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Abstract

Building on the work of P.N. Norton, we give combinatorial formulae for two
maximal decompositions of the identity into orthogonal idempotents in the 0-Hecke
algebra of the symmetric group, CH0(SN ). This construction is compatible with
the branching from SN−1 to SN .

1 Introduction

The 0-Hecke algebra CH0(SN) for the symmetric group SN can be obtained as the Iwahori-
Hecke algebra of the symmetric group Hq(SN) at q = 0. It can also be constructed as the
algebra of the monoid generated by anti-sorting operators on permutations of N .

P. N. Norton described the full representation theory of CH0(SN) in [11]: In brief,
there is a collection of 2N−1 simple representations indexed by subsets of the usual gen-
erating set for the symmetric group, in correspondence with collection of 2N−1 projective
indecomposable modules. Norton gave a construction for some elements generating these
projective modules, but these elements were neither orthogonal nor idempotent. While it
was known that an orthogonal collection of idempotents to generate the indecomposable
modules exists, there was no known formula for these elements.

Herein, we describe an explicit construction for two different families of orthogonal
idempotents in CH0(SN), one for each of the two orientations of the Dynkin diagram
for SN . The construction proceeds by creating a collection of 2N−1 demipotent elements,
which we call diagram demipotents, each indexed by a copy of the Dynkin diagram with
signs attached to each node. These elements are demipotent in the sense that, for each
element X, there exists some number k ≤ N −1 such that Xj is idempotent for all j ≥ k.
The collection of idempotents thus obtained provides a maximal orthogonal decomposition
of the identity.

An important feature of the 0-Hecke algebra is that it is the monoid algebra of a
J -trivial monoid. As a result, its representation theory is highly combinatorial. This
paper is part of an ongoing effort with Hivert, Schilling, and Thiéry [5] to characterize
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the representation theory of general J -trivial monoids, continuing the work of [11], [7],
[8]. This effort is part of a general trend to better understand the representation theory
of finite semigroups. See, for example, [10], [19], [20], [1], [13], and for a general overview,
[6].

The diagram demipotents obey a branching rule which compares well to the situation
in [12] in their ‘New Approach to the Representation Theory of the Symmetric Group.’
In their construction, the branching rule for SN is given primary importance, and yields a
canonical basis for the irreducible modules for SN which pull back to bases for irreducible
modules for SN−M .

Okounkov and Vershik further make extensive use of a maximal commutative alge-
bra generated by the Jucys-Murphy elements. In the 0-Hecke algebra, their construction
does not directly apply, because the deformation of Jucys-Murphy elements (which span
a maximal commutative subalgebra of CSN) to the 0-Hecke algebra no longer commute.
Instead, the idempotents obtained from the diagram demipotents play the role of the
Jucys-Murphy elements, generating a commutative subalgebra of CH0(SN) and giving
a natural decomposition into indecomposable modules, while the branching diagram de-
scribes the multiplicities of the irreducible modules.

The Okounkov-Vershik construction is well-known to extend to group algebras of gen-
eral finite Coxeter groups ([15]). It remains to be seen whether our construction for
orthogonal idempotents generalizes beyond type A. However, the existence of a process
for type A gives hope that the Okounkov-Vershik process might extend to more general
0-Hecke algebras of Coxeter groups.

Section 2 establishes notation and describes the relevant background necessary for the
rest of the paper. For further background information on the properties of the symmetric
group, one can refer to the books of [9] and [17]. Section 3 gives the construction of the
diagram demipotents. Section 4 describes the branching rule the diagram demipotents
obey, and also establishes the Sibling Rivalry Lemma, which is useful in proving the main
results, in Theorem 4.7. Section 5 establishes bounds on the power to which the diagram
demipotents must be raised to obtain an idempotent. Finally, remaining questions are
discussed in Section 6.

Acknowledgements. This work was the result of an exploration suggested by Nicolas
M. Thiéry; the notion of branching idempotents was suggested by Alain Lascoux. Addi-
tionally, Florent Hivert gave useful insights into working with demipotents elements in an
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Berg, Andrew Berget, Brant Jones, Steve Pon, and Qiang Wang for their helpful feedback.
This research was driven by computer exploration using the open-source mathematical
software Sage, developed by [18] and its algebraic combinatorics features developed by
the [16], and in particular Daniel Bump and Mike Hansen who implemented the Iwahori-
Hecke algebras. For larger examples, the Semigroupe package developed by Jean-Éric Pin
[14] was invaluable, saving perhaps weeks of computing time.
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2 Background and Notation

Let SN be the symmetric group generated by the simple transpositions si for i ∈ I =
{1, . . . , N − 1} which satisfy the following realtions:

• Reflection: s2
i = 1,

• Commutation: sisj = sjsi for |i − j| > 1,

• Braid relation: sisi+1si = si+1sisi+1.

The relations between distinct generators are encoded in the Dynkin diagram for SN ,
which is a graph with one node for each generator si, and an edge between the pairs
of nodes corresponding to generators si and si+1 for each i. Here, an edge encodes the
braid relation, and generators whose nodes are not connected by an edge commute. (See
figure 1.)

Definition 2.1. The 0-Hecke monoid H0(SN) is generated by the collection πi for i in
the set I = {1, . . . , N − 1} with relations:

• Idempotence: π2
i = πi,

• Commutation: πiπj = πjπi for |i − j| > 1,

• Braid Relation: πiπi+1πi = πi+1πiπi+1.

The 0-Hecke monoid can be realized combinatorially as the collection of anti-sorting
operators on permutations of N . For any permutation σ, πiσ = σ if i + 1 comes before i
in the one-line notation for σ, and πiσ = siσ otherwise.

Additionally, σπi = σsi if the ith entry of σ is less than the i+1th entry, and σπi = σ
otherwise. (The left action of πi is on values, and the right action is on positions.)

Definition 2.2. The 0-Hecke algebra CH0(SN) is the monoid algebra of the 0-Hecke
monoid of the symmetric group.

Words for SN and H0(SN) Elements. The set I = {1, . . . , N − 1} is called the index
set for the Dynkin diagram. A word is a sequence (i1, . . . , ik) of elements of the index
set. To any word w we can associate a permutation sw = si1 . . . sik and an element of the
0-Hecke monoid πw = πi1 · · ·πik . A word w is reduced if its length is minimal amongst
words with permutation sw. The length of a permutation σ is equal to the length of a
reduced word for σ.

For compactness of notation, we will often write words as sequences subscripting the
symbol for a generating set. Thus, π1π2π3 = π123. (We will not compute any examples
involving SN for N ≥ 10.)

Elements of the 0-Hecke monoid are indexed by permutations: Any reduced word
s = si1 · · · sik for a permutation σ gives a reduced word in the 0-Hecke monoid, πi1 · · ·πik .
Furthermore, given two reduced words w and v for a permutation σ, then w is related
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to v by a sequence of braid and commutation relations. These relations still hold in the
0-Hecke monoid, so πw = πv.

From this, we can see that the 0-Hecke monoid has N ! elements, and that the 0-Hecke
algebra has dimension N ! as a vector space. Additionally, the length of a permutation is
the same as the length of the associated H0(SN) element.

We can obtain a parabolic subgroup (resp. submonoid, subalgebra) by considering the
object whose generators are indexed by a subset J ⊂ I, retaining the original relations.
The Dynkin diagram of the corresponding object is obtained by deleting the relevant nodes
and connecting edges from the original Dynkin diagram. Every parabolic subgroup of SN

contains a unique longest element, being an element whose length is maximal amongst all
elements of the subgroup. We denote the longest element in the parabolic sub-monoid of
H0(SN) with generators indexed by J ⊂ I by w+

J , and use Ĵ to denote the complement
of J in I. For example, in H0(S8) with J = {1, 2, 6}, then w+

J = π1216, and w+

Ĵ
= π3453437.

Definition 2.3. An element x of a monoid or algebra is demipotent if there exists some
k such that xω := xk = xk+1. A monoid is aperiodic if every element is demipotent.

The 0-Hecke monoid is aperiodic. Namely, for any element x ∈ H0(SN), let:

J(x) = {i ∈ I | s.t. i appears in some reduced word for x}.

This set is well defined because if i appears in some reduced word for x, then it appears
in every reduced word for x. Then xω = w+

J(x).

The Algebra Automorphism Ψ of CH0(SN). CH0(SN) is alternatively generated as
an algebra by elements π−

i := (1−πi), which satisfy the same relations as the πi generators.
There is a unique automorphism Ψ of CH0(SN ) defined by sending πi → (1 − πi).

For any longest element w+
J , the image Ψ(w+

J ) is a longest element in the (1 − πi)
generators; this element is denoted w−

J .

The Dynkin Diagram Automorphism of CH0(SN). Any automorphism of the un-
derlying graph of a Dynkin diagram induces an automorphism of the Hecke algebra. For
the Dynkin diagram of SN , there is exactly one non-trivial automorphism, sending the
node i to N − i + 1.

This diagram automorphism induces an automorphism of the symmetric group, send-
ing the generator si → sN−i and extending multiplicatively. Similarly, there is an au-
tomorphism of the 0-Hecke monoid sending the generator πi → πN−i and extending
multiplicatively.

Bruhat Order. The (left) weak order on the set of permutations is defined by the rela-
tion σ ≤L τ if there exist reduced words v, w such that σ = sv, τ = sw, and v is a prefix
of w in the sense that w = v1, v2, . . . , vj , wj + 1, . . . , wk. The right weak order is defined
analogously, where v must appear as a suffix of w.

The left weak order also exists on the set of 0-Hecke monoid elements, with exactly
the same definition. Indeed, sv ≤L sw if and only if πv ≤L πw.
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For a permutation σ, we say that i is a (left) descent of σ if siσ ≤L σ. We can define a
descent in the same way for any element πw of the 0-Hecke monoid. We write DL(σ) and
DL(πw) for the set of all descents of σ and πw respectively. Right descents are defined
analogously, and are denoted DR(σ) and DR(πw), respectively.

It is well known that i is a left descent of σ if and only if there exists a reduced word
w for σ with w1 = i. As a consequence, if DL(πw) = J , then w+

J πw = πw. Likewise,
i is a right descent if and only if there exists a reduced word for σ ending in i, and if
DR(πw) = J , then πww+

J = πw.
The Bruhat order is defined by the relation σ ≤ τ if there exist reduced words v and

w such that sv = σ and sw = τ and v appears as a subword of w. For example, 13 appears
as a subword of 123, so s13 ≤ s123 in strong Bruhat order. Bruhat order is compatible
with multiplication in H0(SN); given any elements πw ≤ πw′ and any element x, we have
πwx ≤ πw′x and xπw ≤ xπw′ .

Representation Theory The representation theory of CH0(SN) was described in [11]
and expanded to generic finite Coxeter groups in [3]. A more general approach to the
representation theory can be taken by approaching the 0-Hecke algebra as a monoid
algebra, as per [6]. The main results are reproduced here for ease of reference.

For any subset J ⊂ I, let λJ denote the one-dimensional representation of CH0(SN)
defined by the action of the generators:

λJ(πi) =

{

0 if i ∈ J,

1 if i /∈ J.

The λJ are 2N−1 non-isomorphic representations, all one-dimensional and thus simple. In
fact, these are all of the simple representations of CH0(SN). (In fact, this construction
works for H0(W ), where W is any Coxeter group.)

Definition 2.4. For each i ∈ I, define the evaluation maps Φ+
i and Φ+

i on generators
by:

Φ+
N : CH0(W ) → CH0(WI\{i})

Φ+
N (πi) =

{

1 if i = N ,

πi if i 6= N .

Φ−
N : CH0(W ) → CH0(WI\{i})

Φ−
N (πi) =

{

0 if i = N ,

πi if i 6= N .

One can easily check that these maps extend to algebra morphisms from H0(W ) →
H0(WI\i). For any J , define Φ+

J as the composition of the maps Φ+
i for i ∈ J , and

define Φ−
J analogously. Then the simple representations of H0(W ) are given by the maps

λJ = Φ+
J ◦ Φ−

Ĵ
, where Ĵ = I \ J .
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The map Φ+
J is also known as the parabolic map [2], which sends an element x to an

element y such that y is the longest element less than x in Bruhat order in the parabolic
submonoid with generators indexed by J .

The nilpotent radical N in CH0(SN) is spanned by elements of the form x − w+
J(x),

where x ∈ H0(SN), and w+
J(x) is the longest element in the parabolic submonoid whose

generators are the generators in any given reduced word for x. This element w+
J(x) is

idempotent. If y is already idempotent, then y = w+
J(y), and so y − w+

J(y) = 0 contributes

nothing to N . However, all other elements x − w+
J(x) for x not idempotent are linearly

independent, and thus give a basis of N .
Norton further showed that

CH0(SN) =
⊕

J⊂I

H0(SN)w−
J w+

Ĵ

is a direct sum decomposition of CH0(SN) into indecomposable left ideals.

Theorem 2.5 (Norton, 1979). Let {pJ |J ⊂ I} be a set of mutually orthogonal primitive
idempotents with pJ ∈ CH0(SN)w−

J w+

Ĵ
for all J ⊂ I such that

∑

J⊂I pJ = 1.

Then CH0(SN)w−
J w+

Ĵ
= CH0(SN)pJ , and if N is the nilpotent radical of CH0(SN),

Nw−
J w+

Ĵ
= N pJ is the unique maximal left ideal of CH0(SN)pJ , and CH0(SN)pJ/N pJ

affords the representation λJ .
Finally, the commutative algebra may be described thusly:

CH0(SN)/N =
⊕

J⊂I

CH0(SN)pJ/N pJ = C
2N−1

.

The elements w−
J w+

Ĵ
are neiter orthogonal nor idempotent; the proof of Norton’s the-

orem is non-constructive, and does not give a formula for the idempotents.

3 Diagram Demipotents

The elements πi and (1 − πi) are idempotent. There are actually 2N−1 idempotents
in H0(SN), namely the elements w+

J for any J ⊂ I. These idempotents are clearly not
orthogonal, though. The goal of this paper is to give a formula for a collection of orthogonal
idempotents in CH0(SN ).

For our purposes, it will be convenient to index subsets of the index set I (and thus
also simple and projective representations) by signed diagrams.

Definition 3.1. A signed diagram is a Dynkin diagram in which each vertex is labeled
with a + or −.

Figure 1 depicts a signed diagram for type A7, corresponding to H0(S8). For brevity,
a diagram can be written as just a string of signs. For example, the signed diagram in
the Figure is written + + −−− + −.
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1+ 2+ 3− 4− 5− 6+ 7−

Figure 1: A signed Dynkin diagram for S8.

We now construct a diagram demipotent corresponding to each signed diagram. Let
P be a composition of the index set I obtained from a signed diagram D by grouping
together sets of adjacent pluses and minuses. For the diagram in Figure 1, we would
have P = {{1, 2}, {3, 4, 5}, {6}, {7}}. Let Pk denote the kth subset in P . For each Pk,

let w
sgn(k)
Pk

be the longest element of the parabolic sub-monoid associated to the index set
Pk, constructed with the generators πi if sgn(k) = + and constructed with the (1 − πi)
generators if sgn(k) = −.

Definition 3.2. Let D be a signed diagram with associated composition P = P1∪· · ·∪Pm.
Set:

LD = w
sgn(1)
P1

w
sgn(2)
P2

· · ·wsgn(m)
Pm

, and

RD = w
sgn(m)
Pm

w
sgn(m−1)
Pm−1

· · ·wsgn(1)
P1

.

The diagram demipotent CD associated to the signed diagram D is then LDRD. The
opposite diagram demipotent C ′

D is RDLD.

Thus, the diagram demipotent for the diagram in Figure 1 is

π+
121π

−
345343π

+
6 π−

7 π+
6 π−

345343π
+
121.

It is not immediately obvious that these elements are demipotent; this is a direct result
of Lemma 4.3.

For N = 1, there is only the empty diagram, and the diagram demipotent is just the
identity.

For N = 2, there are two diagrams, + and −, and the two diagram demipotents are
π1 and 1 − π1 respectively. Notice that these form a decomposition of the identity, as
πi + (1 − πi) = 1.

For N = 3, we have the following list of diagram demipotents. The first column gives
the diagram, the second gives the element written as a product, and the third expands
the element as a sum. For brevity, words in the πi or π−

i generators are written as strings
in the subscripts. Thus, π1π2 is abbreviated to π12.

D CD Expanded Demipotent
++ π121 π121

+− π1π
−
2 π1 π1 − π121

−+ π−
1 π2π

−
1 π2 − π12 − π21 + π121

−− π−
121 1 − π1 − π2 + π12 + π21 − π121
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Observations.

• The idempotent π−
121 is an alternating sum over the monoid. This is a general

phenomenon: By [11], w−
J is the length-alternating signed sum over the elements of

the parabolic sub-monoid with generators indexed by J .

• The shortest element in each expanded sum is an idempotent in the monoid with πi

generators; this is also a general phenomenon. The shortest term is just the product
of longest elements in nonadjacent parabolic sub-monoids, and is thus idempotent.
Then the shortest term of CD is π+

J , where J is the set of nodes in D marked with
a +. Each diagram yields a different leading term, so we can immediately see that
the 2N−1 idempotents in the monoid appear as a leading term for exactly one of the
diagram demipotents, and that they are linearly independent.

• For many purposes, one only needs to explicitly compute half of the list of diagram
demipotents; the other half can be obtained via the automorphism Ψ. A given
diagram demipotent x is orthogonal to Ψ(x), since one has left and right π1 descents,
and the other has left and right π−

1 descents, and π1π
−
1 = 0.

• The diagram demipotents are fixed under the automorphism determined by πσ →
πσ−1 . In particular, LD is the reverse of RD, and CD can be expressed as a palin-
drome in the alphabet {πi, π

−
i }.

• The diagram demipotents CD and CE for D 6= E do not necessarily commute. Non-
commuting demipotents first arise with N = 6. However, the idempotents obtained
from the demipotents are orthogonal and do commute.

• It should also be noted that these demipotents (and the resulting idempotents)
are not in the projective modules constructed by Norton, but generate projective
modules isomorphic to Norton’s.

• The diagram demipotents CD listed here are not fixed under the automorphism in-
duced by the Dynkin diagram automorphism. In particular, the ‘opposite’ diagram
demipotents C ′

D = RDLD really are different elements of the algebra, and yield an
equally valid but different set of orthogonal idempotents. For purposes of compari-
son, the diagram demipotents for the reversed Dynkin diagram are listed below for
N = 3.

D C ′
D Expanded Demipotent

++ π212 π212

+− π2π
−
1 π2 π2 − π212

−+ π−
2 π1π

−
2 π1 − π12 − π21 + π212

−− π−
212 1 − π1 − π2 + π12 + π21 − π212

For N ≤ 4, the diagram demipotents are actually idempotent and orthogonal. For
larger N , raising the diagram demipotent to a sufficiently large power yields an idempotent
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(see below 4.7); in other words, the diagram demipotents are demipotent. The power that
an diagram demipotent must be raised to in order to obtain an actual idempotent is called
its nilpotence degree.

For N = 5, two of the diagram demipotents need to be squared to obtain an idempo-
tent. For N = 6, eight elements must be squared. For N = 7, there are four elements
that must be cubed, and many others must be squared. Some pretty good upper bounds
on the nilpotence degree of the diagram demipotents are given in Section 5. As a preview,
for N > 4 the nilpotence degree is always ≤ N − 3, and conditions on the diagram can
often greatly reduce this bound.

As an alternative to raising the demipotent to some power, we can express the idem-
potents as a product of diagram demipotents for smaller diagrams. Let Dk be the signed
diagram obtained by taking only the first k nodes of D. Then, as we will see, the idem-
potents can also be expressed as the product CD1

CD2
CD3

· · ·CDN−1=D.

Right Weak Order. Let m be a standard basis element of the 0-Hecke algebra in the
πi basis. Then for any i ∈ DL(m), πim = m, and for any i 6∈ DL(m) then πim ≥R m, in
left weak order. This is an adaptation of a standard fact in the theory of Coxeter groups
to the 0-Hecke setting.

Corollary 3.3 (Diagram Demipotent Triangularity). Let CD be a diagram demipotent
and m an element of the 0-Hecke monoid in the πi generators. Then CDm = λm + x,
where x is an element of H0(SN) spanned by monoid elements lower in right weak order
than m, and λ ∈ {0, 1}. Furthermore, λ = 1 if and only if DL(m) is exactly the set of
nodes in D marked with pluses.

Proof. The diagram demipotent CD is a product of πi’s and (1 − πi)’s.

Proposition 3.4. Each diagram demipotent is the sum of a non-zero idempotent part
and a nilpotent part. That is, all eigenvalues of a diagram demipotent are either 1 or 0.

Proof. Assign a total ordering to the basis of H0(SN) in the πi generators that respects
the Bruhat order. Then by Corollary 3.3, the matrix MD of any diagram demipotent CD

is lower triangular, and each diagonal entry of MD is either one or zero. A lower triangular
matrix with diagonal entries in {0, 1} has eigenvalues in {0, 1}; thus CD is the sum of an
idempotent and a nilpotent part.

To show that the idempotent part is non-zero, consider any element m of the monoid
such that DL(m) is exactly the set of nodes in D marked with pluses. Then CDm = m+x
shows that CD has a 1 on the diagonal, and thus has 1 as an eigenvalue. Then the
idempotent part of CD is non-zero. (This argument still works if D has no plusses, since
the associated diagram demipotent fixes the identity.)

4 Branching

There is a convenient and useful branching of the diagram demipotents for H0(SN) into
diagram demipotents for H0(SN+1).
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Lemma 4.1. Let J = {i, i + 1, . . . , N − 1} Then w+
J πNw+

J is the longest element in the
generators i through N . Likewise, w+

J πi−1w
+
J is the longest element in the generators i−1

through N − 1. Similar statements hold for w−
J π−

Nw−
J and w−

J π−
i−1w

−
J .

Proof. Let J = {i, i + 1, . . . , N − 1}.
The lexicographically minimal reduced word for the longest element in consecutive

generators 1 through k is obtained by concatenating the ascending sequences π1...k−i for
all 0 < i < k. For example, the longest element in generators 1 through 4 is π1234123121.

Now form the product m = w+
J πNw+

J (for example π1234123121π5π1234123121). This con-
tains a reduced word for w+

J as a subword, and is thus m ≥ w+
J in the (strong) Bruhat

Order. But since w+
J is the longest element in the given generators, m and w+

J must be
equal.

For the second statement, apply the same methods using the lexicographically maximal
word for the longest elements.

The analogous statement follows directly by applying the automorphism Ψ.

Recall that each diagram demipotent CD is the product of two elements LD and RD.
For a signed diagram D, let D+ denote the diagram with an extra + adjoined at the end.
Define D− analogously.

Corollary 4.2. Let CD = LDRD be the diagram demipotent associated to the signed
diagram D for SN . Then CD+ = LDπNRD and CD− = LDπ−

NRD. In particular, CD+ +
CD− = CD. Finally, the sum of all diagram demipotents for H0(SN) is the identity.

Proof. The identities

CD+ = LDπNRD and CD− = LDπ−
NRD

are consequences of Lemma 4.1, and the identity CD+ + CD− = CD follows directly.
To show that the sum of all diagram demipotents for fixed N is the identity, recall that

the diagram demipotent for the empty diagram is the identity, then apply the identity
CD+ + CD− = CD repeatedly.

Next we have a key lemma for proving many of the remaining results in this paper:

Lemma 4.3 (Sibling Rivalry). Sibling diagram demipotents commute and are orthogonal:
CD−CD+ = CD+CD− = 0. Equivalently,

CDCD+ = CD+CD = C2
D+ and CDCD− = CD−CD = C2

D−.

Proof. We proceed by induction, using two levels of branching. Thus, we want to show
the orthogonality of two diagram demipotents x and y which are branched from a parent
p and grandparent q. Without loss of generality, let q be the positive child of an element
r. Call q’s other child p̄, which in turn has children x̄ and ȳ. The relations between the
elements is summarized in Figure 2.

The goal, then, is to prove that yx = 0 and ȳx̄ = 0. Since p = x + y, we have that
yx = (p − x)x = px − x2. Thus, we can equivalently go about proving that px = x2 or
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r

q

p p̄

x y x̄ ȳ

+

+ −

+ − + −

Figure 2: Relationship of Elements in the Proof of the Sibling Rivalry Lemma.

py = y2. It will be easier to show px = x2. We will also show that p̄x̄ = x̄2. Once this is
done, we will have proven the result for diagrams ending in + + +, + + −, + − +, and
+ −−. By applying the automorphism Ψ, we obtain the result for the other four cases.

One can obtain the reverse equalities xy = 0, x̄p̄ = 0, and so on, either by performing
equivalent computations, or else by another use of the Ψ automorphism. For the latter,
suppose that we know CD+CD− = 0 for arbitrary D. Then applying Ψ to this equation
gives CD̂−CD̂+ = 0, where D̂ is the signed diagram D with all signs reversed. Since D

was arbitrary, D̂ is also arbitrary, so CD−CD+ = 0 for arbitrary D.
The remainder of this proof will provide the induction argument. For the base case,

we have C∅ = 1, and C+ = π1, so clearly C∅C+ = C∅C+ = C+ = C2
+, with analagous

statement for C−. For the rank two cases, one can confirm the statement manually using
the diagram demipotents listed in Section 3.

Let r = LR, dropping the D subscript for convenience, generated with i in the index
set I. Let the three new generators be πa, πb and πc. Notice that πb, π−

b , πc, and π−
c all

commute with L and R.
The inductive hypothesis tells us that pq = qp = p2 and p̄q = qp̄ = p̄2. We also have

the following identities:

• q = LπaR,

• p = LπaπbπaR = πbqπb,

• x = LπabaπcπabaR = πcbcqπcbc,

• pq = qπbqπb = p2 = πbqπbqπb.

Then we compute directly:

px = πbqπbπcbcqπcbc

= πbqπcbcqπcbc

= πbc(qπbqπb)πcbc

= πbc(πbqπbqπb)πcbc

= πbcb(qπbq)πcbc

= πcbc(qπcbcq)πcbc

= x2.
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To complete the proof, we need to show that p̄x̄ = x̄2. To do so, we use the following
identities:

• q = LπaR,

• p̄ = Lπa(1 − πb)πaR,

• x̄ = Lπa(1 − πb)πc(1 − πb)πaR.

Then we expand the following equation:

p̄x̄ = Lπa(1 − πb)πaRLπa(1 − πb)πc(1 − πb)πaR.

We expand this as follows:

p̄x̄ = q2πc − qp̄πc − qπcp̄ + qπcp̄πc − p̄qπc + p̄2πc + p̄πcp̄ − p̄πcp̄πc.

Meanwhile,

x̄ = L(πac − πabca − πacba + πabcba)R

= πcq − p̄πc − πcp̄ + πcp̄πc

Expanding x̄2 in terms of p̄ and q is a lengthy but straightforward calculation, which
yields:

x̄2 = q2πc − qp̄πc − qπcp̄ + qπcp̄πc − p̄qπc + p̄2πc + p̄πcp̄ − p̄πcp̄πc

= p̄x̄

This completes the proof of the lemma.

Corollary 4.4. The diagram demipotents CD are demipotent.

This follows immediately by induction: if Ck
D = Ck+1

D , then CD+Ck
D = CD+Ck+1

D , and
by sibling rivalry, Ck+1

D+ = Ck+2
D+ .

Now we can say a bit more about the structure of the diagram demipotents.

Proposition 4.5. Let p = CD, x = CD+, y = CD−, so p = x + y and xy = 0. Let v
be an element of H. Furthermore, let p, x, and y have abstract Jordan decomposition
p = pi + pn, x = xi + xn, y = yi + yn, with pipn = pnpi and p2

i = pi, pk
n = 0 for some k,

and similar relations for the Jordan decompositions of x and y.
Then we have the following relations:

1. If there exists k such that pkv = 0, then xk+1v = yk+1v = 0.

2. If pv = v, then x(x − 1)v = 0

3. If (x − 1)kv = 0, then (x − 1)v = 0

4. If pv = v and xkv = 0 for some k, then yv = v.
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5. If xv = v, then yv = 0 and pv = v.

6. Let ux
i be a basis of the 1-space of x, so that xux

i = ux
i , yux

i = 0 and pux
i = v, and

uy
j a basis of the 1-space of y. Then the collection {ux

i , u
y
j} is a basis for the 1-space

of p.

7. pi = xi + yi, pn = xn + yn, xiyi = 0.

Proof. 1. Multiply the relation pv = (x + y)v = 0 by x, and recall that xy = 0.

2. Multiply the relation pv = (x + y)v = v by x, and recall that xy = 0.

3. Multiply (x − 1)kv = 0 by y to get yv = 0. Then pv = xv. Then (x − 1)kv =
(p − 1)kv = 0. By the induction hypothesis, (p − 1)kv = (p − 1)v implies that
pv = v, but then xv = pv = v, so the result holds.

4. By (2), we have x2v = xv, so in fact, xkv = xv = 0. Then v = pv = xv + yv = yv.

5. If xv = v, then multiplying by y immediately gives 0 = yxv = yv. Since yv = 0,
then pv = (x + y)v = xv = v.

6. From the previous item, it is clear that the bases vi
x and vj

y exist with the desired
properties. All that remains to show is that they form a basis for the 1-space of p.

Suppose v is in the 1-space of p, so pv = v. Then let xv = a and yv = b so that
pv = (x + y)v = a + b = v. Then a = xv = x(a + b) = x2v + xyv = x2v = xa. Then
a is in the 1-space of x, and, simlarly, b is in the 1-space of y. Then the 1-space of
p is spanned by the 1-spaces of x and y, as desired.

7. Let Mp, Mx and My be matrices for the action of p, x and y on H . Then the
above results imply that the 0-eigenspace of p is inherited by x and y, and that the
1-eigenspace of p splits between x and y.

We can thus find a basis {ux
k, u

y

l , u
0
m} of H such that: pu0

k = xu0
k = yu0

k = 0,
xux

k = ux
k, pux

k = ux
k, yux

k = 0, yuy

k = uy

k, puy

k = uy

k, and xuy

k = 0. In this basis, p
acts as the identity on {ux

k, u
y

l }, and x and y act as orthogonal idempotents. This
proves that pi = xi + yi and xiyi = 0. Since p = pi + pn = xi + xn + yi + yn, then it
follows that pn = xn + yn.

Corollary 4.6. There exists a linear basis vj

D of CH0(SN ), indexed by a signed diagram
D and some numbers j, such that the idempotent ID obtained from the abstract Jordan
decomposition of CD fixes every vj

D. For every signed diagram E 6= D, the idempotent IE

kills vj

D.

The proof of this corollary further shows that this basis respects the branching from
H0(SN−1) to H0(SN). In particular, finding this linear basis for H0(SN) allows the easy
recovery of the bases for the indecomposable modules for any M < N .
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Proof. Any two sibling idempotents have a linear basis for their 1-spaces as desired, such
that the union of these two bases form a basis for their parent’s 1-space. Then the union
of all such bases gives a basis for the 1-space of the identity element, which is all of H .

All that remains to show is that for every signed diagram E 6= D with a fixed number
of nodes, the idempotent IE kills vj

D. Let F be last the common ancestor of D and E
under the branching of signed diagrams, so that F+ is an ancestor of (or equal to) D
and F− is an ancestor of (or equal to) E. Then IF+ fixes every vj

D, since the collection
vj

D extends to a basis of the 1-space of IF+. Likewise, IF− kills every vj
D, by the previous

theorem.

We now state the main result. For D a signed diagram, let Di be the signed sub-
diagram consisting of the first i entries of D.

Theorem 4.7. Each diagram demipotent CD (see Definition 3.2) for H0(SN) is demipo-
tent, and yields an idempotent ID = CD1

CD2
· · ·CD = CN

D . The collection of these idem-
potents {ID} form an orthogonal set of primitive idempotents that sum to 1.

Proof. We can completely determine an element of CH0(SN) by examining its natural
action on all of CH0(SN), since if xv = yv for all v ∈ CH0(SN), then (x − y)v = 0 for
every v, and 0 is the only element of CH0(SN) that kills every element of CH0(SN ).

The previous results show that the characteristic polynomial of each diagram demipo-
tent is Xa(X − 1)b for some non-negative integers a and b, with all nilpotence associated
with the 0-eigenvalue. This establishes that the diagram demipotents CD are actually
demipotent, in the sense that there exists some k such that (CD)k is idempotent. Theo-
rem 4.5 shows that this k grows by at most one with each branching, and thus k ≤ N . A
prior corollary shows that the idempotents sum to the identity.

The previous corollary establishes a basis for CH0(SN) such that each idempotent ID

either kills or fixes each element of the basis, and that for each E 6= D, IE kills the 1-space
of ID. Since ID is in the 1-space of ID, then IE must also kill ID. This shows that the
idempotents are orthogonal, and completes the theorem.

5 Nilpotence Degree of Diagram Demipotents

Take any m in the 0-Hecke monoid whose descent set is exactly the set of positive
nodes in the signed diagram D. Then CDm = m + (lower order terms), by a previ-
ous lemma, and IDm = (CD)k(m) = m + (lower order terms). The set {IDm|DL(m) =
{positive nodes in D}} is thus linearly independent in H0(SN), and gives a basis for the
projective module corresponding to the idempotent ID.

We have shown that for any diagram demipotent CD, there exists a minimal integer k
such that (CD)k is idempotent. Call k the nilpotence degree of CD. The nilpotence degree
of all diagram demipotents for N ≤ 7 is summarized in Figure 3.

The diagram demipotent C+···+ with all nodes positive is given by the longest word
in the 0-Hecke monoid, and is thus already idempotent. The same is true of the diagram

the electronic journal of combinatorics 18 (2011), #P28 14



1

1 . . .

+ −

1 1

+ −

1 1 1 1

+ − + −

1 1 1 1 2 2 1 1

+ − + − + − + −

1 1 1 1 2 2 1 1 2 2 2 2 2 2 1 1

+ − + − + − + −+− +− +− +−

1 1 2 1 3 2 2 1 2 2 3 2 2 2 2 1

± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±

Figure 3: Nilpotence degree of diagram demipotents. The root node denotes the diagram
demipotent with empty diagram (the identity). In all computed example, sibling dia-
gram demipotents have the same nilpotence degree; the lowest row has been abbreviated
accordingly for readability.

demipotent C−···− with all nodes negative. As such, both of these elements have nilpotence
degree 1.

Lemma 5.1. The nilpotence degree of sibling diagram demipotents CD+ and CD− are
either equal to or one greater than the nilpotence degree k of the parent CD. Furthermore,
the nilpotence degree of sibling diagram demipotents are equal.

Proof. Let x and y be the sibling diagram demipotents, with parent diagram demipotent
p, so p = CD = LDRD, x = CD+ = LDπNRD, y = CD− = LD(1 − πN)RD. Let p have
nilpotence degree k, so that pk = pk+1. We have already seen that the nilpotence degree
of x and y is at most k + 1. We first show that the nilpotence degree of x or y cannot be
less than the nilpotence degree of p.

Recall the following quotients of CH0(SN):

Φ+
N : CH0(SN) → CH0(SN−1)

Φ+
N(πi) =

{

1 if i = N ,

πi if i 6= N .

Φ−
N : CH0(SN) → CH0(SN−1)

Φ−
N(πi) =

{

0 if i = N ,

πi if i 6= N .
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given by introducing the relation πN = 1. One can easily check that these are both
morphisms of algebras. Notice that Φ+

N (x) = p, and Φ−
N (y) = p. Then if the nilpotence

degree of x is l < k, we have pl = Φ+
N (xl) = Φ+

N (xl+1) = pl+1, implying that the nilpotence
degree of p was actually l, a contradiction. The same argument can be applied to y using
the quotient Φ−

n .
Suppose one of x and y has nilpotence degree k. Assume it is x without loss of

generality. Then:

pk = pk+1

⇔ xk + yk = xk+1 + yk+1

⇔ xk+1 + yk = xk+1 + yk+1

⇔ yk = yk+1

Then the nilpotence degree of y is also k.
Finally, if neither x nor y have nilpotence degree k, then they both must have nilpo-

tence degree k + 1.

Computer exploration suggests that siblings always have equal nilpotence degree, and
that nilpotence degree either stays the same or increases by one after each branching.

Lemma 5.2. Let D be a signed diagram with a single sign change, or the sibling of such
a diagram. Then CD is idempotent (and thus has nilpotence degree 1).

Proof. We prove the statement for a diagram with single sign change, since siblings auto-
matically have the same nilpotence degree. Without loss of generality let the diagram of D
be −−· · ·−−++ · · ·++. Let L the subset of the index set with negative marks in D. Let
i be the minimal element of the index set with a positive mark, and let H = I \ (L∪{i}).
Then:

CD = w−
Lw+

Hπiw
+
Hw−

L .

Notice that w+
H and w−

L commute.
Set y = w−

Lw+
H(1 − πi)w

+
Hw−

L , and p = CD + y = w−
L w+

Hw+
Hw−

L = w+
Hw−

L .
Now y is not a diagram demipotent, though p could be considered a diagram demipo-

tent for disconnected Dynkin Diagram with the ith node removed.
It is immediate that:

p2 = p, CDp = CD = pCD yp = y = py

Now we can establish orthogonality of CD and y:

CDy = (w−
Lw+

Hπiw
+
Hw−

L )(w−
L w+

H(1 − πi)w
+
Hw−

L )

= w−
L (w+

Hπiw
+
H)(w−

L (1 − πi)w
−
L )w+

H

= w−
Lπ+

H∪iπ
−
L∪iw

+
H

= 0

The product of π+
H∪i and π−

L∪i is zero, since π+
H∪i has a πi descent, and π−

L∪i has a p̄i

descent.
Then CD = pCD = (CD + y)CD = (CD)2, so we see that CD is idempotent.
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In particular, this lemma is enough to see why there is no nilpotence before N = 5;
every signed Dynkin diagrams with three or fewer nodes has no sign change, one sign
change, or is the sibling of a diagram with one sign change.

Proposition 5.3. Let D be any signed diagram with n nodes, and let E be the largest
prefix diagram such that E has a single sign change, or is the sibling of a diagram with a
single sign change. Then if E has k nodes, the nilpotence degree of D is at most n − k.

Proof. This result follows directly from the previous lemma and the fact that the nilpo-
tence degree can increase by at most one with each branching.

This bound is not quite sharp for H0(SN) with N ≤ 7: The diagrams + − ++,
+ − + + +, and + − + + ++ all have nilpotence degree 2. However, at N = 7, the
highest expected nilpotence degree is 3 (since every diagram demipotent with three or
fewer nodes is idempotent), and this degree is attained by 4 of the demipotents. These
diagram demipotents are + + − + ++, + − + − ++, and their siblings.

An open problem is to find a formula for the nilpotence degree directly in terms of the
diagram of a demipotent.

6 Further Directions

6.1 Conjectural Demipotents with Simpler Expression

Computer exploration has suggested a collection of demipotents that are simpler to de-
scribe than those we have presented here.

For a word w = (w1w2 · · ·wk) with wi in the index set and a signed diagram D, we
obtain the masked word wD by applying the sign of i in D to each instance of i in w.
For example, for the word w = (1, 2, 1, 3, 1, 2) and D = + − +, the masked word is
wD = (1,−2, 1, 3, 1,−2). A masked word yields an element of H0(SN) in the obvious way:
we write

πD
w :=

∏

πsgn(i)
wi

,

where sgn(i) is the sign of i in D.
Some masked words are demipotent and others are not. We call a word universal if:

• w contains every letter in I at least once, and

• wD is demipotent for every signed diagram D.

Conjecture 6.1. The word uN = (1, 2, . . . , N − 2, N − 1, N − 2, . . . , 2, 1) is universal.

Computer exploration has shown that uN are universal up to CH0(S9), and that the
idempotents thus obtained are the same as the idempotents obtained from the diagram
demipotents CD. However, these demipotents uD

N , though they branch in the same way as
the diagram demipotents, fail to have the sibling rivalry property. Thus, another method
should be found to show that these elements are demipotent.
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An important quotient of the zero-Hecke monoid is the monoid of Non-Decreasing
Parking Functions, NDPFN . These are the functions f : [N ] → [N ] satisfying

• f(i) ≤ i, and

• For any i ≤ j, then f(i) ≤ f(j).

This monoid can be obtained from H0(SN) by introducing the additional relation:

πiπi+1πi = πiπi+1.

The lattice of idempotents of the monoid NDPFN is identical to the lattice of idempotents
in H0(SN ). We have shown that every masked word uD

N is idempotent in the algebra of
NDPFN , supporting Conjecture 6.1. For the full exploration of NDPFN , including the
proof of the claim that uD

N is idempotent in CNDPFN , see [5].

6.2 Direct Description of the Idempotents

A number of questions remain concerning the idempotents we have constructed.
First, uniqueness of the idempotents described in this paper is unknown. In fact,

there are many families of orthogonal idempotents in H0(SN ). The idempotents we have
constructed are invariant as a set under the automorphism Ψ, and compatible with the
branching from SN−1 to SN according to the choice of orientation of the Dynkin diagram.

Second, computer exploration has shown that, over the complex numbers, the idem-
potents obtained from the diagram demipotents have ±1 coefficients. This phenomenon
has been observed up to N = 9. This seems to be peculiar to the construction we have
presented, as we have found other idempotents that do not have this property. It would
be interesting to have an even more direct construction of the idempotents, such as a rule
for directly determining the coefficients of each idempotent.

It should be noted that a general ‘lifting’ construction has long been known, which
constructs orthogonal idempotents in the algebra. (See [4, Chapter 77]) A particular im-
plementation of this lifting construction for algebras of J -trivial monoids is given in [5].
This lifting construction starts with the idempotents in the monoid, which in the semisim-
ple quotient have the multiplicative structure of a lattice. In the case of a zero-Hecke
algebra with index set I, these idempotents are just the long elements w+

J , for any J ⊂ I.
Then the multiplication rule in the semisimple quotient for two such idempotents w+

J , w+
K

is just w+
Kw+

J = w+
J∪K . Each idempotent in the semisimple quotient is in turn lifted to

an idempotent in the algebra, and forced to be orthogonal to all idempotents previously
lifted. Many sets of orthogonal idempotents can be thus obtained, but the process affords
little understanding of the combinatorics of the underlying monoid.

The ±1 coefficients that have been observed in the idempotents thus far constructed
suggest that there are still interesting combinatorics to be learned from this problem.
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6.3 Generalization to Other Types

A combinatorial construction for idempotents in the zero-Hecke algebra for general Cox-
eter groups would be desirable. It is simple to construct idempotents for any rank 2
Dynkin diagram. The author has also constructed idempotents for type B3 and D4, but
has not been able to find a satisfactory formula for general type BN or DN .

A major obstruction to the direct application of our construction to other types arises
from our expressions for the longest elements in type AN . For the index set J ∪ {k} ⊂ I,
where k is larger (or smaller) than any index in J we have expressed the longest element
for J ∪ {πk} as w+

J πkw
+
J . This expression contains only a single πk. In every other

type, expressions for the longest element generally require at least two of any generator
corresponding to a leaf of the Dynkin diagram. This creates an obstruction to branching
demipotents in the way we have described for type AN .

For example, in type D4, a reduced expression for the longest element is π423124123121.
The generators corresponding to leaves in the Dynkin diagram are π1, π3, and π4, all of
which appear at least twice in this expression. (In fact, this is true for any of the 2316
reduced words for the longest element in D4.) Ideally, to branch easily from type A3, we
would be able to write the long element in the form w+

J π4w
+
J , where 4 6∈ J , but this is

clearly not possible.
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[8] F. Hivert, A. Schilling, and N. M. Thiéry. Hecke group algebras as quotients of affine
Hecke algebras at level 0. J. Combin. Theory Ser. A, 116(4):844–863, 2009. doi:
10.1016/j.jcta.2008.11.010.

[9] J. E. Humphreys. Reflection groups and Coxeter groups, volume 29 of Cambridge
Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1990.
ISBN 0-521-37510-X.

[10] Z. Izhakian, J. Rhodes, and B. Steinberg. Representation Theory of Finite Semi-
groups over Semirings. 2010.

[11] P. N. Norton. 0-Hecke algebras. J. Austral. Math. Soc. Ser. A, 27(3):337–357, 1979.

[12] A. Okounkov and A. Vershik. A new approach to representation theory of symmetric
groups. Selecta Math. (N.S.), 2(4):581–605, 1996. doi: 10.1007/PL00001384.

[13] E. A. Pennell, M. S. Putcha, and L. E. Renner. Analogue of the Bruhat-Chevalley
order for reductive monoids. J. Algebra, 196(2):339–368, 1997. ISSN 0021-8693. doi:
10.1006/jabr.1997.7111. http://dx.doi.org/10.1006/jabr.1997.7111.

[14] J.-E. Pin. Semigroupe: A program for computing finite semigroups, 2005.
http://www.liafa.jussieu.fr/~jep/Logiciels/Semigroupe/semigroupe.html.

[15] A. Ram. Seminormal representations of Weyl groups and Iwahori-Hecke algebras.
Proc. London Math. Soc, 3:7–5, 1997.

[16] The Sage-Combinat community. Sage-Combinat: enhancing sage as
a toolbox for computer exploration in algebraic combinatorics, 2009.
http://combinat.sagemath.org.

[17] R. P. Stanley. Enumerative combinatorics. Vol. 1, volume 49 of Cambridge Studies
in Advanced Mathematics. Cambridge University Press, Cambridge, 1997. ISBN 0-
521-55309-1; 0-521-66351-2. With a foreword by Gian-Carlo Rota, Corrected reprint
of the 1986 original.

[18] W. Stein et al. Sage Mathematics Software (Version 3.3). The Sage Development
Team, 2009. http://www.sagemath.org.
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