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kryba@amu.edu.pl

Submitted: Nov 25, 2009; Accepted: Feb 7, 2011; Published: Feb 14, 2011

Mathematics Subject Classification: 05C80

keywords: random intersection graphs, threshold functions,

connectivity, Hamilton cycle, perfect matching, coupling

Abstract

We present a new method which enables us to find threshold functions for many

properties in random intersection graphs. This method is used to establish sharp

threshold functions in random intersection graphs for k–connectivity, perfect match-

ing containment and Hamilton cycle containment.

1 Introduction

In a general random intersection graph G(n, m,P(m)), as defined in [9], each vertex v
from a vertex set V (|V| = n) is assigned independently a subset of features Wv ⊆ W
from an auxiliary set of features W (|W| = m). Namely, for any vertex v ∈ V, indepen-
dently of all other vertices, first a cardinality of Wv is chosen according to the probability
distribution P(m) = (P0, . . . , Pm), and then the set Wv is picked uniformly at random
from all subsets of W having the chosen cardinality. Two vertices v and v′ are adjacent
in a general intersection graph G(n, m,P(m)) if and only if Wv and Wv′ intersect. In this
article we concentrate on the widely studied random intersection graph model G (n, m, p)
first defined in [11, 17] which is a special case of the one above-mentioned. However the
obtained results may be extended to a wider subclass of the G(n, m,P(m)) model, which
will be also discussed. In G (n, m, p), as defined in [11, 17], the cardinality of Wv has the
binomial distribution Bin (m, p), i.e. Pr {w ∈ Wv} = p independently for all v ∈ V and
w ∈ W. Usually, it is assumed that m = nα for some constant α > 0 (see for example
[2, 6, 8, 11, 16, 17, 18]). However the main theorem of this article does not require this
additional assumption.
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Obviously, Pr {{v, v′} ∈ E(G (n, m, p))} = 1 − (1 − p2)m for any distinct v, v′ ∈ V.
Therefore one could expect that there is some relation between G (n, m, p) and a random
graph G (n, p̂) with edges appearing independently with probability p̂ for p̂ approximately
1 − (1 − p2)m. It follows from the results on subgraph containment as presented in
[11, 16], in general, these are not equivalence relations since the structures of G (n, m, p)
and G (n, p̂) differ significantly. However it was shown in [8] that for large m (i.e. m = nα

and α > 6), dependencies between edge appearances in G (n, m, p) are small and the
models have asymptotically the same properties. The equivalence theorem is extended
to m = nα and α ≥ 3 (see [15]), but for m = nα and α < 3 it is not true in general
(see for example [11, 16]). In the context of the results stated above it seems intriguing
that for m = nα and α > 1 the threshold functions of connectivity and phase transition
in G (n, m, p) and G (n, p̂) coincide (see [2, 7, 17]) even though the models differ a lot
(for example the expected number of triangles in G (n, m, p) significantly exceeds the
expected number of triangles in G (n, p̂) for α < 3). One of the aims of this paper is to
get an improved understanding of the phenomena by a closer insight into the structure
of G (n, m, p) and to use this knowledge to establish sharp threshold functions for other
important properties of G (n, m, p).

Our work is partially inspired by the result of Efthymiou and Spirakis [6]. However
the method significantly differs from the one used in [6] and therefore it enables us to
obtain sharper threshold functions for the property of Hamilton cycle containment than
those from [6].

The article is organised as follows. In Section 2 we present and prove the main theorem
which relates G (n, m, p) to G (n, p̂). In Section 3 the theorem is used to study properties
of G (n, m, p). In particular, an alternative short proof of the connectivity theorem shown
in [17] is given. Moreover, results concerning sharp threshold functions for Hamilton cycle
containment, perfect matching containment and k-connectivity are proved. The method
introduced here is strong enough to give some partial results on the threshold functions
for other properties of G (n, m, p). However we present here graph properties for which the
threshold functions obtained by our method are tight at least for m = nα and α > 1. In
Section 4 extensions of the results to a wider subclass of the general random intersection
graph model are presented. Moreover some interesting questions related to the main
theorem are discussed.

All limits in the paper are taken as n → ∞. Throughout the paper we use the notation
an = o(bn) if an/bn → 0 and an ∼ bn if an/bn → 1. Also by Bin (n, p) and Po (λ) we denote
the binomial distribution with parameters n, p and the Poisson distribution with expected
value λ, respectively. Moreover if a random variable X is stochastically dominated by Y
we write X ≺ Y . We also use the phrase “with high probability” to say with probability
tending to one as n tends to infinity.

2 Main Result

Recall that for the family G of all graphs with a vertex set V, we call A ⊆ G an increasing
property if A is closed under isomorphism and G ∈ A implies G′ ∈ A for all G′ ∈ G
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such that E(G) ⊆ E(G′). The theorem stated below relates G (n, m, p) to G (n, p̂) for
increasing properties. A motivation for the investigation in a comparison was the fact
that, for m = nα and α > 1, if p and p̂ are connectivity threshold functions of G (n, m, p)
and G (n, p̂), respectively, then Pr {{v, v′} ∈ E(G (n, m, p))} ∼ 1 − (1 − p2)m ∼ mp2 ∼ p̂
(see [17]). In the proof of the theorem we explain that this is due to the fact that np → 0.
Surprisingly, in some cases the comparison also gives tight results for np 6→ 0, however
with p̂ differing from 1 − (1 − p2)m. This is due to the fact that as np → ∞ the number
of large cliques in G (n, m, p) increases compared to G (n, p̂) and thus both models have
significantly different edge structures. Basically, as np → ∞ and p̂ = (1 + o(1))mp/n,
G (n, m, p) has more edges than G (n, p̂), however both models have the same number of
isolated vertices. In the theorem we have the case nmp → ∞ instead of np → ∞, since
the thesis also holds true in this case. However as nmp → ∞ and np 6→ ∞ the results
obtained using the theorem will not be tight.

Theorem 1. Let A be an increasing property, mp2 < 1, and

p̂− =















mp2
(

1 − (n − 2)p − mp2

2

)

for np = o(1);

mp

n

(

1 − ω√
mnp

− 2
np

− mp

2n

)

for nmp → ∞
and some ω → ∞, ω = o(

√
mnp).

(1)

If
Pr {G (n, p̂−) ∈ A} → 1,

then
Pr {G (n, m, p) ∈ A} → 1. (2)

The main ingredient of the proof is a comparison of G (n, m, p) and G (n, p̂) using
intermediate auxiliary graphs. The comparison is made by a sequence of couplings and
measuring the distance between distributions of auxiliary graph valued random variables.
First we introduce necessary definitions and notation.

Let M be a random variable with range in the set of non-negative integers (in the
simplest case M is a given positive integer with probability one). By G∗ (n, M) we denote
a random graph with vertex set V and edge set constructed by sampling M times with
repetition elements from the set of all two element subsets of V. A subset {v, v′} is an
edge of G∗ (n, M) if and only if it is sampled at least once. If M equals a constant t
with probability one, has the binomial distribution, or the Poisson distribution, we write
G∗ (n, t), G∗ (n, Bin (·, ·)), or G∗ (n, Po (·)), respectively.

For any random variables G1 and G2 with values in a countable set A, by the total
variation distance we mean

dTV (G1, G2) = max
A′⊆A

|Pr {G1 ∈ A′} − Pr {G2 ∈ A′} |

=
1

2

∑

a∈A

|Pr {G1 = a} − Pr {G2 = a} |.
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By a coupling (G1, G2) of two random variables G1 and G2 we mean a choice of a
probability space on which a random vector (G′

1, G
′
2) is defined and G′

1 and G′
2 have the

same distributions as G1 and G2, respectively. For simplicity of notation we will not
differentiate between (G′

1, G
′
2) and (G1, G2). For two graph valued random variables G1

and G2 we write
G1 � G2 or G1 �1−o(1) G2,

if there exists a coupling (G1, G2), such that under the coupling G1 is a subgraph of G2

with probability 1 or 1 − o(1), respectively. Moreover, we write

G1 = G2,

if G1 and G2 have the same probability distribution (equivalently there exists a coupling
(G1, G2) such that G1 = G2 with probability one).

It is simple to construct suitable couplings which implies the following fact.

Fact 1. (i) Let Mn be a sequence of random variables and let an be a sequence of numbers.
If

Pr {Mn ≥ an} = o(1) (Pr {Mn ≤ an} = o(1)),

then
G∗ (n, Mn) �1−o(1) G∗ (n, an) (G∗ (n, an) �1−o(1) G∗ (n, Mn)).

(ii) If a random variable M is stochastically dominated by M ′ (i.e. M ≺ M ′), then

G∗ (n, M) � G∗ (n, M ′) .

The proof of the next fact is analogous to the proof of Fact 2 in [15].

Fact 2. Let (Gi)i=1,...,m and (G′
i)i=1,...,m be sequences of independent random graphs. If

Gi � G′
i, for all i = 1, . . . , m

then
m
⋃

i=1

Gi �
m
⋃

i=1

G′
i.

Proof of Theorem 1. Let w ∈ W. Denote by Vw the set of vertices which have chosen
feature w and put Xw = |Vw|. Let G[Vw] be a graph with vertex set V and edge set
containing those edges which have both ends in Vw (i.e. its edges form a clique with the
vertex set Vw). We can construct a coupling (G∗ (n, ⌊Xw/2⌋) ,G[Vw]) which implies

G∗ (n, ⌊Xw/2⌋) � G[Vw],

in the following way. Given the value of Xw, first we generate an instance Gw of
G∗ (n, ⌊Xw/2⌋). Let Yw be the number of non-isolated vertices in Gw. By definition
Yw is at most Xw, therefore Vw may be chosen to be a union of the set of non–isolated
vertices in Gw and Xw−Yw vertices chosen uniformly at random from the remaining ones.
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Graphs G∗ (n, ⌊Xw/2⌋), w ∈ W, are independent, and G[Vw], w ∈ W, are independent.
Thus by Fact 2 and the definition of G (n, m, p), we have

⋃

w∈W

G∗ (n, ⌊Xw/2⌋) �
⋃

w∈W

G[Vw] = G (n, m, p) .

Since Xw, w ∈ W, are independent random variables and G[Vw], w ∈ W, are independent
as well, by the above equation and the definition of G∗ (n, ·),

G∗
(

n,
∑

w∈W⌊Xw/2⌋
)

=
⋃

w∈W

G∗ (n, ⌊Xw/2⌋) � G (n, m, p) . (3)

Now consider the following two cases
CASE 1: np = o(1).
Notice that

∑

w∈W

Iw ≺
∑

w∈W

⌊Xw/2⌋,

where

Iw =

{

1, if Xw ≥ 2;

0, otherwise.

The random variable Z1 =
∑

w∈W Iw has the binomial distribution Bin (m, q), where
q = Pr {Xw ≥ 2}, therefore by Fact 1(ii),

G∗ (n, Bin (m, q)) � G∗
(

n,
∑

w∈W⌊Xw/2⌋
)

. (4)

Let M1 and M2 be random variables with the binomial distribution Bin (m, q) and the
Poisson distribution Po (mq), respectively. A simple calculation shows that in G∗ (n, M1)
each edge appears independently with probability 1 − exp(−mq/

(

n

2

)

) (see [8]). Therefore
by properties of the total variation distance and the Poisson approximation of binomial
random variables (see [8] and [1] or [15]), we have

dTV

(

G∗ (n, Bin (m, q)) , G
(

n, 1 − exp(−mq/
(

n

2

)

)
))

= dTV (G∗ (n, M1) ,G∗ (n, M2)) ≤ 2dTV (M1, M2) ≤ 2q ≤ 2

(

n

2

)

p2 = o(1). (5)

Moreover q ≥ Pr {Xw = 2} =
(

n

2

)

p2(1 − p)n−2 and 1 − exp(−x) ≥ x − x2/2 for x < 1
(recall that mp2 < 1 by the assumptions of the theorem), thus

p− = mp2

(

1 − (n − 2)p − mp2

2

)

≤ 1 − exp(−mq/
(

n

2

)

).

Therefore by a standard coupling of G (n, ·) we obtain

G (n, p−) � G
(

n, 1 − exp(−mq/
(

n

2

)

)
)

. (6)
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CASE 2: nmp → ∞.

Notice that
Z2

2
− m ≺

∑

w∈W

⌊Xw/2⌋,

where Z2 =
∑

w∈W Xw has the binomial distribution Bin (nm, p). By Fact 1(ii),

G∗

(

n,
Z2

2
− m

)

� G∗
(

n,
∑

w∈W⌊Xw/2⌋
)

. (7)

By Chernoff’s bound for the Poisson distribution (see [14] Lemma 1.2) for any function
ω → ∞, ω = o(

√
nmp),

Pr

{

Z2

2
− m ≤ nmp

2

(

1 − ω

2
√

nmp
− 2

np

)}

= Pr

{

Z2 ≤ nmp − ω
√

mnp

2

}

= o(1).

Moreover, the same bound applied to a random variable Z3 with the Poisson distribution

Po
(

nmp

2

(

1 − ω√
nmp

− 2
np

))

gives

Pr

{

Z3 ≥
nmp

2

(

1 − ω

2
√

nmp
− 2

np

)}

= Pr

{

Z3 ≥ EZ3 +
ω
√

nmp

4

}

= o(1).

Therefore, using twice Fact 1(i), we get

G∗

(

n, Po
(

nmp

2

(

1 − ω√
nmp

− 2
np

)))

�1−o(1) G∗

(

n,
Z2

2
− m

)

. (8)

Recall that, for any λ, in G∗ (n, Po (λ)) each edge appears independently with probability
1 − exp(−λ/

(

n

2

)

) (see [8]). Therefore

G
(

n, 1 − exp
(

− mp

n−1

(

1 − ω√
nmp

− 2
np

)))

= G∗

(

n, Po
(

nmp

2

(

1 − ω√
nmp

− 2
np

)))

. (9)

Since
mp

n

(

1 − ω√
nmp

− 2
np

− mp

2n

)

≤ 1 − exp
(

− mp

n−1

(

1 − ω√
nmp

− 2
np

))

,

a standard coupling of G (n, ·) implies

G (n, p−) � G
(

n, 1 − exp
(

− mp

n−1

(

1 − ω√
nmp

− 2
np

)))

. (10)

In equations (3)–(10) we have established relations between G (n, p−) and G (n, m, p)
using intermediate auxiliary random graphs. From them we can deduce the assertion of
the theorem.

First recall (see for example [8]) that if for some graph valued random variables G1

and G2

dTV (G1, G2) = o(1),

the electronic journal of combinatorics 18 (2011), #P36 6



then for any a ∈ [0; 1] and any graph property A

Pr {G1 ∈ A} → a iff Pr {G2 ∈ A} → a.

Now let G1 and G2 be two random graphs such that

G1 � G2 or G1 �1−o(1) G2. (11)

Assume that for an increasing property A,

Pr {G1 ∈ A} → 1.

Under the coupling (G1, G2) given by (11) define event H := {G1 ⊆ G2}. Then

1 ≥ Pr {G2 ∈ A} ≥ Pr {G2 ∈ A|H}Pr{H}
≥ Pr {G1 ∈ A|H}Pr{H}
= Pr {{G1 ∈ A} ∩ H}
= Pr {G1 ∈ A} + Pr {H} − Pr {{G1 ∈ A} ∪H}
≥ Pr {G1 ∈ A} + Pr {H} − 1

= 1 + o(1),

which means that
Pr {G2 ∈ A} → 1.

Therefore the above facts concerning the total variation distance and the properties
of couplings combined with equations (3), (4), (5) and (6) imply Theorem 1 in the case
np = o(1) and combined with equations (3), (7), (8), (9) and (10) imply the theorem in
the case nmp → ∞

3 Sharp threshold functions

Many graph properties in G (n, p̂) follow the so called “minimum degree phenomenon”.
This means that with high probability the properties hold in G (n, p̂) as soon as their
necessary minimum degree condition is satisfied. In this section, using Theorem 1, we
show that the “minimum degree phenomenon” also holds in the case of G (n, m, p) for
m = nα and α > 1 and, to some extent, for m = nα and α ≤ 1. Recall that while
studying properties of G (n, m, p), it is standard to assume m = nα, and in this section we
follow this convention. The properties considered are: k-connectivity, perfect matching
containment and Hamilton cycle containment. All these properties are increasing and
thus Theorem 1 may be used. Note that for pk considered in the theorems if α > 1 then
np → 0 and if α ≤ 1, then np → ∞. The following theorems are proved.

Theorem 2. Let m = nα and

p1 =

{

lnn+ω
m

, for α ≤ 1;
√

ln n+ω
nm

, for α > 1.
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(i) If ω → −∞, then with high probability G (n, m, p1) is disconnected and does not
contain a perfect matching.

(ii) If ω → ∞, then with high probability G (n, m, p1) is connected and contains a perfect
matching.

Theorems 3 and 4 consider the same properties. However they are stated separately since
in the case α > 1 (Theorem 3) the obtained threshold functions are tight and for α ≤ 1
(Theorem 4) they may possibly be tightened by other methods.

Theorem 3. Let k ≥ 1 be a constant integer, α > 1, m = nα and

pk =

√

ln n + (k − 1) ln ln n + ω

mn
.

1. (i) If ω → −∞, then with high probability G (n, m, pk) is not k-connected.

(ii) If ω → ∞, then with high probability G (n, m, pk) is k-connected.

2. (i) If ω → −∞, then with high probability G (n, m, p2) does not contain a Hamilton
cycle.

(ii) If ω → ∞, then with high probability G (n, m, p2) contains a Hamilton cycle.

Theorem 4. Let k ≥ 1 be a constant integer, α ≤ 1, m = nα,

pk =
ln n + (k − 1) ln ln n + ω

m
.

1. (i) If ω → −∞, then with high probability G (n, m, p1) is not k-connected.

(ii) If ω → ∞, then with high probability G (n, m, pk) is k-connected.

2. (i) If ω → −∞, then with high probability G (n, m, p1) does not contain a Hamilton
cycle.

(ii) If ω → ∞, then with high probability G (n, m, p2) contains a Hamilton cycle.

Theorem 2 in its part concerning connectivity was obtained in [17]. However we state
it here since it gives a global overview of the new method’s implications and we are able
to provide a new elegant proof of it. To the best of our knowledge the remaining results
have not been proved before.

Proof of Theorems 2, 3 and 4. Denote

p̂k =
ln n + (k − 1) ln ln n + ω

n
.

By some classical results (Erdős and Rényi [7], Bollobás and Thomason [5], Komlós and
Szeméredi [12] and Bollobás [4])
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1. (i) If ω → −∞, then with high probability G (n, p̂1) does not contain a perfect
matching.

(ii) If ω → ∞, then with high probability G (n, p̂1) contains a perfect matching.

2. (i) If ω → −∞, then with high probability G (n, p̂k) is not k-connected.

(ii) If ω → ∞, then with high probability G (n, p̂k) is k-connected.

3. (i) If ω → −∞, then with high probability G (n, p̂2) does not contain a Hamilton
cycle.

(ii) If ω → ∞, then with high probability G (n, p̂2) contains a Hamilton cycle.

Since k–connectivity, Hamilton cycle containment and perfect matching containment are
all increasing properties, parts (ii) of Theorems 2, 3 and 4 follow by Theorem 1.

We are left with proving parts (i). The necessary condition for k–connectivity, per-
fect matching and Hamilton cycle containment are minimum degree at least k, 1 and 2,
respectively. Therefore the following two lemmas imply parts (i) of the theorems.

Denote by δ(G (n, m, p)) the minimum degree of G (n, m, p).

Lemma 1. Let k ≥ 1 be a constant integer, α > 1 and

pk =

√

ln n + (k − 1) ln ln n + ω

nm
,

(i) If ω → −∞ then with high probability δ(G (n, m, pk)) < k

(ii) If ω → ∞ then with high probability δ(G (n, m, pk)) ≥ k

Lemma 2. Let α ≤ 1 and

p1 =
ln n + ω

m
.

(i) If ω → −∞ then with high probability δ(G (n, m, p1)) = 0.

(ii) If ω → ∞ then with high probability δ(G (n, m, p1)) ≥ 1.

Lemma 2 was shown in [17]. Part (ii) of Lemma 1 is easily obtained by the first
moment method (see for example [10]). Moreover, to prove the theorems, only part (i) is
needed. Its proof is a standard application of the second moment method (see [10]) and
we sketch it for completeness.

We assume that ω = o(ln n). Since the property “minimum degree at least k” is
increasing, the result for larger ω follows by a simple coupling argument applied to
G (n, m, ·). The vertex degree analysis becomes complex for α near 1 due to edge de-
pendencies. Therefore, to simplify arguments, instead of a random variable representing
the degree of a vertex v ∈ V, we study the auxiliary random variable

Zv = |{(v′, w) : v 6= v′ ∈ V, w ∈ Wv and w ∈ Wv′}|.
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Let

ξv =

{

1, if Zv = k − 1;

0, otherwise;
and ξ =

∑

v∈V

ξv.

Clearly, if ξv = 1, then the degree of the vertex v is at most k−1. Therefore Pr {ξ > 0} → 1
implies part (i) of Lemma 1.

Let Xv = |Wv|. By Chernoff’s bound (see Theorem 2.1 in [10] or Lemma 1.1 in [14]),

Pr {x− ≤ Xv ≤ x+} = 1 − o
(

n−2
)

for x± = mpk

(

1 ±
√

5 ln n/(mpk)
)

.

Moreover, given Xv = x, Zv has the binomial distribution Bin ((n − 1)x, pk). Thus after
careful calculation we get

Eξ = n Pr {Zv = k − 1}
= n

∑x+

x=x−

Pr {Zv = k − 1|Xv = x}Pr {Xv = x} + o (n−2) (12)

≥ 1
(k−1)!

exp (−ω + o(1)) (1 + o(1)) → ∞.

Let v, v′ ∈ V and S = |Wv ∩ Wv′ |. Given i ∈ {0, 1, 2} and x, x′ ∈ [x−; x+ + 2] denote
by H(x, x′, i) the event {Xv = x + i, Xv′ = x′ + i, S = i}. A calculation shows that if
i ∈ {0, 1, 2} and x, x′ ∈ [x−; x+ + 2], then uniformly over all x, x′

Pr {H(x, x′, i)} = Pr {Xv = x + i}Pr {Xv′ = x′ + i}Pr {S = i|Xv′ = x′ + i, Xv = x + i}
= (1 + o(1)) Pr {Xv = x}Pr {Xv′ = x′}Pr {S = i} .

Moreover, uniformly over all x, x′ ∈ [x−; x+ + 2], we have

Pr {Zv = k − 1, Zv′ = k − 1|H(x, x′, i)}
= (1 + o(1)) Pr {Zv = k − 1|Xv = x}Pr {Zv′ = k − 1|Xv′ = x} .

Denote J = [x− + 2, x+]. Since S has the binomial distribution Bin (m, p2
k), and by

Chernoff’s bound applied to Xv and Xv′ , we get

Pr {Xv /∈ J or Xv′ /∈ J or S /∈ {0, 1, 2}}
≤ Pr {Xv /∈ J} + Pr {Xv′ /∈ J} + Pr {S ≥ 3} = o

(

n−2
)

.

Finally by the above calculation and (12) for v 6= v′ ∈ V

Eξ(ξ − 1) =n(n − 1) Pr {Zv = k − 1, Zv′ = k − 1}
≤n(n − 1)

·
x+
∑

x=x−

x+
∑

x′=x−

2
∑

i=0

Pr {Zv = k − 1, Zv′ = k − 1|H(x, x′, i)}Pr {H(x, x′, i)}

+ n(n − 1) Pr {Xv /∈ J or Xv′ /∈ J or S /∈ {0, 1, 2}}
=(1 + o(1)) Pr {Zv = k − 1}Pr {Zv′ = k − 1} + o(1),

which by the second moment method implies Pr {ξ > 0} → 1.
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4 Final remarks

The obtained results may be extended to a wider class of the general random intersection
graph model G(n, m,P(m)). As an example we state here a uniform random intersection
graph which is G(n, m,P(m)) = G(n, m,Pd) with probability distribution P(m) = Pd con-
centrated in d = d(n), for some d(n). More precisely in G(n, m,Pd), for all v ∈ V, the set
Wv is chosen uniformly at random from all d–element subsets of W. By Lemma 4 from [3]
Theorems 2 and 3 hold true, if we assume that α > 1 and replace pk by dk = mpk and
G (n, m, pk) by G(n, m,Pdk

).
As it clearly follows from Theorem 2, the couplings used in the proof of Theorem 1

are tight. However, in the case np → ∞ they do not always give the best results (see
Theorem 4). Notice that in the case α < 1 it is easy to strengthen Lemma 2 by a simple
application of Chernoff’s bound.

Lemma 3. Let α < 1 and

p1 =
ln n + ω

m
.

If ω → ∞ then with high probability δ(G (n, m, p1)) ≥ (1 + o(1))n ln n/m.

Therefore having in mind the “minimum degree phenomenon”, we may conjecture that
the threshold function given in Theorem 4 may be tightened. However we believe that to
prove the following conjecture a new method has to be used.

Conjecture 1. Let α < 1,

p =
ln n + ω

m
,

and ω → ∞. Then with high probability G (n, m, p) is k-connected for any constant k
and contains a Hamilton cycle.

This conjecture contains the assumption α < 1. Probably the case α = 1 is more com-
plex. The thesis may be supported by the results concerning the degree distribution [18]
and the phase transition [13] for α = 1. Although they consider p near phase transition
threshold, they show that, for some properties, there is a value of α for which an analysis
of G (n, m, p) is complicated.
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