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Abstract

For graphs F and G an F -matching in G is a subgraph of G consisting of
pairwise vertex disjoint copies of F . The number of F -matchings in G is denoted
by s(F,G). We show that for every fixed positive integer m and every fixed tree F ,
the probability that s(F,Tn) ≡ 0 (mod m), where Tn is a random labeled tree with
n vertices, tends to one exponentially fast as n grows to infinity. A similar result is
proven for induced F -matchings. As a very special special case this implies that the
number of independent sets in a random labeled tree is almost surely a zero residue.
A recent result of Wagner shows that this is the case for random unlabeled trees as
well.

1 Introduction

The number of independent sets in graphs is an important counting parameter. It is
particularly well-studied for trees and tree-like structures. Prodinger and Tichy showed
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in [12] that the star and the path maximize and minimize, respectively, the number of
independent sets among all trees of a given size. Part of the interest in this graph invariant
stems from the fact that the number of independent sets plays a role in statistical physics
as well as in mathematical chemistry, where it is known as the Merrifield-Simmons index

[11]. A problem that arises in this context is the inverse problem: determine a graph
within a given class of graphs (such as the class of all trees) with a given number of
independent sets. It is an open conjecture [9] (see also [8]) that all but finitely many
positive integers can be represented as the number of independent sets of some tree.
Recently Wagner [14] published a surprising result that may partially explain why the
inverse problem for independent sets in trees is difficult. He showed that for every positive
integer m, the number of independent sets in a random tree with n vertices is zero modulo
m with probability exponentially close to one. Wagner’s proof does not give an intuitive
explanation of the aforementioned fact. In this paper we give a probabilistic proof for the
analogous result in labeled trees. Our proof is intuitive and simple, thus allowing us to
generalize the result significantly. We refer the reader to [14] or [7] for further motivation
and for a recent survey of previous results regarding the number of independent sets in
trees.

Another graph parameter popular in statistical physics and in mathematical chemistry
is the Hosoya index which is the number of matchings in the graph. While the inverse
problem for the number of matchings in trees is easy, as the star with n vertices has
exactly n matchings, finding the distribution of this number is still open, as is the case
with the number of independent sets. Wagner mentions in [14] that his method could be
applied to the number of matchings as well, showing that asymptotically this number is
typically divisible by any constant m. This may serve as an explanation for the hardness
of obtaining distribution results.

Both independent sets and matchings are special cases of F -matchings. Let F and G
be graphs. An F -matching in G is a subgraph of G consisting of pairwise vertex disjoint
copies of F . We say that the F -matching is induced in G if no additional edge of G is
spanned by the vertices of G covered by the matching. These two closely related notions
generalize naturally matchings and independent sets. Indeed, if F is the graph with two
vertices and one edge then an F -matching is simply a matching. If F is a single vertex
then an induced F -matching is an independent set.

The notion of F -matching, which is sometimes called F -packing (and in the spanning
case F -factor) has been considered in several papers, but most of them do not deal with
the number of F -packings and mainly consider necessary or sufficient conditions for their
existence. See, for example, [6] and its references.

Given graphs F and G we denote the set of F -matchings in G by S(F, G) and its
size by s(F, G). The set of all induced F -matchings in G is denoted by S ′(F, G) with
s′(F, G) = |S ′(F, G)| being its size.

In this paper G will be drawn at random from a probability space of graphs. We define
the random tree Tn to be the set of all nn−2 labeled trees on n vertices endowed with the
uniform distribution.

Our main results are the following:
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Theorem 1. Let F be a tree that is not a single vertex and let m be a positive integer.

Then there is a constant c = c(F, m) > 0 such that the number of F -matchings in the

random tree Tn is zero modulo m with probability at least 1 − e−cn.

Note that when F is a single vertex, the number of F -matchings in any graph with n
vertices is 2n.

Theorem 2. Let F be a tree and let m be a positive integer. Then there is a constant

c′ = c′(F, m) > 0 such that the number of induced F -matchings in the random tree Tn is

zero modulo m with probability at least 1 − e−c′n.

The fact that the number of independent sets is almost surely a zero residue is an
immediate consequence of Theorem 2 — simply take F to be a single vertex.

In the next section we prove Theorem 1, in Section 3 we describe a similar proof of
the induced case and in the last section we state some extensions and conclude with a
few remarks and open questions. Our extensions include the fact that the assertions of
both theorems hold when the random tree Tn is replaced by a random planar graph on n
vertices.

2 The non-induced case

In this section we prove Theorem 1. The proof is probabilistic and has two parts, a
probabilistic claim (Lemma 3) and a deterministic claim (Lemma 5). Theorem 1 is an
immediate consequence of these claims.

We shall use the following notation. Let T be a tree and assume that {u, v} is an
edge in T . We define a rooted tree T (u,v) by first setting v as the root — this defines a
direction of parenthood in T — and then removing u along with its descendants. Note
that T (u,v) is a rooted (undirected) tree. If R is a rooted tree isomorphic to T (u,v) (a fact
we denote by R ∼= T (u,v)) for some edge {u, v} ∈ T , we say that T has an R-leaf. The
next Lemma states that for every fixed rooted tree R, a random tree has an R-leaf with
probability exponentially close to 1.

Lemma 3. Let R be a rooted tree. There exists a constant c = c(R) > 0 such that

Pr[∃ {u, v} ∈ Tn s.t. R ∼= T (u,v)
n ] > 1 − e−cn.

Proof. While our object of interest are trees, it is easier to work with functions on [n] =
{1, 2, . . . , n} via the Joyal mapping ([5], also presented in English in [1]).

We shall briefly describe the Joyal mapping and some of its properties that we need.
The Joyal mapping maps f , a function from [n] to itself, to an undirected tree Tf over the
set of vertices [n]. There are nn functions in [n][n], but only nn−2 labeled trees over [n]. In
order to make the mapping into a bijection we distinguish two vertices of a labeled tree
by marking them left and right (we may mark one vertex with both). Now the target set
is the set of all labeled trees over [n] together with the markings, and is of size nn.
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The mapping is defined as follows. Let f : [n] → [n]. Define ~Gf as the functional

digraph1 with vertex set [n] and edge set {(i, f(i)) |i ∈ [n]}. Every vertex in ~Gf has
outdegree one, so every connected component has one directed cycle, and all edges that
are not in a cycle are pointing towards the cycle. Let M = {a1 < a2 < · · · < am} be

the set of all vertices participating in a cycle of ~Gf . Notice that M is the maximal set
such that f |M is a bijection. To get Tf , the tree corresponding to the function f , we
first define a path by taking the vertices of M and adding the m − 1 edges of the form
{f(ai), f(ai+1)}. We then mark f(a1) as “left” and f(am) as “right”. Finally we add the

vertices in [n] \ M with the edges {i, f(i)} from ~Gf (forgetting about directions).
Given a tree T with two such markings, we go back by defining M as the vertices in

the path P connecting “left” and “right”, and directing all other vertices towards P . Sort
the members of M according to their value and denote them by a1 < a2 < · · · < am. We
define f as follows. If i ∈ M is the j’th vertex in the path then f(i) = aj . If i /∈ M then
there is one edge, (i, j), emanating from i, and we set f(i) = j. It is easy to verify that
this is indeed the inverse of the mapping described above.

Notice that vertices that are not in a cycle are left by the Joyal mapping as they were
in ~Gf , meaning that they will be incident with exactly the same edges as in the functional
graph. In particular, edges with both endpoints being vertices that are not in a cycle of
~Gf will touch the same edges in Tf as in ~Gf . For our purpose, the fate of vertices lying
in a cycle is irrelevant.

Direct the edges of R towards the root to get ~R. Consider a random function f on [n]

and let X be the random variable counting the number of directed edges (u, v) in ~Gf such

that u, v and the ancestors of v in ~Gf do not belong to any cycle in ~Gf , and in addition,

v and its ancestors form an isomorphic copy of ~R.
Denote the vertices of ~R by r1, . . . , rk, the root being rk. Fix a (k+1)-tuple of vertices

of ~Gf , say 1, 2, . . . , k + 1. The probability that the edge (k, k + 1) meets the condition

described above is at least the probability that (k, k + 1) ∈ E( ~Gf ), the mapping i → ri is

an isomorphism between ~R and ~Gf [{1, . . . , k}], and in addition, there are no other edges

of ~Gf incoming to {1, . . . , k + 1}. The latter is

(

1

n

)k (

n − k − 1

n

)n−k

.

In order to see this simply notice that for 1 ≤ i ≤ k there is only one valid target for f(i),
while for i ≥ k + 1 it is enough to require that f will map i outside of {1, 2, . . . , k + 1}.
Therefore we get

EX ≥

(

n

k + 1

)

n−k

(

n − k − 1

n

)n−k

,

which implies EX = Ω(n).
We want to show that X is concentrated around its mean. Consider the value exposing

martingale, in which we expose the values of f one by one. Now, changing the value of f in

1A functional digraph is a directed graph with all outdegrees equal one.
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one coordinate, i, can ruin at most two copies of ~R (one using the edge (i, f(i)) and another
that now has an extra edge (i, f ′(i))). Therefore the Lipschitz condition with constant
two holds and we can apply the Azuma Inequality [2, 3] which yields Pr[X = 0] < e−cn

for some constant c > 0.
Observe that if X(f) > 0 then by the definition of X, the corresponding tree Tf

contains the edge {u, v} requested by the proposition.
As mentioned above, the Joyal correspondence is n2 to one. If a labeled tree T does

not contain an edge as required, then all its n2 preimages f satisfy X(f) = 0. Therefore,
the probability not to get a tree with a required edge is at most Pr[X = 0] < e−cn as
proven above.

Remark 4. Plugging the estimates in [2, Theorem 7.4.2] we can show that the constant c
above is bigger than (100k2k+1)−1.

The next argument of the proof states the existence of a nullifying tree Z (depending
on F and m) such that if a tree T has a Z-leaf then s(F, T ) ≡ 0 (mod m).

Lemma 5. Let F be a tree with at least one edge and let m be an integer. Then there

exists a rooted tree Z such that, if Z ∼= T (u,v) for some edge {u, v} ∈ T , then s(F, T ) ≡ 0
(mod m).

Proof. The proof is constructive. By Proposition 6 to be proven below there exists a tree
Y such that s(F, Y ) ≡ 0 (mod m).

Let ∆(F ) be the maximal degree of F . To get Z take ∆(F ) + 1 copies of Y , add a
new vertex r to be viewed as the root of Z, and connect r to a vertex of each Y (thus
adding ∆(F ) + 1 edges).

Let T be a tree and assume that Z ∼= T (u,v) for some edge {u, v} ∈ T . We wish to show
that s(F, T ) ≡ 0 (mod m). There are finitely many ways in which one may cover v by a
copy of F , and it may also be that v remains uncovered. We classify F -matchings in T into
classes C1, C2, . . . , Cq according to the copy of F covering v, with the set of F -matchings
not covering v being a separate class C0. We argue that the number of F -matchings in
each such class is a zero residue. Indeed, the number of F -matchings in a given class Ci

is precisely the number of F -matchings in the forest remaining from T after removing v
and the copy covering it, if there is one. In fact, this number is the product of the number
of F -matchings in every connected component of the forest. By our construction of Z,
at least one of the trees is this forest is isomorphic to Y . Since s(F, Y ) ≡ 0 (mod m) we
deduce that the number of F -matchings in the forest, and also in Ci, is zero modulo m.
This is true for all Ci, and since S(F, T ) = ∪Ci one has s(F, T ) ≡ 0 (mod m).

Before stating and proving the next proposition we define some notation. Let F be a
tree. Take a longest path in F and denote its vertices by u1, u2, . . . , ul+1, where l is the
diameter of F . If we disconnect all edges of the form {ui, ui+1} we get l + 1 subtrees.
Let bi be the number of vertices in the subtree containing ui. With this notation we have
|F | =

∑l+1
i=1 bi. Since bl+1 = 1 we may also write |F | = 1 +

∑l

i=1 bi. We shall use this
notation in the proof of the next proposition and in the proof of Proposition 9 as well.
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Proposition 6. Let F be a tree with at least one edge and let m be an integer. Then

there exists a rooted tree Y such that s(F, Y ) ≡ 0 (mod m).

Proof. Let Wt be a tree made of t copies of F in which we identify the vertex ul+1 of
copy i with the vertex u1 of copy i + 1 (for 1 ≤ i ≤ t − 1). Let P ⊂ Wt be the path
in Wt connecting the first copy of u1 to the last copy of ul+1, and number its vertices by
1, . . . , lt + 1 in the natural order, from the copy of u1 in the first copy of F to the copy of
ul+1 in the last copy of F . We want to have a direction of parenthood in Wt, so we set 1
to be the root. Notice that all connected components of Wt \ V [P ] are of size strictly less
than |F |.

We are interested in embeddings of F in Wt, that is, in subgraphs of Wt that are
isomorphic to F . Notice that every such embedding must have a vertex in P . Let C
be an embedding of F in Wt. We call the vertex min{C ∩ P} the starting vertex of C.
Consider the set of all starting vertices in Wt. If 1 ≤ i ≤ (t− 2)l + 1 is a starting vertex,
then by symmetry so is i + l. Observe that trivially 1 is a starting vertex (and so are
l+1, 2l+1, . . . ). By the symmetry argument above, if there are d starting vertices between
1 and l+1 (inclusive), then there are 1+(t−1)(d−1) starting vertices in Wt. To see this
recall that 1 is always a starting vertex, and each copy but the last adds d − 1 starting
vertices; also, the last copy of F in Wt does not contain any starting vertices apart from
1+ l(t−1) as deleting 1+ l(t−1) leaves less than |F | vertices to the right of it. Similarly,
if i is a starting vertex then there are d starting vertices between i and i + l, inclusive.

Now we can define {Yr}, a family of subtrees of Wt a member of which will eventually
be the sought after tree. Set t to be large enough (t = 1 + ⌈(r − 1)/(d − 1)⌉ will do). To
get Yr take the minimal subpath of P ⊂ Wt containing the last r starting vertices and
then append to each vertex in the subpath the subtree of its descendants through children
outside P . For example, Y1 is the single starting vertex 1 + l(t− 1) and Yd is the next to
the last copy of F in Wt.

Let g(r) be the number of F -matchings in Yr. We count such F -matchings by the
membership of i, the first vertex in Yr. If i is not covered by the matching, then the next
embedding of F begins no earlier than the next starting vertex. This means that the
number of F -matchings of Yr in which i is not covered is g(r − 1).

We argue now that if i is covered by the matching then the next d−1 starting vertices
are also covered. Let ϕ : F → Yr be an embedding covering i. We claim that the next
d− 1 starting vertices are also covered by ϕ. First, since the diameter of F is l, no vertex
of P farther than i+ l (which is the starting vertex d−1 away from i) is covered by ϕ. On
the other hand, the path from i to i+ l−1 contains one copy of each ui (not necessarily in
the natural order). Thus, the number of vertices in the set containing i, i+1, . . . , i+ l−1
and their descendants is exactly

∑l

i=1 bi, hence ϕ extends also to i + l. Therefore, the
other embeddings in the F -matching need to start after i + l. We get that the number of
such matchings is exactly g(r − d). This gives the recursion g(r) = g(r − 1) + g(r − d).

Observe that the tree Yr, 1 ≤ r < d, does not contain a copy of F , and thus the
only F -matching in Yr is the empty one, implying g(r) = 1 for every 1 ≤ r < d; also,
g(d) = 2 as Yd = F . We can extend the recursion backwards by defining g(0) = 1 and
g(−1) = 0. By Claim 7 below there is an integer r0 > 0 such that g(r0) ≡ 0 (mod m).
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Define Y = Yr0
. By the definition of g(r) we have s(F, Y ) ≡ 0 (mod m).

Claim 7. Let g(r) : N → Z be a sequence of integers obeying a recurrence relation with

integer coefficients g(r) =
∑d

i=1 cig(r − i). Assume that g(0) = 0 and cd = 1. Then for

every positive integer m > 0 there exists an index r0 = r0(m) > 0 such that g(r0) ≡ 0
(mod m).

Proof. First we claim that g(r) (mod m) is periodic. Indeed, since g(r) (mod m) is de-
termined by the d-tuple of the previous d values, and since modulo m there are at most
md possible d-tuples, then after at most md steps the sequence g(r) (mod m) must be-
come periodic. Next we claim that g(r) (mod m) is periodic from the beginning. To
see this simply extend the sequence md steps backwards using the recurrence relation
g(r − d) = g(r) −

∑d−1
i=1 cig(r − i). The previous argument shows that the extended se-

quence is periodic starting at most at the md’th element, which is the first element of the
original sequence. Hence g(r) (mod m) is periodic from its first element, g(0) = 0, and
thus there is some r0 > 0 such that g(r0) ≡ 0 (mod m).

For more information on recurrence sequences modulo m, in particular for a better
estimate of the index of the first zero residue element, see [4, Section 6.3].

3 The induced case

In this section we prove Theorem 2. The proof is similar to the proof of Theorem 1 and
we shall focus on the differences between the proofs. As before, the proof is probabilistic.
Lemma 3 is the probabilistic part here as well, but the deterministic part is replaced by
Lemma 8 below.

We begin by constructing a nullifying rooted tree from copies of a tree Y ′ having
s′(F, Y ′) ≡ 0 (mod m).

Lemma 8. Let F be a tree and let m be an integer. There exists a rooted tree Z ′ such

that if Z ′ ∼= T (u,v) for some edge {u, v} ∈ T , then s′(F, T ) ≡ 0 (mod m).

Proof. By Proposition 9 below there exists a tree Y ′ such that s′(F, Y ′) ≡ 0 (mod m).
Construct Z ′ by taking ∆(F ) + 2 copies of Y ′, adding a new vertex r to be viewed as
the root of Z’, connecting one copy to r with a new edge and connecting the rest of the
∆(F ) + 1 copies to r via a path of length two.

Let T be a tree and assume that Z ′ ∼= T (u,v) for some edge {u, v} ∈ T . We need to
show that s′(F, T ) ≡ 0 (mod m).

There are finitely many ways in which v may be covered by a copy of F , if it is covered
at all. We classify induced F -matchings according to the copy of F covering v. Denote
these classes by C1, . . . , Ck and let C0 be the class of all induced F -matchings of T in
which v is left uncovered. Clearly S ′(F, T ) =

⋃k

i=0 Ci. We claim that |Ci| ≡ 0 (mod m)
for every 0 ≤ i ≤ k.

Consider first the class C0 of induced F -matchings in T that leave v uncovered. The
number of such matchings is the number of matchings in the forest remaining after deleting
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v. This forest has a component isomorphic to Y — the copy of Y that was connected
to v by a single edge. The number of induced F -matchings in C0 is then the product of
the number of induced F -matchings in every connected component of the aforementioned
forest which is zero modulo m.

Consider now the class Ci for i > 0. As before, there is a natural one to one correspon-
dence between induced F -matchings in T that belong to Ci and induced F -matchings of
the forest remaining after removing the copy of F covering v and all neighbors of vertices
in that copy. Since v is covered by the matching, all of its neighbors that are not covered
by the same copy of F must remain uncovered. Otherwise, an additional edge outside the
copies of F would be spanned. This means that in the above forest at least one of the
∆(F ) + 1 copies that were connected to v by a path of length two will now remain as a
connected component. Hence, the number of induced F -matchings in Ci is a zero residue.

Summing the sizes of the Ci’s we get that m′(F, T ) ≡ 0 (mod m).

Proposition 9. Let F be a tree and let m be an integer. Then there exists a rooted tree

Y ′ such that s′(F, Y ′) ≡ 0 (mod m).

Proof. The construction and the proof are similar to those in the proof of Proposition 6,
and we shall use the notation defined just before it. We define W ′

t as a collection of t
disjoint copies of F , and we add an edge between the vertex ul+1 of the i’th copy and the
vertex u1 of the (i + 1)’th copy. We think of the first copy of u1 as the root of W ′

t .
Let P ′ be the path connecting the first copy of u1 with the last copy of ul+1 and denote

its vertices by 1, . . . , t(l + 1) in the natural order. We define starting vertices in the same
manner as in the proof of Lemma 5. The symmetry argument still holds, only now the
period is l + 1, that is, if 1 ≤ i ≤ (t− 2)(l + 1) + 1 is a starting vertex then so is i + l + 1.
Also, if there are d starting vertices between 1 and l+1, then there are d starting vertices
between every starting vertex i and i + l and all in all there are (t − 1)d + 1 starting
vertices in W ′

t .
Let Y ′

r be the subgraph of W ′

t composed of the minimal path of P containing the last
r starting vertices together with their descendants through vertices that are not in P .
Hence, Y ′

1 is a single vertex and Y ′

d+1 is a copy of F with an extra vertex connected to
ul+1. Finally we define g′(r) as the number of induced F -matchings in Y ′

r .
We wish to derive a recurrence formula for g′(r). We count induced F -matchings of

Y ′

r by the membership of the first vertex. The number of induced F -matchings that do
not cover the first vertex (who is also the first starting vertex) is exactly g′(r − 1).

Consider matchings in which the first starting vertex i is covered. The embedding of
F covering i can not cover vertices of P farther than i+ l, since the diameter of F is l. On
the other hand, the number of vertices in the subgraph made of the path connecting i to
i+ l together with their descendants that are not in P is exactly

∑

bi = |F |. Hence i+ l is
also covered by the same embedding that covers i. Now, if i + l + 1 is covered by another
embedding of F , then {i + l, i + l + 1} is spanned, which is forbidden, so i + l + 1 is not
covered. Since there are d starting vertices between i and i + l, and since i + l + 1 is a
starting vertex as well, we get that the number of such matchings is exactly g′(r− d− 1).
Therefore we have g′(r) = g′(r − 1) + g′(r − d − 1).
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Clearly g′(r) = 1 for every 1 ≤ r ≤ d−1, as the number of vertices in Y ′

r in these cases
is smaller than |F |. The value of g′(d) may be either 1 or 2, depending on whether F may
be embedded into Yd or not. The value of g′(d+1) can also be one of a few options. Still,
we extend g′ backwards by defining g′(0) = g′(d + 1) − g′(d), g′(−1) = g′(d) − g′(d − 1),
and g′(−2) = g′(d − 1) − g′(d − 2) = 0. We complete the proof by applying Claim 7.

4 Concluding discussion

Our initial objective was to provide a simple and intuitive explanation to the fact that
almost all labeled trees have an even number of independent sets. Indeed, there are
nullifying trees Z such that when a tree T has a Z-leaf, the number of independent sets
in T is even. Also, every fixed tree Z appears as a Z-leaf in a random tree with n vertices
with probability tending to one as n goes to infinity. Therefore almost all trees have an
even number of independent sets.

The simplicity of the explanation allowed vast generalizations — Theorems 1 and 2
above. In fact, the proof also works in other scenarios. If a probability space of graphs
has a property corresponding to the probabilistic part of the proof, then the number of
(induced) F -matchings will be a zero residue in that probability space as well.

As a concrete example, let Pn be the random planar graph of order n, that is, Pn

is the set of all simple labeled planar graphs with n vertices endowed with the uniform
distribution. In [10] it is shown that with probability exponentially close to one, Pn has
an R-leaf for every fixed rooted tree R. Thus, by the above, the number of (induced)
F -matchings is a zero residue in a random planar graph. Notice that Pn is connected
with probability at least 1/e as shown in [10], so a potential simpler strategy of proving
the same result — showing the existence of a component having a zero residue number of
(induced) F -matchings — will not suffice.

Similar results may be obtained for other random graphs models as well. On the
other hand, if we consider dense random graphs then a different approach is required.
For example, it is not clear how the number of independent sets typically behaves as a
residue for the binomial random graph G(n, 1/2). Moreover, it is not difficult to show
that for p = p(n) close to 1 in the range in which the maximum independent set of G(n, p)
is Θ(1) > 1 asymptotically almost surely, the number of independent sets in G(n, p) is
nearly uniformly distributed modulo any constant m. See [13] for several related results.

Our proof implies that the number of F -matchings in a random tree of order n is
typically zero modulo any constant m when the size of F grows slowly enough with n. It
may be interesting to find the maximal rate of growth for which this property still holds.

In a recent paper [7] Law shows that for every two integers k, m, there exists a tree T
such that the number of independent sets of T is congruent to k modulo m. One may ask
if the same holds for general (induced) F -matchings as well. Is it true that for every tree
F and integers k, m there exists a tree T such that the number of (induced) F -matchings
of T is congruent to k modulo m?

Using Remark 4 we can estimate the constants appearing in Theorems 1 and 2. Clearly
the constant will depend on the size of the nullifying tree. No effort was made to find the
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smallest nullifying tree.

Acknowledgment We thank Alan Frieze for suggesting the use of the Joyal Correspon-
dence in the proof of Lemma 3.
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