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Abstract

We prove a theorem allowing us to find convex-ear decompositions for rank-

selected subposets of posets that are unions of Boolean sublattices in a coherent

fashion. We then apply this theorem to geometric lattices and face posets of shellable

complexes, obtaining new inequalities for their h-vectors. Finally, we use the latter

decomposition to give a new interpretation to inequalities satisfied by the flag h-

vectors of face posets of Cohen-Macaulay complexes.

1 Introduction

The f-vector of a finite simplicial complex ∆, which counts the number of faces of the
complex in each dimension, is arguably its most fundamental invariant. The h-vector of
∆ is the image of its f-vector under an invertible transformation. Somewhat surprisingly,
properties of a complex’s f-vector are sometimes better expressed through its h-vector. A
good example of this phenomenon are the Dehn-Sommerville relations (see, for instance,
[17]), which state that the h-vector of a simplicial polytope boundary is symmetric.

The main complexes we study in this paper are all order complexes, namely complexes
whose simplices correspond to chains in posets. Since a poset and its order complex hold
the same information, we often refer to them interchangeably. E.g., we may speak of the
facets or h-vector of a poset, or to a chain in an order complex.

Convex-ear decompositions were first introduced by Chari in [3]. Heuristically, a com-
plex admits a convex-ear decomposition if it is a union of simplicial polytope boundaries
which fit together coherently (see Definition 2.3). Suppose a (d− 1)-dimensional complex
∆ admits such a decomposition. In [3], Chari shows that the h-vector (h0, h1, . . . , hd) of ∆
satisfies, for i < d/2, hi ≤ hi+1 and hi ≤ hd−i. In [15], Swartz shows that ∆ is 2-CM, and
that (h0, h1 − h0, h2 − h1, . . . , h⌊d/2⌋ − h⌊d/2⌋−1) is an M-vector (called an O-sequence by
some authors). Convex-ear decompositions have proven quite useful, as they have been
applied to coloop-free matroid complexes [3], geometric lattices [9], coloring complexes [6],
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d-divisible partition lattices [16], coset lattices of relatively complemented finite groups
[16], and finite buildings [15].

In [11], we find a convex-ear decomposition for rank-selected subposets of supersolvable
lattices with nowhere-zero Möbius functions. In the process, we obtain a decomposition
for order complexes of rank-selected subposets of the Boolean lattice Bd. In this paper we
build upon this result with Theorem 3.1, which gives convex-ear decompositions for rank-
selected subposets of posets that are unions of Boolean lattices, pieced together nicely. In
Section 3 we recall several useful results from [11], and then prove this theorem.

Sections 4 and 5 are devoted to the applications of Theorem 3.1 to geometric lattices
and face posets of shellable complexes, respectively. Taken together, these results (along
with those of Chari and Swartz) give us the following.

Theorem 1.1. Let ∆ be the order complex of a rank-selected subposet of either

1: a geometric lattice, or

2: the face poset of the codimension-1 skeleton of a Cohen-Macaulay complex.

Then ∆ is 2-CM and its h-vector (h0, h1, . . . , hd) satisfies, for all i < d/2, hi ≤ hi+1 and
hi ≤ hd−i. Moreover, (h0, h1 − h0, h2 − h1, . . . , h⌊d/2⌋ − h⌊d/2⌋−1) is an M-vector.

For item 2 above, we use the fact that the set of h-vectors in question remains un-
changed if we replace the Cohen-Macaulay requirement with the stronger condition of
shellability (see the proof of Theorem 6.2).

Finally, in Section 6, we use the decomposition from Section 5 and techniques similar
to those in [9] to prove that the flag h-vector {hS} of a Cohen-Macaulay complex’s face
poset satisfies hT ≤ hS whenever S dominates T (in the sense of Definition 2.10).

2 Preliminaries

We assume a familiarity with simplicial complexes and partially ordered sets (see [14]).
All our simplicial complexes will be finite and pure.

The f-vector of a (d − 1)-dimensional simplicial complex ∆ is the integral sequence
(f0, f1, . . . , fd), where fi counts the number of (i−1)-dimensional faces of ∆. The h-vector
of ∆ is the sequence (h0, h1, . . . , hd) given by

d∑

i=0

fi(t− 1)d−i =

d∑

i=0

hit
d−i

We use the following alternate definition of shellability, easily seen to be equivalent to
the standard one (see [1]).

Definition 2.1. Let F1, F2, . . . , Ft be an ordering of the facets of ∆. This ordering is a
shelling if and only if for all j < k there exists a j′ < k satisfying

Fj ∩ Fk ⊆ Fj′ ∩ Fk = Fj′ − x

for some element x of Fj′.
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We also use the following result of Danaraj and Klee for showing that a given complex
is a ball.

Theorem 2.2 ([4]). Let ∆ be a full-dimensional shellable proper subcomplex of a sphere.
Then ∆ is a ball.

2.1 Convex-ear decompositions

Definition 2.3. Let ∆ be a (d−1)-dimensional complex. We say ∆ admits a convex-ear
decomposition, or c.e.d., if there exists a sequence of pure (d − 1)-dimensional subcom-
plexes Σ1,Σ2, . . . ,Σt such that

i:
⋃t

i=1 Σi = ∆.

ii: For i > 1, Σi is a proper subcomplex of the boundary complex of a d-dimensional
simplicial polytope, while Σ1 is the boundary complex of a d-dimensional simplicial
polytope.

iii: Each Σi, for i > 1 is a topological ball.

iv: For i > 1, Σi ∩ (
⋃i−1

j=1 Σj) = ∂Σi.

Convex-ear decompositions were introduced by Chari in [3], where the following was
proven.

Theorem 2.4. When ∆ admits a convex-ear decomposition its h-vector satisfies, for all
i ≤ ⌊d/2⌋,

1: hi ≤ hi+1 and

2: hi ≤ hd−i.

In [15], Swartz proved the following analogue of the g-Theorem for complexes with
convex-ear decompositions. An M-vector is the degree sequence of an order ideal of
monomials.

Theorem 2.5. Let ∆ be a complex admitting a convex-ear decomposition, with h-vector
(h0, h1, . . . , hd). Then the vector

(h0, h1 − h0, h2 − h1, . . . , h⌊d/2⌋ − h⌊d/2⌋−1)

is an M-vector. Furthermore, ∆ is 2-CM.
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2.2 Order complexes and flag vectors

Recall that the order complex of a poset P , which we write as ∆(P ), is the simplicial
complex whose faces are chains in P . If P has a unique minimal element 0̂ or a unique
maximal element 1̂, we do not include these in the order complex. That is, simplices in
∆(P ) are chains in P − {0̂, 1̂}. All our posets are ranked.

For the remainder of this section, let P be a rank-d poset with a 0̂ and 1̂. A labeling
of P is a function λ : {(x, y) ∈ P 2 : y covers x} → Z. For a saturated chain

c := x = x0 < x1 < · · · < xt = y

the λ-label of c, written λ(c), is the word

λ(x0, x1)λ(x1, x2) · · ·λ(xt−1, xt).

Definition 2.6. A labeling λ of P is an EL-labeling if:

1: in each interval [x, y] in P , there is a unique saturated chain with a strictly increasing
label, and

2: the label of this chain is lexicographically first among the labels of all saturated chains
in [x, y].

If λ is an EL-labeling of P and each maximal chain is labeled with a permutation of [d]
(that is, an element of Sd) then λ is called an Sd-EL-labeling.

Example 2.7. The Boolean lattice Bd admits an Sd-EL-labeling in an obvious way: if y
covers x then y = x ∪ {i}, so set λ(x, y) = i.

When P admits an EL-labeling λ and c is a chain in P , we write Υλ(c) to denote the
maximal chain of P obtained by filling in each gap in c with the unique chain in that
interval with increasing λ-label. EL-labelings were introduced by Björner and Wachs,
where the following was shown.

Theorem 2.8 ([2]). If P admits an EL-labeling then ∆(P ) is shellable.

For any S ⊆ [d− 1] and any maximal chain

c := 0̂ = x0 < x1 < x2 < · · · < xd = 1̂

of P , let cS denote the chain of elements of c whose ranks lie in S ∪ {0, d}. The rank-
selected subposet PS is the subposet of P whose maximal chains are all of the form cS, as
c ranges over all maximal chains of P . Equivalently, PS is the poset P restricted to all
elements with ranks in S ∪ {0, d}.

For any S ⊆ [d−1], let fS be the number of maximal chains in PS. The collection {fS}
is known as the flag f-vector of P . Note that the flag f-vector of P refines its f-vector, as
clearly

fi(P ) =
∑

S⊆[d−1],|S|=i

fS(P ).
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The flag h-vector of P is the collection {hS} defined by

hS =
∑

T⊆S

(−1)|S−T |fT .

By inclusion-exclusion, the above is equivalent to fT =
∑

S⊆T hS. It follows that the
h-vector is refined by the flag h-vector, namely

hi(P ) =
∑

S⊆[d−1],|S|=i

hS(P ).

When P has an EL-labeling, its flag h-vector has a nice enumerative interpretation.

Theorem 2.9 ([2]). The flag h-vector {hS} of a poset P with EL-labeling λ is given as
follows: hS counts the number of maximal chains of P whose λ-labels have descent set S.

2.3 Dominance in Sd.

Let σ be a permutation in the symmetric group Sd. We view σ as a word in [d], writing
σ = σ(1)σ(2) · · ·σ(d). If σ(i) < σ(i+ 1) call the interchanging of σ(i) and σ(i+ 1) in σ a
switch.

Recall that the weak order on Sd, for which we write <w, is the partial order given by
the following property: σ <w τ if and only if τ can be obtained from σ by a sequence of
switches.

For S ⊆ [d− 1], let Dd
S denote the set of permutation in Sd whose descent sets equal

S:
σ ∈ Dd

S ⇔ {i : σ(i) > σ(i+ 1)} = S.

Definition 2.10. Let S, T ⊆ [d − 1]. We say that S dominates T if there exists an
injection φ : Dd

T → Dd
S such that σ <w φ(σ) for all σ ∈ Dd

T .

For example, let d = 4. Then the set {1, 3} dominates the set {1} via the map

σ(1)σ(2)σ(3)σ(4) → σ(1)σ(2)σ(4)σ(3).

For a further discussion of dominance in the symmetric group, see [9] or [5].

3 A decomposition theorem

The goal of this section is to prove the following theorem, which we will apply in Sections
4 and 5.

Theorem 3.1. Let P be a rank-d poset with a 0̂ and a 1̂, and suppose P1, P2, . . . , Pr are
subposets of P satisfying the following properties.

1: Each Pi is isomorphic to the Boolean lattice Bd.
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2: Every chain in P is a chain in some Pi. Equivalently,

∆(P ) =

r⋃

i=1

∆(Pi).

3: Each Pi has an Sd-EL-labeling λi with the following property: if e is a chain in Pi

that is also a chain in some Pj for j < i, then Υλi
(e) is a chain in Pj for some

j < i.

Then ∆(PS) admits a convex-ear decomposition for any S ⊆ [d− 1].

The proof of this theorem relies heavily on our work from [11], where a c.e.d. of
∆((Bd)S) was given for any S ⊆ [d− 1]. We now review some results from [11] which will
be helpful in proving Theorem 3.1.

Fix some S ⊆ [d−1] and an Sd-EL-labeling λ of Bd. Let d1,d2, . . . ,dt be all maximal
chains in Bd whose λ-labels have descent set S, written in lexicographic order of their
λ-labels. For each i, let Li be the subposet of (Bd)S generated by the set of maximal
chains

{cS : c is a maximal chain of Bd with c[d−1]\S = (di)[d−1]\S}

Finally, let Γi be the simplicial complex with facets given by maximal chains in Li that
are not chains in Lj for any j < i.

Theorem 3.2 ([11]). The sequence of complexes Γ1,Γ2, . . . ,Γt is a convex-ear decompo-
sition of ∆((Bd)S).

The following lemmata, whose proofs we omit, are shown in [11].

Lemma 3.3. Let e be a maximal chain of some Li. Then e is a facet of Γi if and only if

(Υλ(e))[d−1]\S = (di)[d−1]\S.

Lemma 3.4. Let c be the unique maximal chain of Bd with increasing λ-label. Then

Υλ((d1)[d−1]\S) = c.

Lemma 3.5. Let e1, e2, . . . , em be all maximal chains corresponding to facets of Γi, or-
dered so that λ(Υλ(ek)) lexicographically precedes λ(Υλ(ej)) whenever j < k. Then for
all j and k with j < k, there exists a j′ < k satisfying

ej ∩ ek ⊆ ej′ ∩ ek = ej′ − x

for some element x of ej′.

Lemma 3.5, together with Theorem 2.2 and Definition 2.1, proves that Γi is a topo-
logical ball for i > 1. We are now ready to prove our main theorem.
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Proof of Theorem 3.1. The basic idea is to iterate the decomposition provided by Theo-
rem 3.2. Indeed, Theorem 3.2 gives us a c.e.d. of ∆((P1)S). Now suppose we have a c.e.d.
for X =

⋃q−1
i=1 ∆((Pi)S) for some q with 2 ≤ q ≤ r. We show that we can extend this to a

c.e.d. of X ∪ ∆((Pq)S). For ease of notation, let λ = λq and Υ = Υλ.
Taking our cue from the decomposition of (Bd)S described above, let d1,d2, . . . ,dt be

all maximal chains of Pq whose λ-labels have descent set S, and let the above order be
such that λ(di) lexicographically precedes λ(dj) for i < j. For each i, define Li and Γi

as in Theorem 3.2. Finally, let Σi be the simplicial complex whose facets are maximal
chains in Γi that are not chains in X. We claim that the sequence Σ1,Σ2, . . . ,Σt (once
we remove all Σi = ∅) extends the c.e.d. of X. We prove each property of Definition 2.3
separately.

By definition, each Γi ⊆ Σi ∪ X. Since
⋃t

i=1 Γi = ∆((Pq)s) (by Theorem 3.2), X ∪
(
⋃t

i=1 Σi) = X ∪ ∆((Pq)S), so property (i) holds.
Property (ii) is easily verified as well. Since each Γi for i > 1 is a proper subcomplex

of a simplicial polytope boundary, so is each Σi ⊆ Γi. However, as Γ1 is a simplicial
polytope boundary, we need to show that the inclusion Σ1 ⊆ Γ1 is proper. This follows
from Lemma 3.4, which says that cS is a facet of Γ1, where c is the unique maximal chain
in Pq with increasing λ-label. Because c = Υ(0̂ < 1̂) and 0̂ < 1̂ is a chain in all Pi, it
follows that cS is not a facet of Σ1.

Now fix i ≥ 1. To prove property (iii), we employ the techniques (and notation)
of Lemma 3.5. Let e1, e2, . . . , em be all maximal chains of Σi, ordered so that λ(Υ(ek))
precedes λ(Υ(ej)) whenever j < k. Now choose some j and k with j < k. Because
Σi ⊆ Γi, Lemma 3.5 produces a maximal chain e in Γi satisfying ej ∩ ek ⊆ e∩ ek = e− x
for some element x of e, with λ(Υ(ek)) lexicographically preceding λ(Υ(e)). To finish the
proof, we just need to show that e is a facet of Σi. That is, we need to show that e is not
a chain in X.

By Lemma 3.3, e ∩ ek = e − x implies that Υ(e) ∩ Υ(ek) = Υ(e) − x. Because Pq is
a Boolean lattice, it has exactly two maximal chains containing Υ(e) − x as a subchain.
Hence, these chains must be Υ(e) and Υ(ek). Because λ(Υ(ek)) precedes λ(Υ(e)), we
have Υ(ek) = Υ(Υ(e) − x). If e were a chain in X, then Υ(e) − x would be as well. But
then, since ek is a subchain of Υ(Υ(e)−x), we would have that ek is in X, a contradiction.

For property (iv) consider some i, and note that a chain e is in ∂Σi if and only if there
exist two maximal chains eold and enew, each containing e as a subchain, such that eold is
a chain in X ∪ (

⋃i−1
j=1 Σj) and enew is a chain in Σi. Thus,

∂Σi ⊆ Σi ∩ (X ∪ (
i−1⋃

j=1

Σj)).

To prove the reverse inclusion, let e be a non-maximal chain in Σi ∩ (X ∪ (
⋃i−1

j=1 Σj)).
Then by definition e must be a subchain of some maximal chain in Σi, and we can take
this chain to be enew. To find eold, we consider two cases. First, if e is a chain of Σj for
some j < i, then by Theorem 3.2 there must be some maximal chain eold of Σj for some
j < i. Second, if e is a chain in X, then Υ(e) must be in X as well. Setting eold = (Υ(e))S
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completes the proof of property (iv).
Thus, we can extend the c.e.d. of X to one of X ∪ ∆((Pq)S). Continuing in this

fashion, we get a c.e.d. of
r⋃

i=1

∆((Pi)S).

By hypothesis every chain in P is a chain in some Pi and the above union equals ∆(PS),
proving the theorem.

4 Rank-selected geometric lattices

We first apply Theorem 3.1 to geometric lattices. We assume a basic familiarity with
matroid theory, including the cryptomorphism between matroids and geometric lattices.
For background, see [1] or [10].

Let P be a rank-d geometric lattice. In [9], Nyman and Swartz show that ∆(P ) admits
a convex-ear decomposition. We open this section by briefly describing their technique.

Let a1, a2, . . . , aℓ be a fixed linear ordering of the atoms of P . The minimal labeling ν
of P is defined as follows: if y covers x, then ν(x, y) = min{i : x∨ ai = y}. We view P as
the lattice of flats of a simple matroid M .

Lemma 4.1 ([1]). The minimal labeling ν is an EL-labeling.

Lemma 4.2 ([1]). Suppose the ν-label of a maximal chain c of P is a word in some subset
B ⊆ {a1, a2, . . . , aℓ}. Then B is an nbc-basis of M .

Now let B1, B2, . . . , Bt be all the nbc-bases of M listed in lexicographic order. Fix
some j ≤ t and let Bj = {ai1 , ai2, . . . , aid} with i1 < i2 < · · · < id. For a permutation
σ ∈ Sd, define a maximal chain cj

σ of P by

cj
σ := 0̂ < aiσ(1)

< (aiσ(1)
∨ aiσ(2)

) < . . . < (aiσ(1)
∨ aiσ(2)

∨ . . . ∨ aiσ(d)
).

The basis labeling λj(c
j
σ) of cj

σ is the word iσ(1)iσ(2) . . . iσ(d).
For each i with 1 ≤ i ≤ t, let Pi be the subposet of P whose set of maximal chains is

{ci
σ : σ ∈ Sd} and let Σi be the simplicial complex whose facets are maximal chains in Pi

that are not chains in Pj for any j < i.

Theorem 4.3 ([9]). Σ1,Σ2, . . . ,Σt is a convex-ear decomposition of ∆(P ).

The next lemma, shown in [9], is the key tool in proving the above theorem.

Lemma 4.4. A chain c in Pi is in Σi if and only if

λi(c) = ν(c).

The main theorem of this section is the following:
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Theorem 4.5. Let P be a rank-d geometric lattice. Then ∆(PS) admits a convex-ear
decomposition for any S ⊆ [d− 1].

Proof. We show that P satisfies the hypotheses of Theorem 3.1, proving each of the three
properties separately.

First note that each Pi is isomorphic to the Boolean lattice Bd under the mapping
aiσ(1)

∨ aiσ(2)
∨ . . .∨ aiσ(m)

→ {σ(1), σ(2), . . . , σ(m)}, and so property (1 ) holds. Moreover,
the basis labeling λi is an Sd-EL-labeling of Pi (though with the alphabet {i1, i2, . . . , id}
rather than [d]).

By Lemma 4.2, the ν-label of any maximal chain c is a word in some nbc-basis (say
Bi). Thus c is a chain in Pi, meaning property (2 ) holds.

To show property (3 ), fix some i and suppose that e is a non-maximal chain in Pi that
is also a chain in Pj for some j < i. Suppose that j is the least such integer, and consider
the maximal chain c = Υλj

(e). This chain can clearly not be in Lk for any k < j, because
then e would be a chain in Lk, contradicting the minimality of j. Thus λj(c) = ν(c) by
Lemma 4.4, meaning c = Υν(e). Now consider the chain c′ = Υλi

(e). If c′ is not a chain
in Lk for any k < i then, again by Lemma 4.4, ν(c′) = λi(c

′). But then c′ = Υν(e), which
is a contradiction since the chain Υν(e) is uniquely determined. Thus Υλi

(e) must be a
chain in Lk for some k < i. Applying Theorem 3.1 completes the proof.

5 Rank-selected face posets

The main result of this section can be seen as motivated by Hibi’s result ([7]) that the
codimension-1 skeleton of a shellable complex Σ is 2-Cohen-Macaulay. For a simplicial
complex Σ we write PΣ to mean its face poset, the poset of all faces of Σ ordered by
inclusion. Note that PΣ usually does not have a unique maximal element, but the notion
of the rank-selected subposet (PΣ)S easily generalizes.

Theorem 5.1. Let Σ be a (d− 1)-dimensional shellable complex. Then ∆((PΣ)S) admits
a convex-ear decomposition for any S ⊆ [d− 1].

Proof. We wish to apply Theorem 3.1 but, as noted above, a slight adjustment is needed:
unless Σ consists of a single facet, PΣ has no maximal element. To this end, let P be the
poset PΣ with all its maximal elements identified. As usual, let 1̂ denote the maximal
element of P . Clearly, for any S ⊆ [d− 1],

∆(PS) = ∆((PΣ)S).

So, it suffices to apply Theorem 3.1 to P . Fix a shelling F1, F2, . . . , Fr of Σ, and for
each i let Pi be the face poset of Fi (but with its maximal element Fi replaced with
1̂, the maximal element of P ). We claim that the sequence P1, P2, . . . Pr satisfies the
hypotheses of Theorem 3.1. Property (1 ) follows immediately, as the face poset of a
(d− 1)-dimensional simplex is isomorphic to Bd.

For property (2 ), let c be a maximal chain of P , and let x be its element of rank d−1.
Then x is a face of some facet Fi, meaning Pi contains the chain c.

The proof of property (3 ) relies on the following fact, whose proof is immediate.
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Fact 5.2. Let e be a non-maximal chain in some Pi, and let x be its element of highest
rank 6= d. Then e is not a chain in Pj for any j < i if and only if, when viewed as a face
of Fi, x contains the unique minimal new face r(Fi).

Now fix some i, and let V be the set of vertices of the facet Fi. Any bijection φ : V → [d]
induces an Sd-EL-labeling λφ of Pi in the obvious way: For x, y ∈ Pi with y = x∪ {v} for
some vertex v of Fi, set λφ(x, y) = φ(v) (if y = 1̂, let λφ(x, y) be the sole vertex in V \ x).
Let φ : Fi → [d] be any bijection that labels vertices in r(Fi) last. That is, if v ∈ r(Fi)
and w ∈ Fi \r(Fi) then φ(w) < φ(v). Set λi = λφ. Now suppose e is a non-maximal chain
in Pi that is also a chain in Pj for some j < i, and let x be the element of e of highest
rank 6= d. By Fact 5.2, r(Fi) * x. If v is the vertex in Fi \ x with the greatest φ-label
then, by definition of φ, v ∈ r(Fi). Letting y be the element of Υλi

(e) of rank d − 1, it
follows that v /∈ y. So Υλi

(e) is a chain in Pk for some k < i, and property (3 ) holds.

In many cases, the above theorem does not hold if d ∈ S. For example, if Σ is the
shellable complex consisting of two 2-dimensional simplices joined at a common boundary
facet and S = {2, 3} ⊆ [3], then ∆((PΣ)S) does not admit a c.e.d., as it is a tree. We can,
however, conjecture the following.

Conjecture 5.3. When Σ is a (d − 1)-dimensional complex admitting a convex-ear de-
composition and S ⊆ [d], the complex ∆((PΣ)S) admits a convex-ear decomposition.

If d /∈ S, the above conjecture follows from Theorem 5.1, so we need only consider
cases where d ∈ S.

Example 5.4. Let ∆ be a triangulation of the dunce cap, and let P∆ be its face poset.
Then (P∆)S admits a convex-ear decomposition for any S ⊆ [3] with |S| = 2. To see this,
note that a simple graph (viewed as a 1-dimensional simplicial complex) has a c.e.d. if
and only if it is 2-connected.

It is well known that ∆ is Cohen-Macaulay, and it is easy to see that ∆ is not 2-
Cohen-Macaulay. Thus, the converse to Theorem 5.1 is false.

Now recall that a (d− 1)-dimensional complex Σ with vertex set V is called balanced
if there exists a ψ : V → [d] such that ψ(v) 6= ψ(w) whenever v and w are in a common
face of Σ. The function ψ is called a coloring of Σ.

The order complex of any graded poset P is always balanced: For a vertex v of ∆(P ),
simply let ψ(v) be the rank of v when considered as an element of the poset P . Thus
the barycentric subdivision of any simplicial complex is balanced, since it is the order
complex of its face poset.

If Σ is a (d− 1)-dimensional balanced complex with coloring ψ and S ⊆ [d], define ΣS

to be the subcomplex of Σ with faces {F ∈ Σ : ψ(v) ∈ S for all v ∈ F}. With these new
definitions, we can rephrase Theorem 5.1 in a more geometric tone.

Corollary 5.5. Let Σ′ be a (d − 1)-dimensional shellable complex, and let Σ be the first
barycentric subdivision of its codimension-1 skeleton. Then, for any coloring ψ of the
vertices of Σ and any S ⊆ [d− 1], the complex ΣS admits a convex-ear decomposition.
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6 The flag h-vector of a face poset

Our goal in this section is to prove an analogue of the following theorem, shown in [9],
for face posets of Cohen-Macaulay complexes. In this section, we assume a basic working
knowledge of the Stanley-Reisner ring of a simplicial complex and its Hilbert series (see
[13]).

Theorem 6.1 ([9]). Let L be a rank-d geometric lattice, and let S, T ⊆ [d − 1]. If S
dominates T , the flag h-vector of ∆(L) satisfies hT ≤ hS.

We state the main theorem now, but postpone its proof until after Theorem 6.5.

Theorem 6.2. Let K be a d-dimensional Cohen-Macaulay simplicial complex with face
poset P , and let ∆ = ∆(P ). Let S, T ⊆ [d − 1], and suppose that S dominates T . Then
the flag h-vector of ∆ satisfies hT ≤ hS.

Lemma 6.3. Let P be a rank-d poset with a 0̂ and 1̂ whose order complex ∆ = ∆(P ) is
a ball. Let ∆′ be the set of faces in ∆ − ∂∆ − ∅, let {f ′

S} be the flag f-vector of ∆′, and
let {hS} be the flag h-vector of ∆. Then

∑

S⊆[d−1]

f ′
S

∏

i/∈S

(νi − 1) =
∑

S⊆[d−1]

h[d−1]−S

∏

i/∈S

νi

Proof. Under the fine grading of the face ring k[∆], F (k[∆], λ) =
∑

F∈∆

∏
xi∈F

λi

1−λi
. We

specialize this grading to accommodate the flag h-vector as follows: identify λi and λj

whenever the vertices in ∆ to which they correspond have the same rank r (as elements
of P ). Call this new variable νr. This specialized grading yields:

F (k[∆], ν) =
∑

S⊆[d−1]

fS

∏

i∈S

νi

1 − νi

We put this over the common denominator of
∏

i∈[d−1](1 − νi) to obtain:

F (k[∆], ν) =
∑

S⊆[d−1]

fS

∏
i∈S νi

∏
i/∈S(1 − νi)∏

i∈[d−1](1 − νi)
=

∑

S⊆[d−1]

hS

∏
i∈S νi∏

i∈[d−1](1 − νi)
(1)

The following equation is Corollary II.7.2 from [13] (note that ∆ is (d− 2)-dimensional):

(−1)d−1F (k[∆], 1/λ) = (−1)d−2χ̃(∆) +
∑

F∈∆′

∏

xi∈F

λi

1 − λi

Noting that χ̃(∆) = 0, plugging in 1/λ in place of λ, and specializing to the ν-grading,
the previous expression becomes:

(−1)d−1F (k[∆], ν) =
∑

S⊆[d−1]

f ′
S

∏

i∈S

1

νi − 1
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Putting the above over the common denominator of
∏

i∈[d−1](νi − 1) and multiplying by

(−1)d−1 gives us:

F (k[∆], ν) =
∑

S⊆[d−1]

f ′
S

∏
i/∈S(νi − 1)∏

i∈[d−1](1 − νi)

Comparing this with Equation (1) and noting that the denominators are equal, we have
∑

S⊆[d−1]

f ′
S

∏

i/∈S

(νi − 1) =
∑

S⊆[d−1]

hS

∏

i∈S

νi =
∑

S⊆[d−1]

h[d−1]−S

∏

i/∈S

νi

which proves the result.

Now let Σ be a (d− 1)-dimensional shellable complex with face poset PΣ and shelling
order F1, F2, . . . , Ft, and for each i let Pi be the face poset of Fi. Let A = [d − 1], and
set ∆ = ∆((PΣ)A). Note that ∆ is simply the order complex of PΣ once we remove the
elements corresponding to the facets of Σ. Let Σ1,Σ2, . . . ,Σt be the c.e.d. of ∆ given by
Theorem 5.1.

Lemma 6.4. Fix some Σi, and let λi be the labeling of Pi constructed in the proof of
Theorem 5.1. Let S, T ⊆ [d− 1], and suppose S dominates T . Then there are at least as
many maximal chains in Σi whose λi-labels have descent set S as chains whose λi-labels
have descent set T .

Proof. Let c be a maximal chain in Σi with σ = λi(c), and let σ(j) < σ(j + 1) be an
ascent of its λi-label. Let c′ is the unique maximal chain of Pi that coincides with c at
every rank but j, and let x be the element of c′ of rank j. Then c′ must be a chain in
Σi, since otherwise c = Υλi

(c′ − x) would not be a chain in Σi. So if τ is a permutation
preceded by σ in the weak order, there is some maximal chain in Σi with τ as its λi-label.
Now suppose σ has descent set T . If φ is as in Definition 2.10, it follows that Σi contains
a chain whose λi-label is φ(σ).

Theorem 6.5. Let Σ and ∆ be as above, let S, T ⊆ [d−1], and suppose that S dominates
T . Then the flag h-vector of ∆ satisfies hT ≤ hS.

Proof. First, note that hT (Σ1) ≤ hS(Σ1), since the poset associated to Σ1 is just the
Boolean lattice Bd. Now let Ω = Σ1 ∪ Σ2 ∪ · · · ∪ Σk−1 and suppose the result holds for
Ω. Let Σ′

k = Σk − ∂Σk − ∅. Because Σk triangulates a ball, we can now use our earlier
expression for the flag h-vector of a ball and invoke an argument similar to Chari’s in [3]:
∑

S⊆[d−1]

hS(Ω ∪ Σk)
∏

i/∈S

νi =
∑

S⊆[d−1]

fS(Ω ∪ Σk)
∏

i/∈S

(νi − 1)

=
∑

S⊆[d−1]

fS(Ω)
∏

i/∈S

(νi − 1) +
∑

S⊆[d−1]

fS(Σ′
k)

∏

i/∈S

(νi − 1)

=
∑

S⊆[d−1]

hS(Ω)
∏

i/∈S

νi +
∑

S⊆[d−1]

h[d−1]−S(Σk)
∏

i/∈S

νi (by Lemma 6.3)

=
∑

S⊆[d−1]

(hS(Ω) + h[d−1]−S(Σk))
∏

i/∈S

νi
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Thus, for all subsets S ⊆ [d− 1],

hS(Ω ∪ Σk) = hS(Ω) + h[d−1]−S(Σk)

Because reverse lexicographic order of the maximal chains of Σk is a shelling (Theorem
3.1), hS(Σk) counts the number of maximal chains of Σk whose labels have ascent set S,
and so h[d−1]−S(Σk) counts the number of maximal chains in Pk with descent set S. The
result now follows from Lemma 6.4.

Proof of Theorem 6.2. Because P is a face poset, a linear inequality of its flag h-vector
translates to a linear inequality of the h-vector of K. Since every h-vector of a Cohen-
Macaulay complex is the h-vector of some shellable complex (see [13]), the result follows.

We now show that Theorem 6.2 cannot be extended to include posets whose order
complexes are Cohen-Macaulay (or 2-CM, for that matter). First recall that a graded
poset P is Eulerian if its Möbius function satisfies µ(x, y) = (−1)rank(y)−rank(x) for all
x < y. An Eulerian poset whose order complex is Cohen-Macaulay is called Gorenstein*.
It can be shown that the order complex of a Gorenstein* poset is 2-Cohen-Macaulay. For
S ⊆ [d− 1], define w(S) to be the set of all i ∈ [n] such that exactly one of i and i+ 1 is
in S. For instance, if S = {2, 3} ⊆ [4] then w(S) = {1, 3}. Since Conjecture 2.3 from [12]
was proven by Karu in [8], we can rephrase Proposition 2.8 from [12] as:

Proposition 6.6 ([12]). If S, T ⊆ [d − 1] are such that hT (∆) ≤ hS(∆) whenever ∆ is
the order complex of a Gorenstein* poset, then w(T ) ⊆ w(S).

Now consider S, T ⊆ [4] given by S = {1, 2} and T = {1}. In [9], it is shown that S
dominates T . However, w(S) = {2} and w(T ) = {1}, so w(T ) * w(S) and it is clear that
we cannot extend Theorem 6.2 to include the wider class of Cohen-Macaulay posets (or
even 2-CM posets).
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in Mathematics. Birkhäuser Boston Inc., Boston, MA, second edition, 1996.

[14] Richard P. Stanley. Enumerative combinatorics. Vol. 1, volume 49 of Cambridge
Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1997.
With a foreword by Gian-Carlo Rota, Corrected reprint of the 1986 original.

[15] Ed Swartz. g-elements, finite buildings and higher Cohen-Macaulay connectivity. J.
Combin. Theory Ser. A, 113(7):1305–1320, 2006.

[16] Russ Woodroofe. Cubical convex ear decompositions. Electron. J. Combin., 16(2,
Special volume in honor of Anders Bjorner):Research Paper 17, 33, 2009.

[17] Günter M. Ziegler. Lectures on polytopes, volume 152 of Graduate Texts in Mathe-
matics. Springer-Verlag, New York, 1995.

the electronic journal of combinatorics 18 (2011), #P4 14


