − |U1|+ 1 leaves. In particular, any
tree with at least two vertices contains at least | |Teven| − |Todd| | + 1 leaves.

Proof. Let a vertex x ∈ U1 be the root (here we need U1 6= ∅). Let U ′
2 be the set

of non-leaf vertices in U2. Since each vertex in U ′
2 has at least one child in U1 \ {x}

(using the fact that U2 is independent) and the sets of children are disjoint, we have
|U1| − 1 ≥ |U ′

2| and consequently the number of leaves in U2 is at least |U2| − |U1| + 1.
For the second assertion, assume that v(T ) ≥ 2. Then both of its partition sets Teven and
Todd are nonempty. Letting U2 be the larger set of Teven and Todd, then U2 contains at
least | |Teven| − |Todd| | + 1 leaves.

Claim 6.10. Let α0 = α/16 and F 2 = {T ∈ F −Rt(F ) : α0 < Ratio(T ) < 1−α0}. Then
v(F 2) > α0n.

Proof. Let F 1 := F̃ \ F 2. Then v(F 1) + v(F 2) = ||F̃ || ≥ (1 − 12
√

d)n by Claim 6.8.
Suppose to the contrary, that v(F 2) ≤ α0n and consequently v(F 1) ≥ (1− 12

√
d − α0)n.

Consider a tree T ∈ F 1. The definition of F̃ implies that v(T ) ≥ 2. By Fact 6.9, T
contains at least ||Teven| − |Todd|| + 1 leaves. Since Ratio(T ) ≤ α0 or Ratio(T ) ≥ 1 − α0,
the tree T has at least (1 − 2α0)v(T ) leaves. The total number of leaves in F 1 is thus at
least

(1 − 2α0)(1 − 12
√

d − α0)n > (1 − 2α0)(1 − 2α0)n = (1 − 4α0)n + 4α2
0n.

Since F is a obtained from T by removing cf −1 edges, F has at most 2(cf −1) more leaves
than T . Since cf ≤ 2εN , we have 4α0

2n > 2cf + 1. Then T has at least (1 − 4α0)n + 1
leaves, or at most 4α0n non-leaf vertices.

On the other hand, the set L of large vertices of G contains at least (1− ε)n vertices.
Let V1 be a set of size n containing at least (1− ε)n vertices of L. Let L1 := V1 ∩L. Since
G is not in EC1 with parameter α, we have d(V1, V \ V1) < 1 − α. Consequently

e(L1, V \ L1) = e(L1, V \ V1) + e(L1, V1 \ L1) ≤ (1 − α)n2 + εn2

and

e(L1, L1) = e(L1, V ) − e(L1, V \ L1) ≥ (1 − ε)n2 − (1 − α + ε)n2 > αn2/2.

Note that e(L1, L1) = 2e(G[L1]), where G[L1] is the induced subgraph on L1. Hence the
average degree of G[L1] is at least e(L1, L1)/|L1| ≥ αn/2. By a well-known fact in graph
theory, G[L1] has a subgraph G0 such that δ(G0) ≥ αn/4 = 4α0n. We may therefore
embed all non-leaf vertices of T into G0 using the greedy algorithm. Since the vertices in
L1 have degree at least n, we can add all the leaves to complete the embedding of T by
the greedy algorithm. This contradicts our assumption that T 6→ G.
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6.5.2 Partition V into two almost equal sets

The purpose of this subsection is to prove the following lemma, which shows that, among
other things, there are about k/2 edges e ∈ M such that deg(A, e) ≈ 2.

Lemma 6.11. Let O,M be given as in Claim 6.7. For any adjacent clusters A, B ∈ O∩L,
there is a sub-matching Min ⊂ M such that Min, V1 := V (Min) and V2 := V−V1 satisfy
the following properties.

(i) d(A, X), d(A, Y ) > 1 − 2η and deg(A, e) > 2 − 3η for every e = {X, Y } ∈ Min.

(ii) deg(A,Min) > (1 − 8η)n.

(iii) (1 − 8η)k ≤ |V1| ≤ k, and consequently k ≤ |V2| < (1 + 8η)k.

(iv) V1 ⊆ O.

(v) If fd ≥ d
1

4 n, deg(B,Min) > (1 − 9η)n.

(vi) If fd < d
1

4 n, then there exists a matching Mb ⊂ M \Min such that

|Mb| ≤ 2d
1

4 k and fb + 3γn ≤ deg(B,Mb) < fb + 3γn + 2N. (6.13)

In order to prove Lemma 6.11, we need the next few lemmas.

Lemma 6.12. Suppose that deg(B,M) ≥ (1− 10
√

d)n for some cluster B. If fb < d
1

4 n,
then there exists a matching Mb ⊂ M such that (6.13) holds.

Proof. We arrange the edges e ∈ M in the decreasing order of d(B, e) and denote
them by e1, . . . , em. Let j0 be the smallest j such that

∑j
i=1 d(B, ei)N ≥ fb + 3γn – such

j exists because

m
∑

i=1

d(B, ei)N = deg(B,M) ≥ (1 − 10
√

d)n > d
1

4 n + 3γn ≥ fb + 3γn.

Since d(B, ej0) ≤ 2N , we have
∑j0

i=1 d(B, ei)N ≤ fb + 3γn + 2N (otherwise j0 is not the
smallest). Since {d(B, ei) : i = 1, . . . , m} is a decreasing sequence and m ≤ k, we have

j0
∑

i=1

d(B, ei)

j0
≥

m
∑

i=1

d(B, ei)

m
≥ (1 − 10

√
d)

n

Nk
.

Consequently

j0 ≤
∑j0

i=1 d(B, ei)

(1 − 10
√

d) n
Nk

≤ d
1

4 n + 3γn + 2N

(1 − 10
√

d)n
k ≤ 2d

1

4 k by using (6.1) and (6.5).

Thus Mb := {e1, . . . , ej0} satisfies (6.13).
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Lemma 6.13. Suppose that Gr contains two adjacent clusters A, B and a cluster-
matching M on V \ {A, B} such that

deg(A,M), deg(B,M) ≥ (1 − 10
√

d)n. (6.14)

If fb ≥ d
1

4 n and T 6⊂ G, then |deg(A,M′) − deg(B,M′)| < 15d
1

4 n for any sub-matching
M′ ⊆ M.

Proof. After removing some edges in Gr if necessary, we may assume that deg(A,M)
= deg(B,M) = (1 − 10

√
d)n. Define M+ = {e ∈ M : d(A, e) > d(B, e)} and M− =

M − M+. Write a+ = deg(A,M+), a− = deg(A,M−), b+ = deg(B,M+) and b− =
deg(B,M−). We thus have a+ > b+, b− ≥ a−, and a+ + a− = b+ + b− = (1 − 10

√
d)n.

By definition, a+ − b+ = b− − a− = maxM′⊆M |deg(A,M′) − deg(B,M′)|.
Suppose that fa ≥ fb ≥ d

1

4 n and a+ − b+ ≥ 15d
1

4 n. Our goal is derive T ⊂ G by using
Lemma 6.5 Part 1. Without loss of generality, we assume that b− ≥ a+ (otherwise we

exchange A and B). Then b−−b+ = b−−a++a+−b+ ≥ 15d
1

4 n. Since b−+b+ = (1−10
√

d)n
and fb ≤ n/2, we have

b− ≥ (1 + 15d
1

4 − 10
√

d)
n

2

(6.1)
>

n

2
+ 3γn ≥ fb + 3γn.

We now partition M into Ma and Mb as follows. Put the edges of M− in the
decreasing order of d(B,e)−d(A,e)

d(B,e)
and denote them by e1, . . . , em. Let j0 be the smallest j ≥ 1

such that
∑j

i=1 d(B, e)N ≥ fb + 3γn (j0 exists because
∑m

i=1 d(B, e)N = b− > fb + 3γn).
Let Mb = {e1, . . . , ej0}. Since d(B, e)N ≤ 2N for any e, we have

fb + 3γn ≤ deg(B,Mb) < fb + 3γn + 2N.

It is easy to see that if {ai

bi
}m

i=1 is a decreasing sequence, then for any 1 ≤ j0 ≤ m, we have

∑j0
i=1 ai

∑j0
i=1 bi

≥
∑m

i=1 ai
∑m

i=1 bi

. (6.15)

In fact, this follows from repeatedly applying the fact

∀x1, x2, y1, y2 > 0,
x1

y1
≥ x2

y2
⇒ x1

y1
≥ x1 + x2

y1 + y2
≥ x2

y2
.

Applying (6.15) to
{

d(B,ei)−d(A,ei)
d(B,ei)

}m

i=1
, we obtain that

deg(B,Mb) − deg(A,Mb)

deg(B,Mb)
≥ deg(B,M−) − deg(A,M−)

deg(B,M−)
=

b− − a−

b−
≥ 15d

1

4 n

b−
.

Consequently

deg(B,Mb) − deg(A,Mb) ≥ deg(B,Mb)
15d

1

4 n

b−
> fb

15d
1

4 n

n
≥ 15

√
dn,
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where the last inequality uses the hypothesis fb > d
1

4 n.
Let Ma = M−Mb. Then

deg(A,Ma) = deg(A,M) − deg(A,Mb)

≥ (1 − 10
√

d)n + 15
√

dn − (fb + 3γn + 2N)

= (n − fb) + (15
√

dn − 10
√

dn − 3γn − 2N)

> fa + 3γn.

Thus Ma and Mb satisfy (6.10). Applying Lemma 6.5, Part 1, we derive that T ⊂
G.

Lemma 6.14. Suppose that Gr contains two adjacent clusters A, B and a cluster-
matching M on V \ {A, B} such that (6.14) holds. Then T ⊂ G if either of the following
conditions holds.

1. There exist a root-subforest F0 of Fa or Fb and a sub-matching M0 ⊂ M such that

F0 → (A,M0), and ||F0|| ≥ η3n + deg(A,M0). (6.16)

Furthermore, if fb ≤ d
1

4 n, then exists Mb ⊂ M \M0 that satisfies (6.13).

2. There exists ε1, ε2 such that {d, ε1} ≪ ε2. There is a partition of M = Min +Mout

such that deg(A,Min) ≥ (1 − ε1)n. There are sub-matchings M0 ⊂ Min and
M2 ⊂ Mout and a root-subforest F0 of Fa such that

F0 → (A, V (M0),M2), and ||F0|| ≥ ε2n + deg(A,M0). (6.17)

Furthermore, if fb ≤ d
1

4 n, then exists Mb ⊂ Mout \M2 that satisfies (6.13).

Proof. Part 1. First assume that F0 ⊆ Fa. Let F1 = Fa − E(F0). Then F0 ∪ F1 is
a root-partition of Fa. Our goal is to partition M\M0 into M1 ∪M2 such that F1 →
(A,M1) and Fb → (B,M2). Together with (6.16), this implies that Fa

−4
√

εN−→ (A,Ma)
by Proposition 5.7, where Ma = M0 ∪M1. We then apply Lemma 6.3 Part 1 to obtain
T ⊂ G.

We now separate cases based on the value of fb.
Case 1a: fb ≥ d

1

4 n. Since deg(A,M) ≥ (1− 10
√

d)n, deg(A,M0) ≤ ||F0|| − η3n, and
||F0|| + ||F1|| ≤ n, we have

deg(A,M\M0) ≥ (1 − 10
√

d)n − (||F0|| − η3n) ≥ ||F1|| + 3γn,

where the last inequality also uses γ ≪ d ≪ η. We can thus find a sub-matching M1 of
M\M0 such that

||F1|| + 3γn ≤ deg(A,M1) < ||F1|| + 3γn + 2N. (6.18)
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Let M2 = M\ (M0 ∪M1). By (6.14), (6.16), and (6.18),

deg(A,M2) = deg(A,M) − deg(A,M0) − deg(A,M1)

≥ (1 − 10
√

d)n − (||F0|| − η3n) − (||F1|| + 3γn + 2N)

≥ fb + (η3 − 15
√

d)n,

where the last inequality follows from ||F1|| + ||F0|| + fb ≤ n, N ≤ εn and (6.1). Since

fb ≥ d
1

4 n, by Lemma 6.13, we have a+ − b+ ≤ 15d
1

4 n (otherwise T ⊂ G and we are done).
Using (6.1), we obtain that

deg(B,M2) ≥ deg(A,M2) − 15d
1

4 n ≥ fb + (η3 − 15
√

d)n − 15d
1

4 n ≥ fb + 3γn. (6.19)

By Lemma 5.8 Part 1, (6.18) and (6.19) imply that F1 → (A,M1) and Fb → (B,M2),
respectively.

Case 1b: fb < d
1

4 n. By assumption, there exists Mb ⊂ M\M0 such that |Mb| ≤ 2d
1

4 k
and fb +3γn ≤ deg(B,Mb) < fb +3γn+2N . Then Fb → (B,Mb) by Lemma 5.8 Part 1.

It remains to show that F1 → (A,M1), where M1 = M\(M0∪Mb). Since |Mb| ≤ 2d
1

4 k,

trivially deg(A,Mb) ≤ 2N2d
1

4 k ≤ 4d
1

4 n. By (6.14) and (6.16),

deg(A,M1) = deg(A,M) − deg(A,M0) − deg(A,Mb)

≥ (1 − 10
√

d)n − (||F0|| − η3n) − 4d
1

4 n

≥ ||F1|| + 3γn.

Then F1 → (A,M1) follows from Lemma 5.8 Part 1.

The case when F0 ⊆ Fb can be handled similarly. Since fb ≥ ||F0|| ≥ η3n ≥ d
1

4 n, we
can follow the procedure in Case 1a. More precisely, letting F1 = Fb−E(F0), we first find
a sub-matching M1 of M\M0 satisfying (6.18) and then derive deg(B,M2) > fa +3γn.
Lemma 5.8 Part 1 thus gives F1 → (A,M1) and Fa → (B,M2). Together with F0 →
(A,M0), we obtain that Fb

−4
√

εN−→ (A,Mb) by Proposition 5.7, where Mb = M0 ∪M1.
We finally apply Lemma 6.3 Part 1 to derive T ⊂ G.

Part 2. We proceed as in Part 1. Let F1 = Fa − E(F0). First consider the case when

fb ≥ d
1

4 n. Since deg(A,Min) ≥ (1 − ε1)n and deg(A,M0) ≤ ||F0|| − ε2n, we have

deg(A,Min \M0) ≥ (1 − ε1)n − (||F0|| − ε2n) = (n − ||F0||) + (ε2 − ε1)n ≥ ||F1|| + 3γn

by using {γ, ε1} ≪ ε2. We thus find a sub-matching M1 of Min \M0 satisfying (6.18).
By letting M2 = Min \ (M0 ∪M1), we derive that deg(A,M2) ≥ fb + (ε2 − ε1 − 5γ)n
and finally deg(B,M2) ≥ fb + 3γn as in Case 1a.

When fb < d
1

4 n, we let M1 = M \ (M0 ∪ Mb) and derive that deg(A,M1) ≥
||F1|| + 3γn as in Case 1b.

By Claim 6.8, most trees in Fa − Rt(Fa) have at least two vertices. By Claim 6.10,
at least α0n vertices are contained in the trees of F − Rt(F ) with ratio between α0 and
1 − α0. These facts and Lemma 5.8, Parts 2 and 3, lead to the following lemma, which
will be also used in Claim 6.18 later.
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Lemma 6.15. Suppose that Gr contains two adjacent clusters A, B and a cluster-
matching M on V \ {A, B} such that (6.14) holds. Let Munbal = {{X, Y } ∈ M :
|d(A, X) − d(A, Y )| ≥ η} and

Mnonex = {{X, Y } ∈ M : η ≤ d(A, X) ≤ 1 − η and η ≤ d(A, Y ) ≤ 1 − η}.

If |Munbal| ≥ ηk or |Mnonex| ≥ ηk, then T ⊂ G.

Proof. By Lemma 6.14 Part 1, it suffices to show that there exist a root-subforest F0

of Fa or Fb and a sub-matching M0 of Munbal or Mnonex such that (6.16) holds, and if

fb < d
1

4 n, there also exists Mb ⊂ M \M0 that satisfies (6.13).

Case 1: |Munbal| ≥ ηk. If fb ≥ d
1

4 n, we pick a matching M0 ⊆ Munbal of size ηk/2. If

fb < d
1

4 n, then by Lemma 6.12, there exists a sub-matching Mb ⊂ M satisfying (6.13).

Since |Mb| ≤ 2d
1

4 k and 2d
1

4 ≤ η/2, we can still pick a matching M0 ⊆ (Munbal \Mb) of
size ηk/2.

Recall that F 2 = {T ∈ F − Rt(F ) : α0 < Ratio(T ) < 1 − α0}. Claim 6.10 says that
v(F 2) ≥ cn. Let F 2

a = F 2 ∩Fa and F 2
b = F 2 ∩Fb. Without loss of generality, assume that

v(F 2
a ) ≥ α0n/2. By (6.1), we have α0 ≥ 4η and thus

α0

2
n > 2N |M0| + η3n ≥ deg(A,M0) + η3n.

Since any tree in F 2
a has at most εN vertices, we can find a sub-forest F̂0 of F 2

a such that

deg(A,M0) + η3n ≤ v(F̂0) < deg(A,M0) + η3n + εN.

By adding the vertices in Rt(Fa) adjacent to the roots of F̂0, we extend F̂0 to a root-
subforest F0 of F . Then ||F0|| = v(F̂0). Since α0 ≥ 4η and ε ≪ γ ≪ η,

||F0|| < deg(A,M0) + η3n + εN < deg(A,M0) + α0ηN |M0| − 3γn.

By Lemma 5.8 Part 2, we derive F0 → (A,M0) and consequently (6.16).
Case 2: |Mnonex| ≥ ηk. As in Part 1, we can pick a sub-matching M0 ⊆ Mnonex of

size ηk/2 such that if fb < d
1

4 n, there also exists Mb ⊂ M\M0 that satisfies (6.13). By
Claim 6.8, ||F̃a|| ≥ n/2− 12

√
dn > 2N |M0|+ η3n. Since F̃a is an εN -forest, we may find

a root-subforest F0 of F̃a (thus a root-subforest F0 of Fa) such that

deg(A,M0) + η3n ≤ ||F0|| < deg(A,M0) + η3n + εN.

Hence ||F0|| < deg(A,M0) + ηN |M0| − 3γn. By Lemma 5.8 Part 3, we obtain F0 →
(A,M0) and consequently (6.16).

We are ready to prove Lemma 6.11 now.
Proof of Lemma 6.11. Define Munbal,Mnonex as in Lemma 6.15, which gives

that |Munbal|, |Mnonex| ≤ ηk. Let Msmall = {{X, Y } ∈ M \ Munbal : d(A, X) < η
or d(A, Y ) < η}. Consider {X, Y } ∈ Msmall. One of d(A, X) and d(A, Y ) is smaller

the electronic journal of combinatorics 18 (2011), #P27 33



than η and |d(A, X) − d(A, Y )| < η. Consequently d(A, X) + d(A, Y ) < 3η and hence
deg(A,Msmall) < 3ηNk.

If fb < d
1

4 n, then we apply Lemma 6.12 and find a sub-matching Mb ⊂ M satisfying
(6.13). Since |Mb| ≤ 2d

1

4 k, trivially deg(A,Mb) ≤ 4d
1

4 n. Let

M′
in =

{

M−Munbal −Mnonex −Msmall if fb ≥ d
1

4 n

M−Munbal −Mnonex −Msmall −Mb if fb < d
1

4 n.

Consider e = {X, Y } ∈ M′
in. We have |d(A, X)−d(A, Y )| < η and, by the definition of

Mnonex, either d(A, X) > 1−η or d(A, Y ) > 1−η. Consequently d(A, X), d(A, Y ) > 1−2η
and deg(A, e) > 2 − 3η.

Recall that M2(A) is the set of those {X, Y } ∈ M such that d(A, X), d(A, Y ) > 0.
Thus Min ⊆ M2(A). Then, by Claim 6.7 Part 3, at most one cluster in V (Min) may
not be in O. Let e1 ∈ M′

in denote the edge containing this cluster if it exists (otherwise
e1 = ∅). Let Min = M′

in − {e1} if |M′
in − {e1}| ≤ k/2; otherwise let Min be a sub-

matching of M′
in − {e1} of size ⌊k/2⌋.

This definition of Min implies (i), (iv), and (vi) immediately. If |Min| = ⌊k/2⌋, then
we have deg(A,Min) ≥ (2− 3η)N⌊k/2⌋ > (1 − 8η)n because deg(A, e) > 2 − 3η for each
e ∈ Min. Otherwise Min = M′

in − {e1}; by the definition of M′
in,

deg(A,Min) > (1 − 10
√

d)n − ηk2N − ηk2N − 3ηNk − 4d
1

4 n − 2N > (1 − 8η)n.

We thus have (ii) in either case. If fb ≥ d
1

4 n, then by Lemma 6.13, deg(B,Min) >

(1 − 8η)n − 15d
1

4 n ≥ (1 − 9η)n, which give (v).
Let V1 = V (Min) and V2 = V − V1. Then (1 − 8η)k ≤ (1 − 8η)n/N ≤ |V1| ≤ k, and

consequently (1 − 2η)k ≤ |V2| < (1 + 8η)k. Hence (iii) holds.

6.5.3 Edges between V1 and V2

Let Min,V1,V2 be given by Lemma 6.11 with properties (i) – (vi). Let Mout := M−Min.
Let Vi denote the set of vertices of G contained in the clusters in Vi for i = 1, 2. Items
(ii) and (iii) together imply that (1 − 8η)n ≤ deg(A,Min) ≤ |V1| ≤ n, which means that
both |V1| and |V2| are very close to n. The goal of this subsection is to show that e(V1, V2)
is very small and thus G is in EC2.

More precisely, if eGr
(V1,V2) ≤ ρk2 for ρ satisfying (6.1), then

eG′′(V1, V2) ≤ dN2|V1||V2| +
∑

X∈V1,Y ∈V2,X∼Y

N2 ≤ (ρ + d)n2, (6.20)

which implies that eG(V1, V2) < 2ρn2. After adding or removing at most 8ηn vertices to
or from V1 such that |V1| = |V2| = n, we still have e(V1, V2) < 3ρn2, which contradicts the
assumption that EC2 does not hold.

We therefore assume that
eGr

(V1,V2) > ρk2. (6.21)
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Our next claim says that not many trees in Fa −Rt(Fa) have more than two vertices.
The following is its proof idea. If a cluster X ∈ V1 has many neighbors in Mout, then
we may use Lemma 5.9 Part 2 to embed a tree Ti ∈ Fa → (A, X,Mout) such that
Rt(Ti) → A, Level1(Ti) → X, and Level≥2(Ti) → Mout. When Ti has more than 3
vertices, this embedding is more efficient than embedding Ti into A ∪ Min. If many
trees in Fa have more than 3 vertices, then we obtain a subforest F̃a satisfying (6.17) in
Claim 6.14.

Claim 6.16. Let F3 = {T ∈ Fa−Rt(Fa) : v(T ) ≥ 3} and ρ0 = ρ/10. Then v(F3) < 3ρ0n.

Proof. Suppose instead, that v(F3) ≥ 3ρ0n. By Lemma 6.11 (vi), if fd < d
1

4 n, then
there exists a matching Mb ⊂ Mout satisfying (6.13). Let

M2 =

{

Mout if fb ≥ d
1

4 n

Mout \Mb if fb < d
1

4 n.

Let V ′
1 be the set of clusters C ∈ V1 such that degGr

(C,V2) ≥ 9ρ0k. Then |V ′
1| ≥ ρ0k,

otherwise e(V1,V2) < ρ0k|V2|+ |V1|9ρ0k ≤ 10ρ0k
2, contradicting (6.21). Let C be a subset

of V ′
1 of size ρ0k, and M0 be the (minimum) sub-matching of Min that covers C. Then

|M0| ≤ |C| = ρ0k. We know that C ⊂ O from Lemma 6.11 (iv). Consider a cluster
C ∈ C. By Claim 6.7 Part 2, all but at most 9

√
dk neighbors in V2 of C are covered

by Mout. If Mb exists, then degGr
(C, V (Mb)) ≤ 4d

1

4 k because |Mb| ≤ 2d
1

4 k. Since
degGr

(C,V2) ≥ 9ρ0k, we have

degGr
(C, V (M2)) ≥ degGr

(C,V2) − 9
√

dk − 4d
1

4 k ≥ 8ρ0k. (6.22)

Since v(F3) ≥ 3ρ0n, deg(A,M0) ≤ 2N |M0| ≤ 2ρ0n and every tree in F3 has at most
εN vertices, we can find a root-subforest F0 of Fa such that F0 − Rt(F0) ⊆ F3 and

deg(A,M0) + ρ0
n

2
≤ ||F0|| < deg(A,M0) + ρ0

n

2
+ εN. (6.23)

It remains to show that F0 → (A, C,M2) because then we can apply Claim 6.14 Part 2
with ε1 = 8η and ε2 = ρ0/2 to embed T → G. Let m = minC∈C |{e ∈ M2 : d(C, e) > 0}|.
We have m ≥ degGr

(C, V (M2))/2 ≥ 4ρ0k by (6.22). Together with (6.23), this gives
||F0|| ≤ (1 − γ)mN . Since every tree in F0 − Rt(F0) has at least three vertices, we have
|Level1(F0)| ≤ ||F0||/3 ≤ (5ρ0

n
2

+ εN)/3. By using Lemma 6.11 (i) and |C| = ρ0k, we
have

deg(A, C) − 2γ|C|N ≥ (1 − 2η − 2γ)N |C|
(6.1)

≥ 5ρ0n/2 + εN

3
≥ |Level1(F0)|.

We thus apply Lemma 5.9 Part 2 to obtain F0 → (A, C,M2).

Recall that F̃a is the subforest of Fa obtained by removing all the leaves in Level1(Fa),
and ||F̃a|| > n/2 − 12

√
dn by Claim 6.8. A root-2-path in F is a path of length 2 having

one end in Rt(F ). Claim 6.16 implies that most vertices of F̃a are covered by root-2-paths.
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Let S1 = {Y : {X, Y } ∈ Min for some X ∈ L}, the set of clusters whose partners
in Min are large clusters. Since no regular pair runs between two small clusters, all the
small clusters of V1 are contained in S1 (though S1 may contain large clusters as well).
Let L1 = V1 \S1. Since their partners in Min are small clusters, all the clusters in L1 are
large and located in different regular pairs of Min.

Claim 6.17. eGr
(S1,V2) < 16ρk2.

Proof. By (vi) in Lemma 6.11, if fd < d
1

4 n, then there exists a matching Mb ⊂ Mout

satisfying (6.13). Let

V ′
2 =

{

V2 if fb ≥ d
1

4 n

V ′
2 \ V (Mb) if fb < d

1

4 n.

We may assume that there are at least 10ρk clusters in S1 that have degree at least 5ρk
in V ′

2. For instead, at most 10ρk clusters in S1 have degree at least 5ρk in V ′
2. Since

|V (Mb)| ≤ 4d
1

4 k (if exists), at most 10ρk clusters in S1 have degree at least 5ρk + 4d
1

4 k
in V2. By using |S1| ≤ |V1| ≤ k and |V2| ≤ (1 + 8η)k, we derive

eGr
(S1,V2) < 10ρk|V2| + |S1|(5ρ + 4d

1

4 )k ≤ 10ρk(1 + 8η)k + (5ρ + 4d
1

4 )k2 ≤ 16ρk2,

we are done. We then pick 5ρk such clusters that are located in different pairs of Min and
denote this cluster-set by S0. Let M0 be the minimum sub-matching of Min covering
S0. Let L0 = V (M0) \ S0 be the partner set of S0. The definition of S1 implies that
L0 ⊂ L. Since deg(C,V ′

2) ≥ 5ρk = |S0| for all C ∈ S0, for each element of S0 we may
choose a distinct neighbor in V ′

2 thus forming a new matching M′
0 that covers S0. Let

M′ = Min −M0 + M′
0. Then M′ and Mb are disjoint matchings.

V1 V2

Mb

M'0

L0 S0 V'2

M0

Figure 2: M′ = Min −M0 + M′
0

By Claims 6.8 and 6.16, there are at least (n
2
− 12

√
d − 3ρ0n)/2 > n/8 root-2-paths

in Fa. Since there are cf − 1 < 2εN parent-vertices, we can pick 4ρn root-2-paths which
contain no parent-vertices (hence these paths may be embedded at any time). Let Z be
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the set of the mid-points and leaves in these paths. Then |Z| = 8ρn. Let T ′ = T − Z.
Then T ′ is a tree with n − 8ρn edges. Below we first embed T ′ into A ∪ B ∪ V (M′) and
then embed Z by using L0.

We claim that T ′ or its εN -forest F ′ satisfies the conditions of Lemma 6.5, thus
T ′ ⊂ G follows. First assume that fb ≥ d

1

4 n. By (ii) and (v) in Lemma 6.11, we have
deg(A,Min) ≥ (1 − 8η)n, and deg(B,Min) ≥ (1 − 9η)n. We thus derive

deg(A,M′) ≥ deg(A,Min) − deg(A,L0) ≥ (1 − 8η − 5ρ)n,

and similarly deg(B,Min) ≥ (1 − 9η − 5ρ)n. Since ||T ′|| = (1 − 8ρ)n and γ ≪ η ≪ ρ,
we have ||T ′|| ≤ min{deg(A,M′), deg(B,M′)} − 8γn, as desired by Lemma 6.5 Part 2.

Now assume that fb < d
1

4 n. Note that F ′ = F ′
a ∪ Fb with F ′

a = Fa − Z. We have
||F ′

a|| ≤ ||T ′|| ≤ deg(A,M′) − 8γn. By (6.13), we have ||F ′
b|| ≤ deg(B,M′) − 3γn. Since

M′ and Mb are disjoint, we are under the condition of Lemma 6.5 Part 1.
We next embed all the mid-points in Z into the clusters of L0 and embed all the leaves

in Z at last by the greedy algorithm. By definition, each large cluster contains at least
2
√

dN large vertices, whose degrees in G are at least n. By Claim 6.1, at least (1−√
ε)N

vertices have degree at least (1 − 5d)n in G – we call them near-large vertices. For each
X ∈ L0, we take two disjoint subsets PX , QX ⊂ X such that PX consists of 2

√
dN large

vertices and QX consists of (1 − 2
√

d −√
ε)N near-large vertices. By Proposition 4.5, at

most
√

εN vertices of A are atypical to {PX : X ∈ L0}; at most
√

εN vertices of A are
atypical to {QX : X ∈ L0}. Let A0 ⊂ A consist of all large vertices that are typical to both
{PX : X ∈ L0} and {QX : X ∈ L0}. Then |A0| ≥ 2

√
dN − 2

√
εN >

√
dN . Lemma 6.5

says that we can embed Rt(Fa) to A0 while embedding T ′. This means if u ∈ A0 is the
image of a root in Fa, there exist subsets L′

0,L′′
0 ⊆ L0 such that |L′

0|, |L′′
0| ≥ (1 −√

ε)|L0|
and

deg(u, PX) ≥ (d(A, X) − ε)|PX | for all X ∈ L′
0,

deg(u, QX) ≥ (d(A, X) − ε)|QX | for all X ∈ L′′
0.

By Lemma 6.11 (i), we have d(A, X) ≥ 1 − 2η for X ∈ L0. We partition the to-be-
embedded 4ρn root-2-paths into two groups, with (4ρ − 5d)n paths in group 1 and 5dn
paths in group 2. We embed the mid-points of the paths in group 1 into

⋃

X∈L′′

0
N(u, QX),

and the mid-points of the paths in group 2 into
⋃

X∈L′

0
N(u, PX) for some u ∈ A0 (note

that PX and QX are disjoint). This is possible because

∑

X∈L′′

0

deg(u, QX) ≥ |L′′
0|(1 − 2η − ε)|QX |

≥ (1 −√
ε)5ρk(1 − 2η − ε)(1 − 2

√
d −√

ε)N

> (4ρ − 5d)n,

∑

X∈L′

0

deg(u, PX) ≥ |L′
0|(1 − 2η − ε)|PX | ≥ (1 −√

ε)5ρk(1 − 2η − ε)2
√

dN > 5dn.
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To finish the embedding, we choose an unoccupied (distinct) neighbor to be the leaf for
each of the (4ρ − 5d)n vertices embedded in QX , X ∈ L′′

0. This is possible because each
vertex in QX has degree at least (1− 5d)n. Finally, we attach one leaf to each of the 5dn
vertices embedded in PX , X ∈ L′

0.

Let G′
r be the subgraph of Gr containing all regular pairs between V1 and V2 with

density at least 2η. We claim that eG′

r
(L1,V2) is small.

Claim 6.18. eG′

r
(L1,V2) < 16ρ1k

2, where ρ1 = ρ1/3.

Proof. We assume that there is a subset L0 ⊆ L1 of size 8ρ1k such that every C ∈ L0

has at least 8ρ1k G′
r-neighbors in V2 (neighbors in V2 with respect to G′

r). Otherwise
eG′

r
(L1,V2) < 8ρ1k|L1| + |V2|8ρ1k ≤ 8ρ1k(2k), and we are done. By the definition of L1,

the clusters in L1 must be large and located in different regular pairs in which the other
ends (partners) are small clusters. Let S0 be the set of the partners of L0. Then S0 is a
subset of S1. Our goal is to derive that eGr

(S0,V2) ≥ 16ρk2, which contradicts Claim 6.17.
Fix a cluster C ∈ L0. We find a set NC ⊆ NGr

(C) ∩ L ∩ O of size |NC | ≥ 3ρ1k
as follows. From (iv) in Lemma 6.11, we know that C ∈ O. By Claim 6.7 Part 2, M
contains all but at most 9

√
dk Gr-neighbors of C in V2. Consequently Mout contains all

but at most 9
√

dk G′
r-neighbors of C in V2. Let MC be the minimum sub-matching of

Mout that covers all the G′
r-neighbors of C in Mout. Then

degG′

r
(C, V (MC)) = degG′

r
(C, V (Mout)) ≥ degG′

r
(C,V2)− 9

√
dk ≥ 8ρ1k − 9

√
dk. (6.24)

Now let M̃C be the set of {X, Y } ∈ MC such that |d(C, X) − d(C, Y )| ≥ η. Since
C ∈ L∩O, we have deg(C,M) ≥ (1− 10

√
d)n from (6.12). Since C and A are adjacent,

we can apply Lemma 6.15 with A = C and B = A: since T 6⊂ G, we have |M̃C | < ηk. Let
M′

C = MC \M̃C . Then |M′
C| ≥ |MC| − ηk. For any {X, Y } ∈ M′

C , by the definition of
G′

r, one of d(C, X) and d(C, Y ) is at least 2η, consequently the other density is at least
η. This implies that M′

C ⊆ M2(C), namely, for every {X, Y } ∈ M′
C both X and Y are

adjacent to C in Gr. By Claim 6.7 Part 3, all but at most one cluster in V (M′
C) are

members of O. We therefore take a set NC ⊂ L ∩ O by picking one large cluster from
each edge of M′

C unless this large cluster is not in O. Consequently

|NC| = |M′
C | − 1 ≥ |MC| − ηk − 1

≥ 1

2
degG′

r
(C, V (MC)) − ηk − 1

(6.24)

≥ 1

2
(8ρ1k − 9

√
dk) − ηk − 1 > 3ρ1k. (6.25)

Let N = ∪C∈L0
NC (then N ⊂ V2 ∩ L ∩ O). Define a bipartite graph H on L0 ∪ N

such that C ∈ L0 is adjacent to D ∈ N if and only if C, D are adjacent in G′
r. Let N0 be

the set of D ∈ N such that degH(D) ≥ 12ρ2
1k. Since |L0| = 8ρ1k, (6.25) implies that

24ρ1
2k2 = |L0| 3ρ1k ≤ |E(H)| ≤ |N0| 8ρ1k + |N | 12ρ2

1k.
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By using |N | ≤ |V2| ≤ (1 + 8η)k, we obtain that |N0| ≥ 3(1 − 8η)ρ1k/2 . It suffices
to show that degGr

(D,S0) ≥ 11ρ1
2k for every D ∈ N0 because then we have (by using

ρ3
1 = ρ ≫ η)

eGr
(N0,S0) >

3

2
(1 − 8η) ρ1k 11ρ2

1k > 16ρk2.

a contradiction to Claim 6.17.
Fix a cluster D ∈ N0, and assume that D ∈ NC for some C ∈ L0. Since D, C ∈ L∩O

and D ∼ C, we may apply Lemma 6.15 with A = D and B = C. As a result, at most ηk
pairs {X, Y } ∈ Min satisfy d(D, X) ≥ η and d(D, Y ) = 0. The definition of N0 implies
that D has at least 12ρ2

1k G′
r-neighbors in L0. Since S0 is the partner set of L0 in Min,

it follows that D has at least 12ρ1
2k − ηk > 11ρ1

2k Gr-neighbors in S0. In other words,
degGr

(D,S0) ≥ 11ρ1
2k, as desired.

From Claim 6.17 and 6.18, we conclude that

eG′

r
(V1,V2) ≤ eGr

(S1,V2) + eG′

r
(L1,V2) < 16ρk2 + 16ρ1k

2 < 32ρ1k
2.

Using the same arguments as in (6.20) and d < η, we derive that eG′′(V1, V2) < (32ρ1 +
2η)n2. Since α ≥ 32ρ1 + 2η, it follows that G is in EC2 with parameter α, contradiction.
We have thus completed the proof of Theorem 3.3.

7 The extremal cases

In this section we prove Proposition 3.1 and Theorem 3.2. The proof of Proposition 3.1
is straightforward, but a proof of Theorem 3.2 is far from trivial. To prove it, we first
define and handle a particular extremal case (denoted by EC3), in which the embedding
of T mainly takes place in one partition set V1 and then show that the assumption of
Theorem 3.2, EC2 actually implies EC3.

We first list a few facts to be used in both proofs.

Fact 7.1. Let 0 < c < 1 and G1 be a graph of order n containing two disjoint vertex sets
A and B. If e(A, B) ≥ (1 − c)|A||B|, then there exists a subset B′ ⊆ B such that

|B′| ≥ (1 −√
c)|B|, δ(B′, A) ≥ (1 −√

c)|A|

Proof. Let B′ = {u ∈ B : deg(u, A) ≥ (1 −√
c)|A|} and m = |B \ B′|. Because

(1 − c)|A||B| ≤ e(A, B) ≤ m
(

1 −√
c
)

|A| + (|B| − m) |A|,

which implies that m ≤ √
c|B|.

The naive greedy algorithm is the main tool of for embedding trees, as seen in Fact 1.1.
Furthermore, given a tree T , if a graph G1 contains disjoint vertex sets A and B such
that δ(A, B) ≥ |Todd|, δ(B, A) ≥ |Teven|, then T ⊂ G1. In particular, we can start our
embedding by mapping any vertex a ∈ A to any vertex u ∈ Teven or any vertex b ∈ B
to any vertex v ∈ Todd (denoted by a → u and b → v). The following fact gives a few
variants of this embedding.
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Fact 7.2. Let G1 be a graph with two disjoint vertex sets A and B. Then G1 contains a
tree T if any of the following conditions holds.

1. δ(A, B), δ(B, A) ≥ min{|Teven|, |Todd|}, and δ(A, V ) ≥ e(T ).

2. T has a vertex-partition U1 + U2 such that

• U2 is independent (but U1 6= ∅ is not necessarily independent);

• min{δ(A, B), δ(A, A), δ(B, A)} ≥ |U1|, and δ(A, V ) ≥ e(T ).

3. T has a vertex-partition U1 + U2 such that

• U2 is independent;

• δ(A, A), δ(B, A) ≥ |U1|, δ(A, B) ≥ |Ũ2|, and δ(A, V ) ≥ e(T ), where Ũ2 ⊆ U2 is
a set that contains all the nonleaf vertices of U2.

Furthermore, when embedding T to G1, we may map any vertex x ∈ U1 to any vertex
a ∈ A or alternatively any y ∈ Ũ2 to any b ∈ B.

Proof. Part 1. Without loss of generality, assume that |Teven| < |Todd|. Assume that
v(T ) ≥ 2 otherwise T ⊂ G1 is trivial. Applying Fact 6.9, we know that there are at least
|Todd| − |Teven| + 1 leaves in Todd. We are thus able to put all the nonleaf vertices of Todd

into B, and all the vertices of Teven into A by the greedy algorithm. Since δ(A, V ) ≥ e(T ),
we can add the leaves of Todd greedily.

Part 2. The proof is similar to Part 1, the only difference is that we need δ(A, A) ≥ |U1|
when embedding U1 because U1 may not be independent.

Part 3. We first embed U1 to A and Ũ2 to B by the greedy algorithm starting with
x → a or y → b. Since the vertices in U2 \ Ũ2 are leaves, we can add them by the greedy
algorithm.

Proposition 7.3 follows from Fact 7.1 easily.

Proposition 7.3. Suppose θ ≤ 1
100

and n ≥ 100. Let G1 be a graph of order n with
a vertex set X such that |X − n

2
| ≤ θn and δ(X, V (G1)) ≥ n − θn. Then there exists

Y ⊆ V (G1) \ X such that
(i) δ(X, Y ) ≥ |Y | − θn, δ(Y, X) ≥ |X| −

√
θn,

(ii) δ(X, Y ), δ(Y, X) ≥ ⌈n/2⌉ −
√

θn.

Proof. Let Y ′ = V (G1) \X. Since δ(X, V ) ≥ n− θn, we have δ(X, Y ′) ≥ |Y ′| − θn >
(1 − 3θ)|Y ′| (because n < 3|Y ′|). Hence e(X, Y ′) > (1 − 3θ)|X||Y ′|. By Fact 7.1, there
is a subset Y ⊆ Y ′ such that δ(Y, X) ≥ (1 −

√
3θ)|X| and |Y | ≥ (1 −

√
3θ)|Y ′|. Since
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|Y ′| ≥ n/2 − θn, then |Y | ≥ (1 −
√

3θ)(n/2 − θn). Since δ(X, V (G1)) ≥ n − θn, we have

δ(X, Y ) ≥ |Y | − θn

≥ (1 −
√

3θ)(n/2 − θn) − θn

>

(

1

2
−

√
3θ

2
− 2θ

)

n

≥
⌈n

2

⌉

−
√

θn,

where the last inequality holds because
√

3θ/2 + 2θ <
√

θ or θ ≤ (1−
√

3
2

)2, and n ≥ 100.

With |X| ≥ n/2 − θn, the same computation shows that δ(Y, X) ≥ (1 −
√

3θ)|X| ≥
⌈n/2⌉ −

√
θn. Finally δ(Y, X) ≥ (1−

√
3θ)|X| ≥ |X| −

√
θn because |X| ≤ n/2 + θn and

θ < 1√
3
− 1

2
.

7.1 Extremal Case 1 (EC1)

In the proof below and later proofs, we often use the trivial fact that for any vertex x, an
integer s, and two sets A ⊆ B, if deg(x, B) ≥ |B| − s, then deg(x, A) ≥ |A| − s.

Proof of Proposition 3.1. Given 0 < σ < 1, let c be a real number such that
4
√

c + 2
√

c < (1 − 4
√

c)σ (thus
√

c < σ) and n0 be the smallest integer n that satisfies

(

(1 − 4
√

c)σ − 4
√

c − 2
√

c
)

n ≥ 1 (7.1)

Suppose that n ≥ n0. Let G be a 2n-vertex graph such that |L| ≥ 2σn, where L
is the set of vertices of degree at least n, and V (G) = V1 + V2 with |V1| = |V2| and
d(V1, V2) ≥ 1 − c. Without loss of generality, we assume that |V1 ∩ L| ≥ σn. Since
e(V1, V2) > (1 − c)|V1||V2|, we may apply Fact 7.1 to obtain V ′

1 ⊆ V1 such that |V ′
1 | ≥

(1 −√
c)n and

δ(V ′
1 , V2) ≥ (1 −√

c)n. (7.2)

Next we separate two cases based on the values of te = |Teven| and to = |Todd|.
Case a). min{te, to} ≤ ((1 − 4

√
c)σ −√

c) n.
Let A = L ∩ V ′

1 . Since |V ′
1 | ≥ |V1| −

√
cn, we have |A| ≥ σn − √

cn. Since |V2| = n,
(7.2) implies that e(A, V2) ≥ (1 − √

c)|V2||A|. Applying Fact 7.1 again, we find B ⊆ V2

such that |B| ≥ (1 − 4
√

c)n and

δ(B, A) ≥ (1 − 4
√

c)|A| ≥ (1 − 4
√

c)(σ −√
c)n > ((1 − 4

√
c)σ −√

c)n.

On the other hand, (7.2) can be written as δ(V ′
1 , V2) ≥ |V2| −

√
cn, which implies that

δ(A, B) ≥ |B| − √
cn ≥ (1 − 4

√
c −√

c)n > ((1 − 4
√

c)σ −√
c)n

by using σ ≤ 1. Since δ(A, B), δ(B, A) ≥ min{te, to}, we have T ⊂ G from Fact 7.2 Part
1.

the electronic journal of combinatorics 18 (2011), #P27 41



Case b). min{te, to} > ((1 − 4
√

c)σ −√
c) n.

Since te + to = v(T ) = n + 1, we have max{te, to} < (1 − σ(1 − 4
√

c) +
√

c)n + 1. By
(7.2), e(V ′

1 , V2) ≥ (1 −√
c)|V ′

1 ||V2|. We apply Fact 7.1 again to obtain a set V ′
2 ⊆ V2 such

that |V ′
2 | ≥ (1 − 4

√
c)n and

δ(V ′
2 , V

′
1) ≥ (1 − 4

√
c)|V ′

1 | ≥ (1 − 4
√

c)(1 −√
c)n > (1 −√

c − 4
√

c)n.

We have δ(V ′
1 , V

′
2) ≥ |V ′

2 | −
√

cn ≥ (1 − 4
√

c − √
c)n from (7.2). The assumption (7.1)

implies that
(1 − 4

√
c −√

c)n > (1 − σ(1 − 4
√

c) +
√

c)n + 1,

and consequently δ(V ′
1 , V

′
2), δ(V

′
2 , V

′
1) ≥ max{te, to}. We then apply the greedy algorithm

to embed T into G.

7.2 Extremal Case 2 (EC2)

In this section, we prove Theorem 3.2 and also complete the proof of Theorem 1.9. Recall
that a graph G is EC2 with parameter α if there is a partition V (G) = V1 + V2 such that
|V1| = |V2| = n, and d(V1, V2) ≤ α.

We say that G is in the Extremal Case 3 (EC3) with parameter θ if

• V = V1 + V2, |V1| = |V2| = n,

• There exists A ⊆ V1 such that |A| ≥ n/2, δ(A, V ) ≥ n, and δ(A, V1) ≥ (1 − θ)n.

Theorem 3.2 immediately follows from the next two lemmas. Note that we only need
ℓ(G) ≥ n/2 + 1 for Lemma 7.4, which is much weaker than ℓ(G) ≥ n provided by
Theorem 3.2.

Lemma 7.4. There exist θ0 > 0 and n0 ∈ N such that for any θ ≤ θ0 and n ≥ n0, if a
2n-vertex graph G with ℓ(G) ≥ n/2 + 1 is in EC3 with parameter θ, then G ⊃ Tn.

Lemma 7.5. Let G be a graph on 2n vertices with ℓ(G) ≥ n. If G is in EC2 with
parameter α, then either G ⊃ Tn or G is in EC3 with parameter θ ≤ 40 4

√
α +

√
α.

We are ready to prove Theorem 1.9 now.
Proof of Theorem 1.9. Let c be given by Proposition 3.1 with σ = 1/4, and let θ0

be from Lemma 7.4. Let β > 0 be given as in Theorem 1.9. We may assume that β < 1
(otherwise there is nothing to prove). Now set α = min{c, θ2

0, β2/9}.
Let ε = ε(α) be given by Theorem 3.3. Let 0 < ζ ≤ 1/2 such that ζ ≤ ε and

2ζ ≤ √
α − 3α (note that

√
α > 3α because α < 1/9). Suppose that G is a 2n-vertex

graph for sufficiently large n such that ℓ(G) ≥ (1−ζ)n and G 6⊃ Tn. Since ℓ(G) ≥ (1−ε)n,
Theorem 3.3 implies that G is in either of the two extreme cases with parameter α. Since
ζ ≤ 1/2, then ℓ(G) ≥ n/2. If G is in EC1 with parameter α (≤ c), then by the choice
of c, we can apply Proposition 3.1 to get G ⊃ Tn, a contradiction. This implies that G is
in EC2 with parameter α, namely, V (G) can be evenly partitioned into V1 and V2 such
that d(V1, V2) ≤ α.
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Let L be the set of vertices in G of degree at least n. We claim that |Vi∩L| < n
2
+
√

αn
for i = 1, 2. Suppose instead, say |V1∩L| ≥ n

2
+
√

αn. Let V ′
1 be the set of x ∈ V1 such that

deg(x, V2) ≥
√

αn. Then |V ′
1 | ≤

√
αn (otherwise d(V1, V2) > α). Let A′ = (V1 ∩ L) \ V ′

1 .
Since |V1∩L| ≥ n

2
+
√

αn, we have |A′| ≥ n/2. Consequently G is in EC3 with parameter√
α (≤ θ0). Lemma 7.4 thus implies that G ⊃ Tn, a contradiction.
Since |V1 ∩ L| + |V2 ∩ L| = |L| ≥ (1 − ζ)n, we conclude that

n

2
− ζn −√

αn ≤ (1 − ζ)n −
(n

2
+
√

αn
)

< |Vi ∩ L| <
n

2
+
√

αn. (7.3)

Let A = V1 ∩ L. We have

e(A, V1) ≥ |A|n − e(A, V2) ≥ |A|n − e(V1, V2) ≥ |A|n − αn2.

After adding at most αn2 edges, every x ∈ A is adjacent to all other vertices in V1.
By (7.3), G[V1] becomes Hn after adding or removing at most (

√
α + ζ)n2 more edges.

Similarly we may change at most αn2 + (
√

α + ζ)n2 edges to transform G[V2] into Hn.
After deleting αn2 edges between V1 and V2, we finally transform G into 2Hn. The total
number of changed edges is at most

2(αn2 + (
√

α + ζ)n2) + αn2 ≤ 3
√

αn2 ≤ βn2

by using 3α + 2ζ ≤ √
α and 3

√
α ≤ β.

7.2.1 Proof of Lemma 7.4

In this subsection we prove Lemma 7.4. Let θ0 = ( 1
1782

)2. Suppose that 0 < θ ≤ θ0 and
n is sufficiently large. Let G = (V, E) be a 2n-vertex graph with |L| ≥ n/2 + 1, where
L := {x ∈ V : deg(x) ≥ n}. Assume that G is in EC3, that is, V (G) can be evenly
partitioned into V1 ∪ V2 such that V1 contains a set A ⊆ V1 ∩ L with |A| ≥ n/2 and
δ(A, V1) ≥ |V1| − θn. We assume that |A| = ⌈n/2⌉ (otherwise consider a subset of A).
Hence

|A| = ⌈n/2⌉, δ(A, V ) ≥ n, δ(A, A) ≥ |A| − θn. (7.4)

Let B = V1 \ A. Applying Proposition 7.3 with G1 = G[V1] and X = A, we obtain a
subset B1 ⊆ B such that

δ(A, B1) ≥ |B1| − θn, δ(B1, A) ≥ |A| −
√

θn, δ(A, B1), δ(B1, A) ≥ ⌈n/2⌉ −
√

θn. (7.5)

The rest of our proof is divided into two cases according to the number of leaves in T .

Case 1: Embedding trees with at least 33
√

θn leaves.
We need some definitions. For a tree T , the gap g(T ) is defined as ||Todd| − |Teven||.

Definition 7.6. Let T be a tree of size n such that V (T ) = U1 + U2.
1). U1 + U2 is called an ideal partition if

1. |U1| ≤ |U2|,
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2. U2 is independent,

3. U1 contains at least 5
√

θn leaves, and U2 contains at least 2
√

θn leaves.

2). U1 + U2 is called a near-ideal partition if

1. |U1| = n/2 + 1 and |U2| = n/2 (so n is even),

2. U2 is independent,

3. U1 contains at least 5
√

θn leaves, and U2 contains at least 2
√

θn leaves.

4. There exists a leaf z ∈ U1 whose parent y ∈ U2 has degree 2.

The following two lemmas are main ingredients in our proof. We postpone their proofs
to the end.

Lemma 7.7. Let T be a tree with n edges and at least 33
√

θn leaves. Then either g(T ) ≥
2
√

θn + 1 or T has an ideal partition or T has a near-ideal partition.

Lemma 7.8. Suppose 0 ≤ l < n is an integer. Let T be a tree of size at most n, with a
partition V (T ) = U1 + U2 such that U1 contains at least 5l leaves and U2 is independent.
Let Ũ2 be a subset of U2 such that all the vertices in U2 \ Ũ2 are leaves (though Ũ2 may
contains leaves as well). If a graph G contains two disjoint vertex sets X and Y such that

(i) δ(X, X), δ(Y, X) ≥ |X| − l, δ(X, Y ) ≥ max{|Y | − l, |Ũ2|},
(ii) |X| ≥ |U1|, δ(X, V (G)) ≥ e(T ),
then T ⊂ G. Furthermore, for any x ∈ U1 and any a ∈ X, we can map x → a;

alternatively, for any leaf y ∈ Ũ2 and any b ∈ Y , we can map y → b.

Proof of Lemma 7.4 for trees with at least 33
√

θn leaves. Let T a tree with
n edges and at least 33

√
θn leaves. By Lemma 7.7, either g(T ) ≥ 2

√
θn + 1 or T has an

ideal partition or a near-ideal partition.
Case 1: g(T ) ≥ 2

√
θn + 1. This implies that

min{|Teven|, |Todd|} ≤ 1

2
(n + 1 − (2

√
θn + 1)) =

n

2
−
√

θn.

Together with (7.5), it gives δ(A, B1), δ(B1, A) ≥ min{|Teven|, |Todd|}. As δ(A, V ) ≥ n, we
can thus apply Fact 7.2 Part 1 to get T ⊂ G.

Case 2: T has an ideal partition U1 + U2. Then U2 is independent, and U1 contains
at least 5

√
θn leaves. Since |U1| + |U2| = n + 1 and |U1| ≤ |U2|, we have

|U1| ≤ ⌈n/2⌉ ≤ |A|. (7.6)

Let W2 be the set of all leaves in U2. By the definition of ideal partitions, |W2| ≥ 2
√

θn.
On the other hand, |W2| ≥ |U2| − |U1| + 1 by Fact 6.9. Using |U1| + |U2| = n + 1, we
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obtain n + |W2| ≥ 2|U2|. Define Ũ2 := U2 \ W2. Then |Ũ2| = |U2| − |W2| ≤ n+|W2|
2

− |W2|.
By using |W2| ≥ 2

√
θn and (7.5), we derive that

|Ũ2| ≤
n

2
−

√
θn ≤ δ(A, B1). (7.7)

Because of (7.4), (7.5), (7.6), and (7.7), we can apply Lemma 7.8 with l = ⌊
√

θn⌋,11
X = A and Y = B1 to embed T to G.

Case 3: T has a near-ideal partition U1 + U2. In this case n is even, |U1| = n/2 + 1,
and |U2| = n/2. Let W2 be the set of leaves in U2. Then |W2| ≥ 2

√
θn. By item 4 in the

definition of near-ideal partitions: there exists a leaf z ∈ U1 such that its parent y ∈ U2

has degree 2. Let x = p(y). Then x ∈ U1 since U2 is independent.
We need to make some preparation in G. Let B2 = B \ B1. Since |V1| = n and

δ(A, V ) ≥ n, then δ(A, V2) ≥ 1; in particular, some vertex v2 ∈ V2 has at least one
neighbor in A. If a vertex v1 ∈ B2 has no neighbor in A, then we may switch v1 and v2.
Repeating this if necessary, we now assume that δ(B2, A) ≥ 1. Since such switches do not
change A and B1, (7.5) still holds.

Let L2 = L ∩ V2. We claim that either E(A, L2) 6= ∅ or E(B, V2) 6= ∅. In fact,
since |L| ≥ n/2 + 1 and |A| = n/2, either B ∩ L 6= ∅ or L2 6= ∅. If B ∩ L 6= ∅,
then E(B, V2) 6= ∅ because any vertex in L has at least n neighbors and |V1| = n. If
L2 6= ∅, then E(V1, L2) 6= ∅ for the same reason. It follows that either E(A, L2) 6= ∅ or
E(B, L2) 6= ∅.

We consider three cases E(A, L2) 6= ∅, E(B1, V2) 6= ∅, and E(B1, V2) 6= ∅ separately.
Case 3a: E(A, L2) 6= ∅.
Suppose that a vertex v0 ∈ L2 is adjacent to a vertex a ∈ A. Let T ′ = T \ {y, z} and

G′ = G \ {v0}. Then V (T ′) has a partition U ′
1 +U ′

2 with U ′
1 = U1 \ {z} and U ′

2 = U2 \ {y}.
We have |U ′

1| = n/2 = |A|. Let Ũ2 = U ′
2 \ W2. Then |Ũ2| ≤ n

2
− 1 − 2

√
θn because

|W2| ≥ 2
√

θn. Since v0 6∈ A ∪ B1, (7.5) still holds in G′. Since e(T ′) = n − 2 we can
replace (7.4) with

|A| = n/2, δ(A, V (G′)) ≥ n − 1 ≥ e(T ′), δG′(A, A) ≥ |A| − θn. (7.8)

With l = ⌊
√

θn⌋, X = A, and Y = B1, conditions (i) and (ii) in Lemma 7.8 hold in G′.
We then apply Lemma 7.8 to embed T ′ to G′ such that x → a. Next map y to v0, and
finally add the leaf z by using deg(v0) ≥ n.

Case 3b: E(B1, V2) 6= ∅
Suppose that a vertex b ∈ B1 is adjacent to a vertex v0 ∈ V2. Let T ′ = T \ {z}

and G′ = G \ {v0}. Then V (T ′) has a partition U ′
1 + U2 with U ′

1 = U1 \ {z}. Then
|U ′

1| = n/2 = |A|. Let Ũ2 = U2 \ W2. Then |Ũ2| ≤ n
2
− 2

√
θn. We know that (7.5) holds

in G′. Since e(T ′) = n− 1, (7.8) holds as well. With l = ⌊
√

θn⌋, X = A, and Y = B1, we
can apply Lemma 7.8 embedding T ′ to G′. Note that y is a leaf of T ′ and y ∈ Ũ2 (because

11In (7.4) and (7.5), we can add floors to θn and
√

θn because all other terms in the inequalities are
integers.
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y loses its only child z in T ′). We thus require y → b when embedding T ′ to G′. Finally
we map z to v0.

Case 3c: E(B1, V2) 6= ∅.
Suppose that a vertex b ∈ B2 is adjacent to a vertex v0 ∈ V2. Recall that δ(B, A) ≥ 1.

Let a ∈ A be a neighbor of b. Let T ′ = T \{y, z} and G′ = G\{b, v0}. Since v0, b 6∈ A∪B1,
(7.5) still holds in G′. Since δG′(A, V ) ≥ n− 2 = e(T ′), (7.8) holds. We apply Lemma 7.8
to embed T ′ to G′ such that x → a as in Case 3a. Then map y to b and z to v0.

We now prove Lemmas 7.7 and 7.8.
Let T be a rooted tree T and x ∈ V (T ). Recall that T (x) is the maximal subtree

of T containing x but not p(x). Given C ⊂ C(x), the subtree obtained from T (x) by
removing all T (y), y ∈ C is called a natural subtree rooted at x. A natural subtree T ′ of T
has the property that T − T ′ is also a tree. The following simple fact on natural subtrees
is needed for proving Lemma 7.7 and Claim 7.12.

Fact 7.9. Let T be a rooted tree with v(T ) vertices and w(T ) leaves.
1. For any positive integer k ≤ v(T ), there is a natural subtree T ′ such that k

2
≤

v(T ) < k. In this case, we call T ′ a [k/2, k]-subtree.
2. For any positive integer k ≤ w(T ), there exists a natural subtree with m leaves such

that k/2 ≤ m < k.

Proof. For x ∈ V (T ), write t(x) for v(T (x)). In the partial order defined by T with
Rt(T ) as the highest element, we find the lowest vertex x such that t(x) ≥ k

2
. Then t(y) <

k
2

for every y ∈ C(x). If t(x) < k, then T (x) is the desired natural subtree. Otherwise,
from T (x), we repeat removing the subtree T (y) for y ∈ C(x) until the remaining subtree
has order less than k. We know the size of this tree is at least k/2 because the last
removed y ∈ C(x) satisfies t(y) < k

2
and the subtree right before removing T (y) has order

at least k.
Part 2 can be proved similarly.

Given a tree with a vertex-partition U1 + U2, flipping a vertex set S (which may
intersect both U1 and U2) mean moving the vertices of S from one partition set to the
other one. It results in a new partition U ′

1 + U ′
2 with U ′

1 = (U1 \ S) ∪ (U2 ∩ S) and
U ′

2 = (U2 \ S) ∪ (U1 ∩ S).
In the proof of Lemma 7.7, unless g(T ) is large, we find a natural subtree T0 rooted

at r0 such that both T0 and T − T0 have many leaves and then flip T0 or T0 − r0 in the
default partition (Teven, Todd). In most cases, the resulting partition is an ideal partition.
In the remaining cases, we obtain a near-ideal partition.

Proof of Lemma 7.7. Without loss of generality, assume that |Todd| ≥ |Teven|. Let
g = |Todd|− |Teven| (then g ≥ 0). If g ≥ 2

√
θn+1, then we are done. We may thus assume

that
g ≤ 2

√
θn + 1. (7.9)

Since |Todd| + |Teven| = n + 1, g has the same parity as n + 1. Denote sets of leaves in
Teven and Todd by We, Wo, respectively. Thus |We| + |Wo| ≥ 33

√
θn. If |We| ≥ 5

√
θn and
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|Wo| ≥ 2
√

θn, then Teven +Todd is an ideal partition, and we are done. Otherwise we have
either |Wo| < 2

√
θn or |We| < 5

√
θn.

Case a) |Wo| < 2
√

θn.
Then |We| > 31

√
θn. We flip 2

√
θn−|Wo| vertices of We and their parents (not moving

other vertices under the parents). Let U1 and U2 be the resulting sets obtained from Teven

and Todd, respectively. Clearly U2 is independent and |U1| ≤ |Teven| ≤ |U2|. In addition,
U2 contains 2

√
θn leaves, and U1 contains more than 5

√
θn leaves. Therefore U1 + U2 is

an ideal partition.
Case b) |We| < 5

√
θn.

Applying Fact 7.9, we find a natural subtree T0 rooted at r0 with m leaves, where
11
√

θn ≤ m < 22
√

θn. Then T1 := T − T0 is also a subtree and contains at least 11
√

θn
leaves. Since |We| < 5

√
θn, each of T0 and T1 contains at least 11

√
θ − 5

√
θ = 6

√
θn

vertices of Wo.
Let gi = |V (Ti) ∩ Todd| − |V (Ti) ∩ Teven| for i = 0, 1. Then

g0 + g1 =

{

g − 1 if r0 ∈ Teven

g + 1 if r0 ∈ Todd.

If g0 ≥ g/2 and r0 ∈ Teven, then we flip T0. Let U2 and U1 be the resulting sets generated
from Teven and Todd, respectively. Then

|U1| − |U2| = |Todd| − |Teven| − 2(|V (T0) ∩ Todd| − |V (T0) ∩ Teven|) = g − 2g0 ≤ 0,

and only U1 contains internal edges. In addition, U1 contains at least 6
√

θn leaves (from
T1), and U2 contains at least 6

√
θn leaves (from T0). Therefore U1+U2 is an ideal partition.

If g0 ≤ g/2 and r0 ∈ Todd, then we also flip T0 and obtain an ideal partition similarly.

Figure 3: Flipping T0 when g0 ≥ g/2, r0 ∈ Teven and in Case 1)

If g0 ≤ g/2 − 1 and r0 ∈ Teven, or g0 ≥ g/2 + 1 and r0 ∈ Todd, we can also obtain an
ideal partition by flipping T0 \ {r0}.

If g ≡ n+1 (mod 2) is even, then these are all the cases and we are done. Now assume
that g is odd (then n is even). The only remaining cases are

Case 1) g0 = g−1
2

and r0 ∈ Teven (thus g1 = g−1
2

),

Case 2) g0 = g+1
2

and r0 ∈ Todd (thus g1 = g+1
2

).
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We flip T0 in these cases. In Case 1), let U2 and U1 be the resulting sets generated
from Teven and Todd; while in Case 2), let U1 and U2 be the resulting sets generated from
Teven and Todd. It is easy to see that12 |U1| = n

2
+ 1, |U2| = n

2
, and U2 is independent.

Furthermore, U1 and U2 each contains more than 6
√

θn leaves. By Definition 7.6, in order
to call U1 + U2 a near-ideal partition, we need to find a leaf z ∈ U1 whose parent y ∈ U2

has degree 2.
Below we show that there exists a leaf z ∈ U1, whose parent y ∈ U2 has exactly

one nonleaf neighbor. This suffices because if deg(y) = 2, then U1 + U2 is a near-ideal
partition; otherwise y has another leaf neighbor z′ (in U1 since U2 is independent), then
we flip z, z′ and y and the resulting partition becomes ideal.

Suppose we were in Case 1). Then V (T1) ∩ Todd ⊂ U1. Therefore it suffices to show
that there exists a leaf z ∈ V (T1) ∩ Todd such that its parent p(z) has exactly one nonleaf
neighbor. Note that p(z) ∈ U2 unless p(z) = r0; but p(z) 6= r0 because r0 has at least
two nonleaf neighbors (one from T0 and one from T1).

13 Let W 1
o = Wo ∩ V (T1). We has

shown that |W 1
o | ≥ 6

√
θn. Suppose that for every v ∈ W 1

o , its parent p(v) has at least
two nonleaf neighbors. Let T ′

1 = T1 − W 1
o . Then two trees T ′

1 and T1 have the same
number of leaves in Teven. We now use Fact 6.9 to find a lower bound for this number.
Let T 1

even = V (T1) ∩ Teven and T 1
odd = V (T1) ∩ Todd. The tree T ′

1 has the bipartition
(T 1

even, T 1
odd − W 1

o ). We know |T 1
odd| − |T 1

even| = g1 = g−1
2

≤
√

θn from (7.9). By Fact 6.9,
the number of leaves of T ′

1 in Teven is at least

|T 1
even| − (|T 1

odd| − |W 1
o |) + 1 ≥ −

√
θn + 6

√
θn + 1 = 5

√
θn + 1.

All but at most one leaf of T1 in Teven are leaves of T (the exception is r0). Therefore T
has at least 5

√
θn leaves in Teven, contradicting |We| < 5

√
θn.

In Case 2), we define W 0
o = Wo ∩ V (T0) and T ′

0 = T0 − W 0
o . Following the same

arguments except that g0 = g+1
2

replaces g0 = g−1
2

, we conclude that T ′
0 has at least 5

√
θn

leaves in Teven. Since r0 6∈ Teven, all these leaves are leaves of T . Thus T has at least
5
√

θn leaves in Teven, a contradiction.

Given a vertex set C in a tree, let p(C) denote the union of parents p(x) for all x ∈ C.
Proof of Lemma 7.8. Let W1 be the set of leaves in U1 not including x. Then

|W1| ≥ 5l − 1. Let Ŵ1 be the set of leaves in U1 with parent in U2.
Claim. |Ŵ1| ≥ 4l.
Proof. For instead, at least l leaves in U1 have their parents in U1. We move these

leaves to U2 and let U ′
1, U

′
2 denote the resulting sets. Then |U ′

1| = |U1| − l and U ′
2 is

independent. Let Ũ2 be the given subset of U2, which contains all the nonleaf vertices of
U ′

2 and a leaf y. Then Ũ2 is also a subset of U ′
2. Conditions (i) and (ii) imply that

δ(X, X), δ(Y, X) ≥ |X| − l ≥ |U1| − l = |U ′
1|, δ(X, Y ) ≥ |Ũ2|, δ(X, V ) ≥ e(T ).

12For example, in Case 1), we use |U1| − |U2| = g − 2g0 = 1.
13Otherwise either T0 or T1 is a star but this is impossible because gi < g ≤ 2

√
θn + 1 and Ti has at

least 11
√

θn leaves.
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Applying Fact 7.2 Part 3, we can embed T → G such that x → a or alternatively
y → b.

Let W ′
1 = {v ∈ Ŵ1 : v is the unique leaf among the children of p(v)}. First assume

that |W ′
1| < 2l. Let W ′′

1 := Ŵ1 \ W ′
1. Then |p(W ′′

1 )| ≤ |W ′′
1 |/2. By the claim above,

|W ′
1| + |W ′′

1 | = |Ŵ1| ≥ 4l, thus |W ′′
1 | > 2l. We flip p(W ′′

1 ) ∪ W ′′
1 and let U ′

1 + U ′
2 denote

the resulting sets. Then U ′
2 is independent and |U ′

1| = |U1| − |W ′′
1 | + |p(W ′′

1 )| ≤ |U1| − l
because |W ′′

1 | − |p(W ′′
1 )| > l. Let Ũ ′

2 = Ũ2 − p(W ′′
1 ). Then |Ũ ′

2| < |Ũ2| and y ∈ Ũ ′
2 because

y is a leaf and p(W ′′
1 ) contains no leaves. We then apply Fact 7.2 Part 3 to embed T → G

such that either x → a or y → b.
Now assume that |W ′

1| ≥ 2l. Since any two leaves in W ′
1 have different parents, we

have |p(W ′
1)| = |W ′

1|. Since

δ(X, X), δ(Y, X) ≥ |X| − l > |U1| − 2l ≥ |U1 \ W ′
1|, and δ(X, Y ) ≥ |Ũ2|,

we can apply the greedy algorithm to embed U1 \ W ′
1 into X and Ũ2 into Y such that

either x → a or y → b. Note that we do not embed W2 := U2 \ Ũ2 at this moment.
Next, let Y ′ be the set of images of p(W ′

1). Since |X| ≥ |U1| ≥ |U1 \ W ′
1| + |W ′

1|, we
can find a set X ′ ⊂ X of |W ′

1| unoccupied vertices. Then |X ′| = |Y ′| ≥ 2l. Since
δ(X, Y ) ≥ |Y | − l and δ(Y, X) ≥ |X| − l, in the bipartite subgraph G[Y ′, X ′], we have
δ(Y ′, X ′) ≥ |X ′|− l ≥ |X ′|/2, and δ(X ′, Y ′) ≥ |Y ′|− l ≥ |Y ′|/2. The well-known marriage
theorem thus provides a perfect matching from Y ′ to X ′, which in turn gives an embedding
of W ′

1. Finally, since W2 is a set of leaves and p(W2) was embedded to X, we can add all
the leaves in W2 greedily.

Case 2. Embedding trees with at most 33
√

θn leaves
In this case we need a lemma which generalizes the naive greedy algorithm and post-

pone its proof to the end. Given a graph G, we write G = (X, Y ; E) if it is bipartite with
partition sets X and Y .

Lemma 7.10. Let T = (U1, U2; E(T )) be a tree with at most l leaves such that |U1|, |U2| ≥
26l. Let G = (X, Y ; E) be a bipartite graph satisfying

1. |X| ≥ |U1|, |Y | ≥ |U2|,

2. Y = Y1 + Y2, δ(X, Y1) ≥ |Y1| − l, δ(Y1, X) ≥ |X| − l,

3. |Y2| ≤ l, and G contains |Y2| vertex-disjoint 2-paths, each of which consists of one
vertex of Y2 as mid-point and two vertices of X as end-points.

Suppose that z ∈ U1 and a ∈ X such that a is not contained in the given 2-paths. Then
T can be embedded to G such that U1 → X, U2 → Y , and z → a.

We now prove Lemma 7.4 for trees that do not have many leaves. In this case we do
not need the assumption ℓ(G) ≥ n/2 + 1.

Proof of Lemma 7.4: T has at most 33
√

θn leaves. Recall that V1 contains two
disjoint subsets A, B1 satisfying (7.4) and (7.5).
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Let F be a maximum family of vertex-disjoint 2-paths with mid-points in V (G)\ (A∪
B1) and both end-points in A. Let B2 be the set of the mid-points from min{|F|, n −
|A| − |B1|} paths of F . Let B = B1 ∪B2 V ′

1 = A ∪B, and V ′
2 = V \ V ′

1 . As |B| ≥ |B1| ≥
⌈n/2⌉ −

√
θn, we have n −

√
θn ≤ |V ′

1 | ≤ n and consequently |V ′
2 | ≤ n +

√
θn.

We claim that |V ′
1 | ≥ n− 1 or equivalently |B| ≥ ⌊n/2⌋ − 1. Suppose to the contrary,

that
|V ′

1 | ≤ n − 2. (7.10)

The definition of B2 thus implies that |F| < n − |A| − |B1| ≤
√

θn. Let A′ be the set
of the vertices of A that are not end-points of F . Then |A′| > n/2 − 2

√
θn. For any

vertex v ∈ A′, as deg(v) ≥ n, we have deg(v, V ′
2) ≥ n − |V ′

1 |+ 1 ≥ 3 by using (7.10). The
neighborhoods in V ′

2 of the vertices of A′ must be disjoint, otherwise it yields a new 2-path
which is vertex-disjoint from F , contradicting the maximality of F . But this implies that

3
(n

2
− 2

√
θn
)

≤
∑

v∈A′

deg(v, V ′
2) ≤ |V ′

2 | ≤ n +
√

θn,

a contradiction.
In summary, G[V ′

1 ] satisfies Conditions 2 and 3 of Lemma 7.10 with X = A, Y1 = B1,
Y2 = B2, and any l ≥

√
θn. We also know that A ⊆ L, A = ⌈n/2⌉ and ⌊n/2⌋− 1 ≤ |B| ≤

⌊n/2⌋.
Let T be a tree with n edges and at most 33

√
θn leaves. Without loss of generality,

assume that |Teven| ≤ |Todd|. Then |Teven| ≤ ⌈n/2⌉ = |A|. We also assume that |Teven| >
⌈n/2⌉−

√
θn otherwise Fact 7.2 Part 1 provides an embedding of T . Let T ′

odd be the set of
non-leaf vertices in Todd. Let T ′ be the induced subtree of T on Teven ∪ T ′

odd. Then T ′ has
at most 33

√
θn leaves and partition sizes |Teven| > ⌈n/2⌉−

√
θn and |T ′

odd| ≥ n/2−33
√

θn.
We have |Teven|, |T ′

odd| ≥ 26(33
√

θn) as long as n
2
≥ 27(33

√
θn) or θ ≤ ( 1

1782
)2.

If |T ′
odd| ≤ |B|, then with l = ⌊33

√
θn⌋, all the conditions of Lemma 7.10 are satisfied.

We can apply Lemma 7.10 to embed T ′ into G[V ′
1 ] such that Teven → A and T ′

odd → B.
Finally we add the leaves in Todd greedily and complete the embedding of T .

Now assume that |T ′
odd| > |B|. By Proposition 6.9, Todd has at least |Todd| − |Teven|+1

leaves. Then |T ′
odd| ≤ |Teven| − 1 ≤ ⌈n/2⌉ − 1. Since ⌊n/2⌋ − 1 ≤ |B| ≤ ⌊n/2⌋, we have

|T ′
odd| > |B| only if n is odd and |B| = n−3

2
and |Teven| = |Todd| = n+1

2
.

In this case if either Teven or Todd has at least two leaves, then we can apply Lemma 7.10
as well (by letting U2 be T ′

even or T ′
odd). Otherwise T has at most two leaves. Then T is

a path. Let Ã be the set of the vertices of A that are not on the 2-paths covering B′
2.

Fix a vertex a ∈ Ã. Since deg(a, Ã) ≥ |Ã| − θn > 0, we can find a neighbor v ∈ Ã of a.
Let P be a path on n − 2 vertices with leaves x, y ∈ Peven. Then |Peven| = (n − 1)/2 and
|Podd| = (n − 3)/2. Let A′ = A \ {v}; then |A′| = (n − 1)/2 = |Peven|. All conditions of
Lemma 7.10 hold with U1 = Peven, U2 = Podd, X = A′, Y = B, and l = ⌈

√
θn⌉. We apply

Lemma 7.10 to embed P to G[V ′
1 \ {v}] such that x → a. Suppose that the other leaf y

is mapped to w ∈ A \ {v}. We then extend P to a path on n + 1 vertices by connecting
a and v and adding a neighbor of v and a neighbor of w greedily.

We thus complete the proof of Lemma 7.4.
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To prove Lemma 7.10, we need some properties of trees with a small number of leaves.
Given a 2-path uvw, we call it an S-2-path if the mid-point v ∈ S, and call it a special
2-path if furthermore, all vertices in N({u, w}) have degree at most two (consequently
deg(v) = 2).

Proposition 7.11. Let T be a tree with l leaves.

1.
∑

x∈U3(deg(x) − 2) = l − 2, where U3 = {x ∈ V (T ) : deg(x) ≥ 3}. In particular,
|U3| ≤ l − 2.

2. |N(S)| ≤ 2|S| + l − 2 for any subset S ⊂ V (T ).

3. Let T = (U1, U2; E) be a tree such that |U1|, |U2| ≥ 26l. Fix a vertex z ∈ U1. Then T
contains 5l special U2-2-paths P1, . . . , P5l and 4l U1-2-paths such that all these paths
are vertex-disjoint and do not contain z.

Proof. Define U i = {x ∈ V (T ) : deg(x) = i} for i = 1, 2. Hence U1 ∪ U2 ∪ U3 is a
partition of V (T ).

Part 1:
∑

x∈V (T )(deg(x) − 2) = 2e(T ) − 2v(T ) = −2. On the other hand,

∑

x∈V (T )

(deg(x) − 2) = −l +
∑

x∈U3

(deg(x) − 2),

which implies that
∑

x∈U3(deg(x) − 2) = l − 2.
Part 2: We partition S into S1, S2 and S3 such that Si = {x ∈ S : deg(x) = i} for

i = 1, 2, and S3 = {x ∈ S : deg(x) ≥ 3}. Then

|N(S)| ≤
∑

x∈S

deg(x) = |S1| + 2|S2| +
∑

x∈S3

deg(x)

= |S1| + 2|S2| + 2|S3| +
∑

x∈S

(deg(x) − 2)

≤ 2|S| + (l − 2), by Part 1.

Part 3: Let U i
j = U i ∩ Uj for i = 1, 2, 3 and j = 1, 2. Define two subsets

U ′
2 = U2

2 \ N(U3
1 ∪ {z}) and U ′

1 = (U2
1 \ {z}) \ N(U3

2 ).

We claim that |U ′
2| ≥ |U2| − 4l. In fact,

|U ′
2| ≥ |U2

2 | − |N(U3
1 ∪ {z})|

≥ |U2| − |U1
2 | − |U3

2 | − 2(|U3
1 | + 1) − (l − 2) by Part 2

≥ |U2| − |U1| − 2|U3| − l

≥ |U2| − l − 2(l − 2) − l by Part 1

> |U2| − 4l.
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Similar arguments show that |U ′
1| ≥ |U1| − 4l.

Next we observe that for any subset D ⊆ U ′
1 or D ⊆ U ′

2, we can find at least |D|/3
vertex-disjoint D-2-paths. Below we prove this for D ⊆ U ′

2. Let x1y1z1, . . . , xmymzm be m
D-2-paths for some m < |D|/3 (then xi, zi ∈ U1). By the definition of U ′

2, we have |N(xi)∪
N(zi)| ≤ 3 for all i, and consequently there exists y ∈ D such that y 6∈ ⋃m

i=1 N(xi)∪N(zi).
In other words, y 6∈ {y1, . . . , ym} and N(y) is disjoint from {x1, z1, . . . , xm, zm}. Hence y
together with N(y) (of size two) form a D-2-path that is vertex-disjoint from the existing
U ′

2-2-paths.
Furthermore consider U ′′

2 = U ′
2 \ N2(U3

2 ), where N2(U3
2 ) := N(N(U3

2 )) is the set of
the second-neighbors of U3

2 . Then every vertex x ∈ U ′′
2 , its (two) neighbors, and its (at

most two) second-neighbors all have degree at most two. Therefore every U ′′
2 -2-path is a

special U2-2-path. Applying Part 1 and Part 2, we obtain that

|N2(U3
2 )| ≤ 2|N(U3

2 )| + (l − 2) ≤ 2(2|U3
2 | + l − 2) + l − 2 ≤ 7(l − 2),

and consequently |U ′′
2 | ≥ |U ′

2| − 7(l − 2) ≥ |U2| − 11l. Since |U2| ≥ 26l, we can find
|U ′′

2 |/3 ≥ (|U2| − 11l)/3 ≥ 5l vertex-disjoint U ′′
2 -2-paths P1, . . . , P5l.

P1 P5l Q1 Q4l

U1

U2z

Figure 4: Proposition 7.11, Part 3

Finally let Ũ ′
1 = U ′

1\∪5l
i=1V (Pi). Then |Ũ ′

1| ≥ |U ′
1|−2(5l) ≥ |U1|−14 l. Since |U1| ≥ 26l,

we can find |Ũ ′
1|/3 ≥ (|U1| − 14 l)/3 ≥ 4l vertex-disjoint Ũ ′

1-2-paths Q1, . . . , Q4l. Since
the mid-points of P1, . . . , P5l have degree two, the end-points of P1, . . . , P5l are all their
neighbors. For each x ∈ Ũ ′

1, since x 6∈ ∪5l
i=1V (Pi), x is not adjacent to any mid-point

of P1, . . . , P5l. Therefore all P1, . . . , P5l, Q1, . . . , Q4l are vertex-disjoint. In addition, our
definition of U ′

1, U
′
2 guaranteed that z is not contained in any Pi or Qi.

Proof of Lemma 7.10. Let k := |Y2| ≤ l and denote the given Y2-2-paths by
O1, . . . , Ok. Let X ′ = X \ ∪k

i=1V (Oi). By Proposition 7.11, T contains 4l + k special
U2-2-paths P1, . . . , P4l+k and 4l U1-2-paths Q1, . . . , Q4l such that all the paths are vertex-
disjoint and do not contain z. Let z be the root of T . For each i = 1, . . . , k, let ti be
the end-point of V (P4l+i) closer to z, and let si = p(ti) and ri = p(si) be its parent and
grand-parent, respectively. (Note that si, ri exist because ti, z ∈ U1 and z 6= ti.) Since
each Pi is a special U2-2-path, we have deg(si) ≤ 2 and therefore deg(si) = 2.

Let F be the forest obtained from T by removing the mid-points and the edges of
Pi, Qi for i = 1, . . . , 4l. Then F has two partition sets Fe and Fo with |Fe| = |U1| − 4l
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and |Fo| = |U2| − 4l, and F contains Fo-2-paths P4l+1, . . . , P4l+k. For i = 1, . . . , k, let
P ′

4l+i := siP4l+i (the 3-edge path obtained by extending P4k+i to include si). We now
embed F into X ∪ Y in three steps.

1. First embed P4l+1, . . . , P4l+k to O1, . . . , Ok

2. Next embed F −⋃k
i=1 V (P ′

4k+i) to X ′ ∪ Y1 such that z → a.

3. Finally embed s1, . . . , sk.

The embedding in Step 1 is obvious. The embedding in Step 2 follows from the greedy
algorithm, in which we first embed z → a and then use

δ(Y1, X
′) ≥ |X ′| − l = |X| − 2k − l ≥ |U1| − 3l > |Fe|, and

δ(X ′, Y1) ≥ |Y1| − l ≥ |Y | − 2l ≥ |U2| − 2l > |Fo|.
In Step 3, we embed si for 1 ≤ i ≤ k as follows. Suppose that ti is embedded to ui in
Step 1. If ri 6∈ V (F )14, then we simply map si to an unoccupied vertex in N(ui, Y1).
Otherwise assume that ri ∈ V (F ) is mapped to some vertex vi in Step 2. Then we map
si to an unoccupied vertex in N(ui, Y1) ∩ N(vi, Y1). This is always possible because

|N(ui, Y1) ∩ N(vi, Y1)| ≥ |Y1| − 2l ≥ |U2| − 3l > |Fo|.

It remains to embed the mid-points of P1, . . . , P4l, Q1, . . . , Q4l. Since |X| ≥ |U1| =
|Fe|+4l, we can find a subset X̃ ⊂ X containing 4l unoccupied vertices. For i = 1, . . . , 4l,
let pi, qi ∈ Y1 be the images of the end-vertices of Qi. We form a bipartite graph B̃
on X̃ and Ỹ := {piqi : i = 1, . . . , 4l} in which two vertices x ∈ X̃ and piqi ∈ Ỹ are
adjacent if and only if x is adjacent to both pi and qi. Since δ(Y1, X) ≥ |X| − l, we
have δB̃(Ỹ , X̃) ≥ 4l − 2l = |X̃|/2. On the other hand, δ(X, Y1) ≥ |Y1| − l implies that
δB̃(X̃, Ỹ ) ≥ 4l − l > |Ỹ |/2. By the marriage theorem, there exists a perfect matching
between X̃ and Ỹ in B̃. We accordingly add 4l X̃-2-paths to F . We repeat this process
to embed the mid-points of P1, . . . , P4l and thus complete the embedding of T .

7.2.2 Proof of Lemma 7.5

In this subsection we prove Lemma 7.5 and thus complete the proof of Theorem 3.2. Let
G be a 2n-vertex graph G in EC2 with parameter α, i.e., V (G) can be partitioned into
V1 ∪ V2 such that |V1| = |V2| = n and d(V1, V2) ≤ α. Let L be the set of vertices of degree
at least n. By assumption |L| ≥ n. Assume that Tn 6⊂ G. Our goal is to show that G is

in EC3 with parameter 40α
1

4 +
√

a. Now let α1 = 40α
1

4 .

Claim 7.12. There is no vertex v ∈ L such that deg(v, V1), deg(v, V2) ≥ α1n.

14This means that ri is the mid-point of some Qj.
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Proof. Suppose instead, there exists v0 ∈ L such that deg(v0, V1), deg(v0, V2) ≥ α1n.
Without loss of generality, assume that deg(v0, V1) ≥ n

2
.

For i = 1, 2, let Ai be the set of x ∈ Vi ∩L such that deg(x, Vj) ≤
√

αn for j 6= i (then
v0 6∈ Ai). Thus δ(Ai, Vi) ≥ (1−√

α)n. Since d(V1, V2) ≤ α, we have |Ai| ≥ |Vi∩L|−√
αn.

If |Vi ∩ L| ≥ n/2 +
√

αn for any i, then |Ai| ≥ n/2 and consequently G is in EC3 with
parameter

√
α. We may thus assume that |Vi ∩L| < n

2
+
√

αn for i = 1, 2. Since |L| ≥ n,
this implies that |Vi ∩ L| > n/2 −√

αn for i = 1, 2. Consequently

n

2
+
√

αn > |Vi ∩ L| ≥ |Ai| ≥ |Vi ∩ L| − √
αn >

n

2
− 2

√
αn.

Applying Proposition 7.3 with θ = 2
√

α, we obtain B′
i ⊆ Vi \ Ai such that δ(Ai, Bi),

δ(Bi, Ai) ≥ n
2
−
√

2α
1

4 n. Let Bi = B′
i \ {v0}. We have

δ(Ai, Bi), δ(Bi, Ai) ≥
n

2
−
√

2α
1

4 n − 1 ≥ n

2
− 2α

1

4 n. (7.11)

In addition,

δ(Ai, Ai) ≥ |Ai| −
√

αn ≥ n

2
− 3

√
αn ≥ n

2
− 2α

1

4 n. (7.12)

Let T be a tree of size n. We will show that T ⊂ G. If T has a partition U1 + U2 such
that |U1| ≤ n

2
− 2α

1

4 n and U2 is independent, then because of (7.12) and (7.11), T ⊂ G
follows from Fact 7.2 Part 2. We thus assume that T has no such partition.

Applying Fact 7.9 Part 1, we find an [α1

4
n, α1

2
n]-subtree T ′ rooted at r. Then F =

T − V (T ′) is a forest and F ∪ {r} spans a tree. We map r to v0. Since v0 ∈ L, all leaves
that are adjacent to r can be added at the end. Let F ′ be the subforest obtained from
F after removing all isolated vertices. Our goal is to map T ′ − r to A2 ∪ B2 and F ′ to
A1 ∪ B1 (note that v0 6∈ A1 ∪ B1 ∪ A2 ∪ B2).

The embedding of T ′ − r is easy. From (7.11), we derive that |A2 ∪ B2| ≥ n − 4α
1

4 n.

Together with deg(v0, V2) ≥ α1n, this implies that deg(v0, A2 ∪B2) > α1n− 4α
1

4 n > α1

2
n.

Since degT ′(r) ≤ α1

2
n, we are able to map NT ′(r) to A2 ∪ B2. Let G2 = G[A2 ∪ B2]. We

have δ(G2) ≥ n
2
− 2α

1

4 n > e(T ′) from (7.11). The remaining vertices in T ′ − r thus can
be embedded in G2 by the greedy algorithm.

We now show how to embed F ′. Since F ′ contains no isolated vertices,

|Rt(F ′) ≤ |V (F ′)|/2 ≤ (n − α1

4
n)/2 =

n

2
− α1

8
n.

Since deg(v0, V1) ≥ n/2 and |A1∪B1| ≥ n−4α
1

4 n, we have deg(v0, A1∪B1) ≥ n
2
−4α

1

4 n ≥
n
2
− α1

8
n (here we need α1 ≥ 32α

1

4 ). Therefore we can map Rt(F ′) to N(v0, A1 ∪ B1).
Let (X1, Y1) be the bipartition of F ′ such that the roots embedded to A1 are in X1,

and the roots embedded to B1 are in Y1. If max{|X1|, |Y1|} ≤ n
2
− 2α

1

4 n, then we can
embed F ′ to A1 ∪ B1 by the greedy algorithm. Otherwise, without loss of generality,
assume that |X1| > n

2
− 2α

1

4 n. Suppose that T ′ − r has the bipartition (X2, Y2) with
|X2| ≥ |Y2|. Let U1 = Y1 ∪ Y2 ∪ {r} and U2 = X1 ∪ X2. Clearly U2 is independent.

the electronic journal of combinatorics 18 (2011), #P27 54



We claim that |U1| ≤ n
2
− 2α

1

4 n, contrary to our earlier assumption on T . In fact, since
|X1| + |Y1| = v(F ′) = n + 1 − v(T ′), we have

|Y1| ≤ n + 1 − v(T ′) −
(n

2
− 2α

1

4 n
)

≤ n

2
− v(T ′) + 2α

1

4 n + 1.

Since |Y2| ≤ (v(T ′) − 1)/2, it follows that

|U1| ≤ |Y1| +
v(T ′) − 1

2
+ 1 ≤ n

2
− v(T ′)

2
+ 2α

1

4 n +
3

2

≤ n

2
− 3α

1

4 n +
3

2
because v(T ′) ≥ α1

4
n ≥ 10α

1

4 n

<
n

2
− 2α

1

4 n.

Proof of Lemma 7.5. Let L1 = {v ∈ L : deg(v, V1) > α1n} and L2 = {v ∈ L :
deg(v, V2) > α1n}. Claim 7.12 implies that L1∩L2 = ∅. Since δ(L, V ) ≥ n and 2α1n < n,
L1 ∪ L2 is a partition of L. Thus δ(L1, V1) ≥ (1 − α1)n, and δ(L2, V2) ≥ (1 − α1)n. Let
Li

j = Li∩Vj, for 1 ≤ i, j ≤ 2. Since d(V1, V2) ≤ α and α1 ≥
√

α, we have |L1
2|, |L2

1| <
√

αn.
Let V ′

1 = (V1∪L1
2)\L2

1 and V ′
2 = (V2∪L2

1)\L1
2. Then Li ⊆ V ′

i and |V ′
i | ≥ n/2−√

αn for i =
1, 2. We move at most

√
αn vertices of V \L between V ′

1 and V ′
2 such that |V ′

1 | = |V ′
2 | = n.

Without loss of generality, assume that |L1| ≥ n/2. Since δ(L1, V ′
1) ≥ (1 − α1)n −√

αn,
we conclude that G is in EC3 with parameter α1 +

√
α, with partition sets V ′

1 + V ′
2 and

A = L1.

8 Concluding Remarks

• What is the smallest m = m(n, n/2) such that every n-vertex graph with at least
m vertices of degree at least n/2 contains all trees on n edges as subgraphs? We
have shown that this number is between n/2−√

n− 1 and n/2. We feel that lower
bound is closer to the truth. To verify it, because of the robustness of Theorem 3.3,
it suffices to improve our proof of the extremal cases.

• The techniques proving the Extremal Case 3 can be applied to prove the k ≥
(1 − ε)v(G) case of the Komlós-Sós Conjecture (exactly) for sufficiently small ε.
Since the aim of this paper is to prove the (n/2−n/2−n/2) Conjecture, we do not
generalize our proof for this purpose.
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Note added in proof. After the first version of this paper was written and publicized
in 2002, more work has been done on the Komlós-Sós Conjecture (Conjecture 1.4). Piguet
and Stein [15] recently proved an approximate version of the conjecture. More recently
Piguet and Hladký [12] and independently Cooley [6] combined the ideas from the present
paper and [15] to prove Conjecture 1.4 for all k = Ω(n).
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[5] A. Burr, P. Erdős, Extremal Ramsey theory for graphs. Utilitas Math 9 (1976),
247–258.

[6] O. Cooley, Proof of the Loebl-Komls-Sós conjecture for large, dense graphs, Discrete
Mathematics, to appear.
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A Appendix

We prove Lemma 5.4 Part 3. The following corollary of Lemma 5.1 gives a sufficient
condition for embedding a forest of small trees into two adjacent clusters with prescribed
location of roots.

Corollary A.1. Let X, Y ∈ V be two adjacent clusters containing subsets P ⊆ X1 ⊆ X
and Q ⊆ Y1 ⊆ Y . Let F be a forest consisting of trees of order at most εN . If (U1, U2) is
a bipartition of F with R1 := Rt(F ) ∩ U1 and R2 := Rt(F ) ∩ U2 such that

|U1| ≤ |X1| − (γ + 3ε)N, |U2| ≤ |Y1| − (γ + 3ε)N,
|R1| ≤ |P | − 3εN, |R2| ≤ |Q| − 3εN,

(A.1)

then we can embed F with U1
2εN−→ X1, U2

2εN−→ Y1, R1
2εN−→ P , and R2

2εN−→ Q.

Proof. We describe an algorithm of embedding trees in F by applying Lemma 5.1
repeatedly while mapping as many non-root vertices as possible to X \ P and Y \ Q.
Assume that trees T1, . . . , Ti−1 from F have been embedded such that

⋃

j<i V (Tj)∩U1 →
X1 and

⋃

j<i V (Tj) ∩ U2 → Y1. Let X∗
1 , Y ∗

1 , P ∗, Q∗ denote the sets of available vertices in
X1, Y1, P, Q, respectively, at this moment. The assumption (A.1) implies that

|X∗
1 |, |Y ∗

1 | ≥ (γ + 3ε)N. (A.2)

Without loss of generality, suppose the next tree Ti in F has its root at U1. Let X0 = X∗
1\P

if |X∗
1 \ P | ≥ γN ; otherwise X0 = X∗

1 . Similarly we define Y0. In order to embed
Ti → P ∗∪X0 ∪Y0 by Lemma 5.1, we need to verify that |P ∗| ≥ 3εN and |X0|, |Y0| ≥ γN .
It is easy to see that, for example, |X0| ≥ γN follows from the definition of X0 and (A.2).
Since |R1| ≤ |P | − 3εN , |P ∗| ≤ 3εN is only possible when P contains images of non-root
vertices. This implies that X1 \P has fewer than γN vertices available before embedding
Ti−1. Together with |P ∗| ≤ 3εN , this implies that |X∗

1 | < (γ + 3ε)N , a contradiction.

The proof of Lemma 5.4 Part 3 is somewhat technical. The main difficulty is that
when embedding the first tree T1 of F , the image u of the second root r2 has not been
decided yet so we can not purposely avoid P := N(u, X) or Q := N(u, Y ) as in the proof
of Corollary A.1. Certainly we want to map Rt(F ) to the vertices that are typical to
the sets of available vertices in X and Y . Nevertheless we may not be able to embed an
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ordered F to C ∪ X ∪ Y even if F o := F − Rt(F ) has a bipartition similar to the one in
Corollary A.1:

|U1| ≤ |X| − (γ + 3ε)N, |U2| ≤ |Y | − (γ + 3ε)N,
|R1| ≤ d(C, X)N − εN − 3εN, |R2| ≤ d(C, Y )N − εN − 3εN.

(A.3)

Let us give an example. Construct a tripartite random graph on three sets C, X, Y of
size N such that each edge appears with probability 1/3 independently. Suppose that F
consists of two εN -trees with roots r1 and r2. Accordingly F o = F −{r1, r2} is partitioned
into two forests F1 and F2, each of which consists of trees of order at most εN . Suppose
that v(F1) = v(F2) = (1−2γ)N and all trees in F1, F2 have ratio 1/2 (for example, they are
paths of even order). Furthermore, assume that |Rt(F1)| = N

6
and |Rt(F2)| = (1

2
− 2γ)N .

After embedding r1 to C and F1 to X∪Y , the sets X∗ and Y ∗ of the remaining vertices are
of size about N/2 (because Ratio(F1) = 1/2). However, for each vertex u ∈ C, we have
deg(u, X∗∪Y ∗) = |X∗∪Y ∗|/3 ≈ N

3
< (1

2
−2γ)N = |Rt(F2)|. There is no enough space for

Rt(F2) no matter how we map r2 in C. On the other hand, let (U1, U2) be a bipartition
of F o such that the roots of F1 and F2 are distributed evenly. Let Ri = V (F o)∩Ui. Then

|R1| = |R2| =
1

2

(

N

6
+

(

1

2
− 2γ

)

N

)

=
N

3
− γN ≤ N

3
− 4εN,

and |U1| = |U2| = (1 − 2γ)N ≤ N − (γ + 3ε)N . Thus (A.3) holds.

Let X, Y be adjacent clusters with P ⊆ X and Q ⊆ Y , we write F → (P, Q; X, Y ) if

F
2εN−→ X ∪ Y with Rt(F )

2εN−→ P ∪ Q.

Lemma A.2. Let X, Y ∈ V be two adjacent clusters with subsets P ⊆ X1 ⊆ X and
Q ⊆ Y1 ⊆ Y . Assume that |X1| ≤ |Y1|. Let F be a forest consisting of trees of order
between 2 and εN (inclusive). Then F → (P, Q; X1, Y1) if

v(F ) ≤ min
{

2|P | + 2|Q| − 12εN, min{|P |, |Q|}+ |X1| − (2γ + 7ε)N
}

. (A.4)

Furthermore, let X∗
1 , Y

∗
1 denote the sets of available vertices in X1, Y1 after F is embedded,

and X ′
1 := X1 − X∗

1 and Y ′
1 := Y1 − Y ∗

1 . Then one of the following holds.
Case 1: ||X∗

1 | − |Y ∗
1 || ≤ max{||X1| − |Y1||, εN}.

Case 2: |X ′
1|, |Y ′

1 | ≥ |P | − 3εN .
Case 3: |X ′

1|, |Y ′
1 | ≥ |Q| − 3εN .

Proof. We show that there is a bipartition of V (F ) into U1 and U2, with R1 =
Rt(F ) ∩ U1 and R2 = Rt(F ) ∩ U2 satisfying (A.1). Then F → (P, Q; X1, Y1) follows from
Corollary A.1.

Suppose that F = {T1, . . . , Ts}. For every i ≤ s, we have |(Ti)even|, |(Ti)odd| ≤ εN − 1
because v(Ti) ≤ εN , . Fix i ≤ s. By distributing the roots of T1, . . . , Ti properly, we
obtain a bipartition (U i

1, U
i
2) of T1 ∪ · · · ∪ Ti such that |U i

1| ≤ |U i
2| < |U i

1| + εN . Let
Ri

1 = Rt(F ) ∩ U i
1 and Ri

2 = Rt(F ) ∩ U i
2. Now we consider three possibilities.
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(1). |Rs
1| ≤ |P | − 3εN and |Rs

2| ≤ |Q| − 3εN .
Let U1 = Us

1 , U2 = Us
2 , R1 = Rs

1, and R2 = Rs
2. Then

|U1| ≤ |U2| < |U1| + εN. (A.5)

We claim that (U1, U2) is a bipartition of F satisfying (A.1). Clearly R1 and R2 satisfy
(A.1). Using (A.5) and |U1| + |U2| = v(F ) ≤ 2|X1| − (2γ + 7ε)N , we derive that 2|U2| ≤
2|X1| − (2γ + 6ε)N , and consequently |U1| ≤ |U2| ≤ |X1| − (γ + 3ε)N .

We observe that Case 1 holds. In fact, |Y1| ≥ |X1| implies that |Y ∗
1 |+|Y ′

1| ≥ |X∗
1 |+|X ′

1|.
Since |X ′

1| = |U1| and |Y ′
1 | = |U2|, we have |Y ∗

1 | − |X∗
1 | ≥ |U1| − |U2| > −εN by (A.5). On

the other hand, |Y ∗
1 | − |X∗

1 | = (|Y1| − |X1|)− (|U2| − |U1|) ≤ |Y1| − |X1| by (A.5). Putting
them together, we obtain ||X∗

1 | − |Y ∗
1 || ≤ max{|Y1| − |X1|, εN}.

(2). There exists i < s such that |Ri
1| = |P | − 3εN .

In this case, after constructing (U i
1, U

i
2), we add the remaining trees of F to U i

1 and
U i

2 such that all roots are in U i
2. Let (U1, U2) denote the resulting bipartition and Ri =

Rt(F ) ∩ Ui for i = 1, 2. We claim that U1, U2, R1 and R2 satisfy (A.1). First, we have
|R1| = |Ri

1| = |P | − 3εN . Second, it is impossible to have |R2| > |Q| − 3εN because it
implies that |R1| + |R2| > |P | + |Q| − 6εN . Since every tree in F has at least 2 vertices,
this yields that v(F ) ≥ 2(|R1| + |R2|) > 2(|P | + |Q| − 6εN), contrary to (A.4). Since
|Ri

1| = |P |−3εN and every tree in F has at least 2 vertices, we have |U i
1|, |U i

2| ≥ |P |−3εN .
Together with

|U1| + |U2| = v(F ) ≤ |P | + |X1| − (γ + 6ε)N ≤ |P |+ |Y1| − (γ + 6ε)N,

it gives that |U2| ≤ |Y1| − (γ + 3ε)N and |U1| ≤ |X1| − (γ + 3ε)N .
Furthermore, we are in Case 2 because |X ′

1|, |Y ′
1 | ≥ min{|U i

1|, |U i
2|} ≥ |P | − 3εN .

(3). There exists i < s such that |Ri
2| = |Q| − 3εN .

In this case we add the remaining trees of F to U i
1 and U i

2 such that all their roots are
in U i

1. The rest of the proof is similar to (2) except that we derive Case 3, |X ′
1|, |Y ′

1 | ≥
|Q| − 3εN , instead.

Proof of Lemma 5.4 Part 3. Suppose that F = {T1, . . . , Ts} has roots r1, . . . , rs

and satisfies
||F || ≤ (dx + dy + λ − 2γ − 13ε)N. (A.6)

We embed trees T1, . . . , Ts to C ∪X ∪ Y in order. Let X0 = Y 0 = ∅. For i = 1, . . . , s, let
X i and Y i denote the sets of occupied vertices in X and Y , respectively, after embedding
T1, . . . , Ti. Our goal is to prove the following claim.

Claim. For i = 1, . . . , s, let ui ∈ C be an unoccupied vertex in C that is typical to

X − X i−1 and Y − Y i−1. Then we can embed Ti such that Rt(Ti) → ui and Ti − ri
2εN−→

(X − X i−1) ∪ (Y − Y i−1). In addition, one of the following holds.
Case a) ||X i| − |Y i|| < εN .
Case b) |X i|, |Y i| ≥ dxN − 5εN .
Case c) |X i|, |Y i| ≥ dyN − 5εN .
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The claim immediately implies F → (C, {X, Y }): by the regularity of (C, X) and
(C, Y ), all but at most s − 1 + 2εN < 3εN of C can be chosen as ui for 1 ≤ i ≤ s.
Furthermore, since X0 = Y 0 = ∅, u1 can be any vertex in C that is typical to X and Y .

Let us prove this claim by induction on i. To facilitate our induction, we start with
i = 0: there is nothing to embed; we are in Case a) because |X0| = |Y 0| = 0. Suppose
the claim holds for i − 1 for some i ≥ 1. Then {T1, . . . , Ti−1} → (C, {X, Y }) such that
Case a), b) or c) holds for i − 1. Let X1 = X − X i−1 and Y1 = Y − Y i−1 denote the sets
of available vertices in X and Y . Without loss of generality, assume that |X1| ≤ |Y1|.

We first map the root ri of Ti to the given vertex ui ∈ C. Then we attempt to
embed the forest Fi := Ti − {ri} by Lemma A.2 to X1 ∪ Y1 with P := N(u, X1), and
Q := N(u, Y1). For convenience, write x0 = |X i−1|, y0 = |Y i−1|, x1 = |X1|, and y1 = |Y1|
(so x0 + x1 = y0 + y1 = N). Since ui is typical to X1 and Y1, we have

|P | ≥ dxx1 − εN and |Q| ≥ dyy1 − εN. (A.7)

If (A.4) holds for Fi, then Fi
2εN−→ X1 ∪ Y1 by Lemma A.2. Otherwise

v(Fi) > min
{

2|P | + 2|Q| − 12εN, min{|P |, |Q|}+ |X1| − (2γ + 7ε)N
}

,

which leads to two possible cases.
Case I. v(Fi) > min{|P |, |Q|}+ |X1| − (2γ + 7ε)N .
First assume that |P | ≥ |Q|. By (A.7), it follows that

v(Fi) > |Q| + |X1| − (2γ + 7ε)N ≥ dyy1 + x1 − (2γ + 8ε)N (A.8)

Consequently

||F || ≥ x0 + y0 + v(Fi)

> x0 + y0 + dyy1 + x1 − (2γ + 8ε)N

≥ N + dyN − (2γ + 8ε)N by using dyy1 + y0 ≥ dyy1 + dyy0 = dyN

≥ (dx + dy + λ)N − (2γ + 8ε)N by using dx ≤ 1 − λ,

contrary to (A.6).
Second assume that |P | < |Q|. Using (A.7) we have

v(Fi) > |P | + |X1| − (2γ + 7ε)N ≥ dxx1 + x1 − (2γ + 8ε)N.

Consequently ||F || > x0 + y0 + x1 + x1dx − (2γ + 8ε)N . Now we proceed under the three
cases defined in the claim.

• Under Case a), y0 ≥ x0 − εN , we have ||F || > N + dxN − (2γ + 9ε)N .

• Under Case b), y0 ≥ dxN − 5εN , we have ||F || > N + dxN − (2γ + 13ε)N .

• Under Case c), y0 ≥ dyN − 5εN , we have ||F || > N + dyN − (2γ + 13ε)N .
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Since {dx, dy} ≤ 1 − λ, all these cases yields that ||F || > (dx + dy + λ)N − (2γ + 13ε)N ,
contrary to (A.6).

Case II. v(Fi) > 2|P | + 2|Q| − 12εN .
Using (A.7) we have

||F || > x0 + y0 + 2(dxx1 + dyy1 − 2εN) − 12εN

= dxN + dyN + (x0 + dxN − 2dxx0) + (y0 + dyN − 2dyy0) − 16εN.

Since 2γ > 3ε, in order to get a contradiction to (A.6), it suffices to show that

(x0 + dxN − 2dxx0) + (y0 + dyN − 2dyy0) ≥ λN. (A.9)

Since 0 ≤ dx, dy ≤ 1 and 0 ≤ x0, y0 ≤ N ,

x0 − dxx0, dxN − dxx0, y0 − dyy0, dyN − dyy0

are all non-negative. When x0 ≥ N/2, we have x0 +dxN −2dxx0 ≥ x0−dxx0 ≥ λN/2 (by
using dx ≤ 1 − λ). Similarly when y0 ≥ N/2, we have y0 + dyN − 2dyy0 ≥ λN/2. If both
x0 ≥ N/2 and y0 ≥ N/2, then (A.9) holds. Otherwise assume that x0 < N/2. It is easy
to see that f(dx) := x0 + dxN − 2dxx0 is an increasing function of dx. Since dx ≥ λ, this
implies that f(dx) ≥ x0 + λN − 2λx0 ≥ λN (since λ ≤ 1/2). The case when y0 < N/2 is
the same.

Now we complete our induction proof by showing one of the cases a), b) or c) holds
for i. By induction hypothesis, Case a), b) or c) holds for i − 1. Since X i−1 ⊆ X i and
Y i−1 ⊆ Y i, if either Case b) or Case c) holds for i − 1, then it holds for i as well. We
may thus assume that Case a) holds for i − 1, namely, ||X i−1| − |Y i−1|| < εN . Since
|X| = |Y | = N , it follows that ||X1| − |Y1|| < εN .

Since we embedded Fi by Lemma A.2, one of the cases 1, 2, and 3 in Lemma A.2 must
hold. First assume that Case 1 holds. Then ||X∗

1 | − |Y ∗
1 || ≤ max{||X1| − |Y1||, εN} < εN ,

where X∗
1 , Y

∗
1 denote the sets of unoccupied vertices in X1, Y1 after embedding Fi. Since

X i = X −X∗
1 and Y i = Y −Y ∗

1 , this implies that ||X i|− |Y i|| < εN . Hence Case a) holds
for i.

Now assume that Lemma A.2 Case 2 holds, namely, |X i − X i−1|, |Y i − Y i−1| ≥ |P | −
3εN . By using (A.7), we derive that

|X i| = |X i−1| + |X i − X i−1| ≥ |X i−1| + (dx|X1| − εN) − 3εN ≥ dxN − 4εN,

and (using ||X i−1| − |Y i−1|| < εN as well)

|Y i| = |Y i−1| + |Y i − Y i−1| ≥ (|X i−1| − εN) + (dx|X1| − εN) − 3εN ≥ dxN − 5εN.

Thus Case b) holds for F .
Similarly we can derive Case c) for i if Lemma A.2 Case 3 holds. This finally completes

the proof of Lemma 5.4 Part 3.
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