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Abstract

An m-flower in a latin square is a set of m entries which share either a common
row, a common column, or a common symbol, but which are otherwise distinct.
Two m-flowers are disjoint if they share no common row, column or entry. In this
paper we give a solution of the intersection problem for disjoint m-flowers in latin
squares; that is, we determine precisely for which triples (n,m, x) there exists a pair
of latin squares of order n whose intersection consists exactly of x disjoint m-flowers.

1 Introduction

Intersection problems for latin squares were first considered by Fu [10]. Since then the area
has been extensively investigated, see [6] for a survey of results up until 1990. Subsequent
results can be found in [7], [8], [1], [3] and [9].

Intersection problems between pairs of Steiner triple systems were first considered by
Lindner and Rosa [12]. Subsequently, the intersection problem, between pairs of Steiner
triple systems, (V,V1) and (V,V2), in which the intersection of V1 and V2 is composed
of a number of isomorphic copies of some specified partial triple system have also been
considered. Mullin, Poplove and Zhu [15] considered the case where the partial triple
system in question was a triangle. Furthermore, Lindner and Hoffman [11] considered
pairs of Steiner triple systems of order v intersecting in a (v−1

2
)-flower and some other
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(possibly empty) set of triples; Chang and Lo Faro [4] considered the same problem for
Kirkman triple systems.

In [5], Chee investigated the intersection problem for Steiner triple systems in which
the intersection was composed of pairwise disjoint triples. An independent and elegant
solution to this problem was given by Srinivasan [16]. This result can be considered
as pairs of Steiner triple systems whose intersection is composed precisely of disjoint
1-flowers.

A natural progression of the above problems is the intersection problem for pairs of
latin squares or Steiner triple systems in which the intersection is composed of a number
of disjoint configurations.

In this paper the intersection problem for disjoint m-flowers in latin squares is solved.
The solution to the corresponding problem for 2-flowers in Steiner triple systems can be
found in [14].

Examples labelled A.x for some integer x refer to the appendix, which is available as
a separate document from
http://www.combinatorics.org/Volume 18/Abstracts/v18i1p42.html

2 Preliminaries

Let N = {i | 0 ≤ i ≤ n−1} ⊂ N∪{0}. Let N2 and N3 denote, respectively, the Cartesian
products N×N and N×N×N . Let P ⊂ N3 such that for any pair n1, n2 ∈ N , P contains
at most one triple of the form (n1, n2, n3), at most one triple of the form (n1, n3, n2) (P
is row latin), and at most one triple of the form (n3, n1, n2) (P is column latin), for some
n3 ∈ N . Then the set P is a partial latin square. The number of triples contained in P is
known as the size of P .

For ease of understanding the ordered triple (n1, n2, n3) may be regarded as referring
to the occurrence of symbol n3 in cell (n1, n2) of an n × n array; this cell occurs in row
n1 and column n2. If a cell contains no symbol it is called empty. Conversely, if a cell
contains a symbol it is said to be filled. For a partial latin square P , its shape is the set
of filled cells of P . If in a partial latin square, P , there are no empty cells then P is called
a latin square of order n.

Let L be a latin square of order n; the set of cells {(i, i) | 0 ≤ i ≤ n − 1} is denoted
as the main diagonal of L.

A pair of partial latin squares, (P1, P2), is called a latin biswap if the pair satisfies the
following: P1 and P2 have the same shape; and the corresponding rows (columns) of P1

and P2 contain the same entries.
Note that if P1 is contained in a latin square L1 then P2 is contained in the latin square

L2 = (L1 \ P1) ∪ P2; moreover, L1 \ P1 = L2 \ P2.
A latin biswap, (P1, P2), is called a latin bitrade if it satisfies the additional property

that P1 ∩ P2 = ∅.
A transversal, T , in a latin square L of order n, (that is T ⊂ L) is a partial latin

square which contains n triples such that each element in N occurs precisely once in a
coordinate of a triple in T .
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Let L be a latin square of order n that contains two transversals S and T . If the shape
of S has no cells in common with the shape of T , then S and T are said to be disjoint.

In the following a configuration, P , is an isomorphic copy of some specified partial
latin square.

In a latin square, L, an m-flower is a configuration containing m triples and which is
of the form

F = {(xi, yi, zi) | 1 ≤ i ≤ m} ⊆ L such that precisely one of the following holds :

for all distinct i and j : xi = xj , yi 6= yj and zi 6= zj (a row-m-flower); or

for all distinct i and j : xi 6= xj , yi = yj and zi 6= zj (a column-m-flower); or

for all distinct i and j : xi 6= xj , yi 6= yj and zi = zj (a symbol-m-flower).

If the intersection between the row coordinates, the intersection between the column
coordinates and the intersection between the symbol coordinates of two m-flowers are all
empty then the two m-flowers are said to be pairwise disjoint. If a set of k m-flowers
satisfy the property that any two are pairwise disjoint then it is said to be a set of k
disjoint m-flowers.

Consider a set of k disjoint m-flowers. A triple in which the row, column and entry
coordinates are not equal to, respectively, the row, column or entry of any of the triples
in the k disjoint m-flowers, is said to be a disjoint triple (to the m-flowers).

3 Constructions for latin squares

For each map f defined in this paper, the image of all the triples in a subset P ⊂ N3

under f will be denoted by fP .
Throughout this paper the well known technique of prolongation is extensively used.

This section begins by briefly discussing this technique.
Consider a latin square, L, of order n, and assume that L contains a transversal T ;

then construct a latin square, L(+1), of order n+ 1, as follows: L(+1) =

(L \ T ) ∪ {(x, y, n), (n, y, z), (x, n, z) | (x, y, z) ∈ T} ∪ {(n, n, n)}.

If the latin square L contains k disjoint transversals, Ti, where 1 ≤ i ≤ k, this idea
can be generalised to a k-prolongation, yielding a latin square L(+k) of order n+ k.

Let ζr and ζc be elements of the symmetric group, Sk, acting on the set {i | 1 ≤ i ≤ k}.
Let 1 ≤ k, n and P be a partial latin square of order n+k in which the cells in the set

{(i, j) | n ≤ i, j ≤ n+ k − 1} are filled with symbols from the set {i | n ≤ i ≤ n+ k − 1}
and all other cells are empty; such a partial latin square is denoted as a completing square
(note that such a partial latin square exists for all orders as it corresponds to a latin
square of order k in which each triple (a, b, c) is replaced with (a+ n, b+ n, c+ n)).

Let n′, n ∈ N such that n′ ≤ n, N ′ = {i | 0 ≤ i ≤ n′ − 1} and N = {i | 0 ≤ i ≤ n}.
Define the following maps from N ′3 to N3.

γn
r : (u, v, w) 7→ (n, v, w); γn

c : (u, v, w) 7→ (u, n, w); and γn
s : (u, v, w) 7→ (u, v, n).
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Then L(+k) =

(

L \
⋃

1≤i≤k

Ti

)

∪
⋃

1≤i≤k

(

γζr(i)+n−1
r Ti ∪ γ

ζc(i)+n−1
c Ti ∪ γ

i+n−1
s Ti

)

∪ P

is a latin square of order n + k. See Example A.1. This latin square is referred to as
a (ζr, ζc)-k-prolongation of L. If ζr = ζc = id, the identity permutation, then L(+k) is
simply referred to as a k-prolongation of L.

Let j ∈ N and J = {i | 0 ≤ i ≤ j − 1}. Define the following maps from J3 to J3 for
0 ≤ i, l ≤ j − 1.

id : (u, v, w) 7→ (u, v, w);

σj
r : (u, v, w) 7→ ((u+ 1 (mod j)), v, w);

σj
c : (u, v, w) 7→ (u, (v + 1 (mod j)), w);

σj
s : (u, v, w) 7→ (u, v, (w + 1 (mod j)));

σi,j
s : (u, v, w) 7→ (u, v, (w − i+ 1 (mod j − i)) + i);

υj
s : (u, v, w) 7→

{

(u, v, (w + 1 (mod j − 1))), 0 ≤ w ≤ j − 2
(u, v, w), w = j − 1

;

ǫjs : (u, v, w) 7→















(u, v, (w + 1 (mod j − 3))), 0 ≤ w ≤ j − 4
(u, v, w), w = j − 2
(u, v, j − 3), w = j − 1
(u, v, j − 1), w = j − 3

;

φj
s : (u, v, w) 7→ (u, v, w − 2 (mod j));

δ
j
i : (u, v, w) 7→ (i+ u (mod j), i+ w (mod j), i+ v (mod j));

ρl
i : (u, v, w) 7→







(u, i, w) if v = l

(u, l, w) if v = i

(u, v, w) otherwise
; and

ψ
j
i : (u, v, w) 7→







(u, v, w + 1 (mod i)), if 2 ≤ w ≤ i− 1
(u, v, 2), if w = 0
(u, v, w), otherwise

.

Let A be a partial latin square of order a and let B be a partial latin square of order b.
Let fα ∈ {id, σb

r, σ
b
c, σ

b
s, φ

b
s} where α = (u, v, w) ∈ A. Define the product of the singleton

{α} and B as follows; {α}×fαB = {(ub+x, vb+y, wb+ z) | (x, y, z) ∈ fαB}. Now define
the direct product of A and B as follows; A× fαB =

⋃

α∈A({α} × fαB). If for all α ∈ A,
fα = id, simply write A× B.

Throughout this paper use will be made of the following technical lemma.
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Lemma 3.1. Let P and P ′ be two partial latin squares, both of order p; let α = (u, v, w) ∈
P and β = (u′, v′, w′) ∈ P ′. Let Σ ∈ {σ, φ}; let j ∈ {r, c, s}, with j = s if Σ = φ. Let T
be some transversal of order t > 2. Finally, let k ∈ N such that k ≥ pt.

Then

(γk
r ({α} × T )) ∩ (γk

r ({β} × Σt
jT )) =

{

γk
r ({α} × T ), j = r, v = v′ and w = w′

∅, otherwise
;

(γk
c ({α} × T )) ∩ (γk

c ({β} × Σt
jT )) =

{

γk
c ({α} × T ), j = c, u = u′ and w = w′

∅, otherwise
;

(γk
s ({α} × T )) ∩ (γk

s ({β} × Σt
jT )) =

{

γk
s ({α} × T ), j = s, u = u′ and v = v′

∅, otherwise
.

Proof. The third statement will be proved for Σ = σ, the other cases follow similarly.
First let j = s.

Then {β} × σt
sT = {(u′t+ x, v′t+ y, w′t+ (z + 1 (mod t))) | (x, y, z) ∈ T},

hence, γk
s ({β} × σt

sT ) = {(u′t+ x, v′t+ y, k) | (x, y, z) ∈ T}.
Also, {α} × T = {(ut+ x, vt + y, wt+ z) | (x, y, z) ∈ T},
so, γk

s ({α} × T ) = {(ut+ x, vt+ y, k) | (x, y, z) ∈ T}.

Thus,
γk

s ({α} × T ) = γk
s ({β} × σt

sT )

if and only if u = u′ and v = v′; otherwise the intersection of these two sets is empty.
Now consider the case where j = c.

Then {β} × σt
cT = {(u′t+ x, v′t+ (y + 1 (mod t)), w′t+ z) | (x, y, z) ∈ T},

hence, γk
s ({β} × σt

cT ) = {(u′t+ x, v′t+ (y + 1 (mod t)), k) | (x, y, z) ∈ T}.

Thus,
γk

s ({α} × T ) ∩ γk
s ({β} × σt

cT ) = ∅

regardless of whether or not u = u′ or v = v′.
The subcase where j = r follows similarly.

More often than not, when Lemma 3.1 is applied, P = P ′ and α = β.
The following is a well known result [2].

Lemma 3.2. (Bose, Shrikhande & Parker, [2]) For all 3 ≤ n, n 6= 6 there exists a latin
square which is composed of n disjoint transversals. For n = 6 there exists a latin square
that contains 4 disjoint transversals.

Extensive use will be made of the following result.

Lemma 3.3. Let A be a partial latin square of order a that contains a transversal U .
Let B be a partial latin square of order b that contains a transversal, T . Let fα ∈
{id, σb

r, σ
b
c, σ

b
s, φ

b
s}, where α ∈ A. Then U × fαT is a transversal in A× fαB.
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Proof. As the rows, columns or symbols can be reordered, without loss of generality
U = {(j, j, j) | 0 ≤ j ≤ a− 1}.

Consider U × fαT , note that |U × fαT | = ab.

Now, U × fαT =
⋃

0≤j≤a−1

{(jb+ x, jb+ y, jb+ z) | (x, y, z) ∈ f(j,j,j)T}.

Note that f(j,j,j)T is a transversal in f(j,j,j)B. Hence,

⋃

0≤j≤a−1

{(jb+ x) | (x, y, z) ∈ f(j,j,j)T} =
⋃

0≤j≤a−1

{(jb+ y) | (x, y, z) ∈ f(j,j,j)T}

=
⋃

0≤j≤a−1

{(jb+ z) | (x, y, z) ∈ f(j,j,j)T}

={jb+ h | 0 ≤ h ≤ b− 1, 0 ≤ j ≤ a− 1}

={i | 0 ≤ i ≤ ab− 1}.

Therefore, U × fαT is a transversal in A× fαB.

4 Solving the intersection problem

The previous two sections have detailed the notation and constructions which will be used
to provide a solution to the intersection problem for disjoint m-flowers in latin squares.
This result is presented in Theorem 1, at the end of this section.

The necessary and sufficient conditions for the proof of Theorem 1 are covered in the
following pages. To aid the reader two tables are provided; Table 1 indicates the lemmas
that establish necessary conditions whilst Table 2 indicates the lemmas that establish
sufficient conditions.

For ease of notation throughout this paper any set of the form {i | p ≤ i ≤ p− 1} is
taken to be the empty set.

Table 1: Necessary Conditions for Theorem 1

Condition Lemmas

Maximum number of m-flowers 4.1
General exceptions 4.2, 4.4
Exceptions for pairs of latin squares of small order 4.5, 4.13

Lemma 4.1. Let l ∈ N ∪ {0}, L be a latin square of order n and m ≤ n then if:

l(2m+ 1) ≤ n < l(2m+ 1) +m; L contains a maximum 3l disjoint m-flowers;

l(2m + 1) + m ≤ n < l(2m + 1) + 2m; L contains a maximum 3l + 1 disjoint
m-flowers;

n = l(2m+ 1) + 2m; L contains a maximum 3l + 2 disjoint m-flowers.
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Table 2: Sufficient Conditions for Theorem 1

Condition Lemmas

2-flowers in pairs of latin squares of small order 4.3
One m-flower 4.11
Two disjoint m-flowers 4.19
Three disjoint m-flowers in pairs of latin squares of order
2m+ 1 ≤ n ≤ 3m

4.20, 4.23

Three or four disjoint m(≥ 3)-flowers in pairs of latin
squares of order 3m+ 1 ≤ n ≤ 4m

4.24, 4.25

Three, four or five disjoint m(≥ 3)-flowers in pairs of
latin squares of order n = 4m+ 1

4.26, 4.27

Three, four, five or six disjoint m(≥ 3)-flowers in pairs
of latin squares of order 4m+ 2 ≤ n ≤ 6m+ 2

4.28, 4.29,
4.32, 4.33

Seven disjoint m(≥ 3)-flowers in pairs of latin squares
of order 5m+ 2 ≤ n ≤ 6m+ 2

4.30

Eight disjoint m(≥ 3)-flowers in pairs of latin squares of
order 6m+ 2

4.31

0 ≤ h ≤ 3⌊ n
2m+1

⌋ disjoint m-flowers in pairs of latin
squares of order n ≥ 6m+ 3

4.34, 4.35

l ≥ 3; 3l + 1 disjoint m-flowers in pairs of latin squares
of order l(2m+ 1) +m ≤ n ≤ l(2m+ 1) + 2m

4.36, 4.37,
4.38

l ≥ 3; 3l + 2 disjoint m-flowers in pairs of latin squares
of order n = l(2m+ 1) + 2m

4.39, 4.40

Proof. Assume that there are k = k1 + k2 + k3 disjoint m-flowers in a latin square, L, of
order n, such that there are k1 row-m-flowers; k2 column-m-flowers; and k3 symbol-m-
flowers.

Thus, in L the k disjoint m-flowers contain, k1+mk2+mk3 distinct rows, mk1+k2+mk3

distinct columns, and mk1 +mk2 + k3 distinct symbols.
Hence, n ≥ k1 +m(k2 +k3) = k1 +m(k−k1). Without loss of generality, let k1 ≤ k2 ≤

k3; this implies that k1 ≤ ⌊k
3
⌋. Thus, n ≥

⌊

k
3

⌋

+m
(

k −
⌊

k
3

⌋)

, and the result follows.

Lemma 4.2. There does not exist a pair of latin squares of order 2m+1 whose intersection
is precisely three disjoint m-flowers.

Proof. In order for a latin square of order 2m+ 1 to contain three disjoint m-flowers, one
m-flower is required to be a symbol-m-flower, one to be a row-m-flower and one to be a
column-m-flower.

Consider a latin square L of order 2m+ 1 that contains a row-m-flower in row i that
is disjoint to a column-m-flower in column j. Both of these m-flowers contain m symbols
and all these 2m symbols must be distinct. Hence, there is only one choice for the symbol
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contained in cell (i, j).

In [13] latin squares of small orders are provided that establish the following result.

Lemma 4.3. (McCourt, [13]) There exist pairs of latin squares of order n that intersect
in x 2-flowers, where:

n = 5 and x = 2; or n = 6 and 2 ≤ x ≤ 3; or n = 7 and 2 ≤ x ≤ 4; or
n = 8 and 2 ≤ x ≤ 4; or n = 9 and 2 ≤ x ≤ 5; or n = 10 and 2 ≤ x ≤ 6; or
n = 11 and 2 ≤ x ≤ 6; or n = 12 and 2 ≤ x ≤ 7; or n = 13 and 2 ≤ x ≤ 7; or
n = 14 and 2 ≤ x ≤ 8.

4.1 One m-flower

In this section pairs of latin squares of order n that intersect precisely in one m-flower,
where m ≤ n, and no other triples will be constructed. Without loss of generality, the
m-flower can be considered to be a symbol-m-flower. By permuting the rows, columns or
symbols the symbol-m-flower can be placed along m cells of the main diagonal, and the
common symbol may be chosen to be zero.

Lemma 4.4. No pair of latin squares of order n can intersect in an (n− 1)-flower.

Proof. Consider a partial latin square, P , of order n that contains the triples in the set
{(i, i, 0) | 0 ≤ i ≤ n − 2} and the triple (n − 1, n − 1, x), where x 6= 0. For P to be
completed the symbol 0 must occur once more in the latin square, however there is no
cell in which it can be placed without invalidating the row or column latin property.

Thus, the set of possible values of m such that there exists a pair of latin squares of
order n that intersect precisely in one m-flower is the set JS(n) = {0, 1, 2, . . . , n− 2, n}.
The set of achievable values of m such that there exists a pair of latin squares of order n
that intersect precisely in one m-flower will be denoted by IS(n).

Let L be a latin square of order n. Then σn
rL is a latin square of order n such that

L and σn
rL have no triples in common. Hence, 0 ∈ IS(n). Also, Fu in [10] showed that

for all n ≥ 4 there exists a pair of latin squares that intersect precisely in one triple.
Furthermore, in [10] Fu showed that two latin squares of order three can not intersect
precisely in one triple. Hence, the following result has been established.

Lemma 4.5. (Fu, [10]) For all 4 ≤ n, 0, 1 ∈ IS(n). Furthermore 1 6∈ IS(3).

Now, pairs of latin squares of order n to establish the contents of IS(n) will be con-
structed. The construction used is recursive and [13] provides the necessary “ingredient”
latin squares, of orders less than 8, required for the recursion to take effect.

By inspection no pair of latin squares of order two intersect in precisely one 2-flower.
This coupled with Lemma 4.5 and the intersections between latin squares given in [13]
yields the following result.

Lemma 4.6. For pairs of latin squares of order i, where 2 ≤ i ≤ 7;
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IS(2) = {0}; IS(3) = {0, 3}; IS(4) = JS(4); IS(5) = JS(5); IS(6) = JS(6); and
IS(7) = JS(7).

The construction used for latin squares of order greater than or equal to eight splits
into two cases.

4.1.1 Case A: n = 2k

For pairs of latin squares of order n = 2k ≥ 8 a simple doubling construction is used.
Consider the latin square A = {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)} of order two. Let

m1, m2 ∈ {0, 1, 2, . . . , k−2, k}. Now, assume there exists a pair of latin squares, {U1, U2},
of order k whose intersection is the set of triples {(i, i, 0) | 0 ≤ i ≤ m1 −1} (a symbol-m1-
flower). Similarly, assume there exists a pair of latin squares, {V1, V2}, of order k whose
intersection is the set of triples {(i, i, 0) | 0 ≤ i ≤ m2 − 1} (a symbol-m2-flower).

A pair of latin squares, {L1, L2}, of order 2k = n that intersect precisely in one
(m1 +m2)-flower is now constructed. First, let

L1 = {(0, 0, 0)} × U1 ∪ {(0, 1, 1)} × U1 ∪ {(1, 0, 1)} × U1 ∪ {(1, 1, 0)} × V1.

Now, let

L2 = {(0, 0, 0)} × U2 ∪ {(0, 1, 1)} × σk
sU1 ∪ {(1, 0, 1)} × σk

sU1 ∪ {(1, 1, 0)} × V2.

The intersection of L1 and L2 is the set of triples {(i, i, 0), (k + j, k + j, 0) | 0 ≤ i ≤
m1 − 1, 0 ≤ j ≤ m2 − 1}, an (m1 + m2)-flower. Note that the rows or columns of L1

and L2 can be permuted so that the intersection of L1 and L2 (the (m1 + m2)-flower) is
composed of the set of triples {(i, i, 0) | 0 ≤ i ≤ m1 +m2 − 1}. Thus, the following result
has been established.

Lemma 4.7. Assume that 4 ≤ k and IS(k) = JS(k). Let n = 2k, then IS(n) = JS(n).

4.1.2 Case B: n = 2k + 1

One m-flower: m ∈ {i | 0 ≤ i ≤ k − 2} ∪ {k}
A pair of latin squares, {L1, L2}, of order 2k + 1 ≥ 9 that intersect precisely in one

m-flower, where m ∈ {i | 0 ≤ i ≤ k − 2} ∪ {k} will now be constructed.
Let m ∈ {i | 0 ≤ i ≤ k − 2} ∪ {k}. Also, assume there exists a pair of latin

squares, {U1, U2}, of order k ≥ 4 whose intersection is composed precisely of the triples
{(i, i, 0) | 0 ≤ i ≤ m− 1} (a symbol-m-flower).

Consider the following partial latin squares.

A(2k + 1) = {(i, j, (i+ j (mod k + 1)) + k), (j, i, (i+ j (mod k + 1)) + k),
(j, j, (j − 1 (mod k + 1)) + k) | 0 ≤ i ≤ k − 1, k ≤ j ≤ 2k}.

B(2k + 1) = {(i, j, i− j (mod k)) | k ≤ i < j ≤ 2k} ∪ {(i, j, i− j − 1 (mod k)) | k ≤ j <

i ≤ 2k}.

the electronic journal of combinatorics 18 (2011), #P42 9



Example 4.1.

A(9) :

8 4 5 6 7
4 5 6 7 8
5 6 7 8 4
6 7 8 4 5

8 4 5 6 7
4 5 6 7 8
5 6 7 8 4
6 7 8 4 5
7 8 4 5 6

B(9): 3 2 1 0
0 3 2 1
1 0 3 2
2 1 0 3
3 2 1 0

Construct the latin square L1 = U1 ∪ A(2k + 1) ∪ B(2k + 1) of order 2k + 1. Now,
construct the latin square L2 = U2 ∪ σk,2k+1

s A(2k + 1) ∪ σk
sB(2k + 1) of order 2k + 1.

The intersection of L1 and L2 is the set of triples {(i, i, 0) | 0 ≤ i ≤ m}, an m-flower.
Hence, the following result has been established.

Lemma 4.8. Assume that 4 ≤ k and IS(k) = JS(k). Let n = 2k + 1, then {i | 0 ≤ i ≤
k − 2} ∪ {k} ⊆ IS(n).

One (k − 1)-flower

Now, a pair of latin squares, {L1, L3}, of order 2k + 1 ≥ 9 that intersect precisely in
one (k−1)-flower will be constructed. Again, assume there exists a pair of latin squares of
order k whose intersection is precisely one k-flower. Using the above construction, a pair
of latin squares, {L1, L2}, is constructed, that intersect precisely in one k-flower. Now
construct the latin square L3 = ρ2k

k−2L2 (the mapping ρ2k
k−2 simply swaps column k − 2

with column 2k in L2).
This yields a pair of latin squares, {L1, L3}, of order 2k + 1, whose intersection is

precisely one (k − 1)-flower. Hence, the following result has been established.

Lemma 4.9. Assume that 4 ≤ k and k ∈ IS(k). Let n = 2k + 1, then k − 1 ∈ IS(n).

One m-flower: m ∈ {i | k + 1 ≤ i ≤ 2k − 1} ∪ {2k + 1}
Next, a pair of latin squares, {L1, L2}, of order 2k + 1 that intersect precisely in one

m-flower, where m ∈ {i | k + 1 ≤ i ≤ 2k − 1} ∪ {2k + 1} will be constructed.
Let m1 ∈ {j | 0 ≤ j ≤ k − 2} ∪ {k}. Assume there exists a pair of latin squares,

{U1, U2}, of order k whose intersection is composed precisely of the triples {(i, i, 0) | 0 ≤
i ≤ m1 − 1} (a symbol-m1-flower).

Consider the following partial latin squares.

C(2k + 1) = {(i, j, (i+ j + 1 (mod k + 1)) + k) | 0 ≤ i ≤ k − 1, k ≤ j ≤ 2k}.
D(2k + 1) = {(i, j, (i+ j (mod k + 1)) + k) | k ≤ i ≤ 2k, 0 ≤ j ≤ k − 1}.

E1(2k+ 1) = {(i, j, i− j − 1 (mod k+ 1)) | k ≤ i, j ≤ 2k, i 6= j, (i (mod k + 1)) + k 6= j}.

F1(2k + 1) = {(i, (i (mod k + 1)) + k, (i− 1 (mod k + 1)) + k) | k ≤ i ≤ 2k}.

G(2k + 1) = {(i, i, 0) | k ≤ i ≤ 2k}.
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Example 4.2.

C(9) :

4 5 6 7 8
5 6 7 8 4
6 7 8 4 5
7 8 4 5 6

D(9): 8 4 5 6
4 5 6 7
5 6 7 8
6 7 8 4
7 8 4 5

E1(9) : 3 2 1
3 2 1

1 3 2
2 1 3
3 2 1

F1(9) : 7
8

4
5

6

Construct the following latin square of order 2k + 1;

L1 = U1 ∪ C(2k + 1) ∪D(2k + 1) ∪E1(2k + 1) ∪ F1(2k + 1) ∪G(2k + 1).

Consider the following partial latin squares.

E2(2k+1) = {(i, j, i− j (mod k+1)) | k ≤ i, j ≤ 2k, i 6= j, (i+2 (mod k+1))+ k 6= j}}.

F2(2k + 1) = {(i, (i+ 2 (mod k + 1)) + k, i) | k ≤ i ≤ 2k}.

Example 4.3.

E2(9) : 3 2 1
1 3 2
2 1 3
3 2 1

3 2 1

F2(9) : 4
5

6
7

8

Now construct the following latin square of order 2k + 1;

L2 = U2 ∪ σk
rC(2k+1) ∪ σk,2k+1

s σk,2k+1
s D(2k+1) ∪ E2(2k+1) ∪ F2(2k+1) ∪ G(2k+1).

The intersection of L1 and L2 is the set of triples {(i, i, 0) | 0 ≤ i ≤ m1−1}∪{(j, j, 0) |
k ≤ j ≤ 2k}, an (m1 + k + 1)-flower. Hence, the following result has been established.
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Lemma 4.10. Assume that 4 ≤ k and IS(k) = JS(k). Let n = 2k+1, then ({i | k+1 ≤
i ≤ 2k − 1} ∪ {2k + 1}) ⊂ IS(n).

Combining Lemmas 4.6, 4.7, 4.8, 4.9 and 4.10 yields the following result.

Lemma 4.11. There exist pairs of latin squares of order n yielding the following.

IS(2) = {0}; IS(3) = {0, 3}; and IS(n) = JS(n) for 4 ≤ n.

4.2 Two disjoint m-flowers

Let 2 ≤ m. In this section pairs of latin squares of order n, where 2m ≤ n that intersect
precisely in two disjoint m-flowers and no other triples will be constructed. Note that in
these constructions both m-flowers will be symbol-m-flowers.

Lemma 4.12. There exists a pair of latin squares of order five that intersect precisely in
two disjoint 2-flowers.

Proof. The intersection (shown in bold) of the two latin squares shown below is the set
of triples A ∩ B = {(0, 0, 0), (1, 1, 0)} ∪ {(2, 2, 1), (3, 3, 1)}, two disjoint 2-flowers.

A :

0 1 2 3 4
2 0 3 4 1
4 3 1 0 2
3 2 4 1 0
1 4 0 2 3

B :

0 3 4 2 1
1 0 2 3 4
3 2 1 4 0
2 4 0 1 3
4 1 3 0 2

Once again, the construction splits into two cases.

4.2.1 Case A: n = 2k

First note the following exception, which follows from inspection of the latin squares of
order four.

Lemma 4.13. There does not exist a pair of latin squares of order four that intersect
precisely in two disjoint 2-flowers.

Two disjoint m-flowers: m ∈ {i | 0 ≤ i ≤ k − 2} ∪ {k}
A pair of latin squares, {L1, L2}, of order 2k ≥ 6 that intersect precisely in two disjoint

m-flowers, where m ∈ {i | 2 ≤ i ≤ k − 2} ∪ {k}, will now be constructed.
Consider the latin square A = {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)} of order two. Let

m ∈ {i | 2 ≤ i ≤ k − 2} ∪ {k}. Consider the pair of latin squares (constructed in Section
4.1), {U1, U2}, of order k ≥ 3 whose intersection is the set of triples {(i, i, 0) | 0 ≤ i ≤ m}
(a symbol-m-flower).
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A pair of latin squares, {L1, L2}, of order 2k that intersect precisely in two disjoint
m-flowers will now be constructed. First, construct

L1 = {(0, 0, 0), (1, 0, 1), (0, 1, 1)}× U1 ∪ {(1, 1, 0)} × σk
sU1.

Then, construct

L2 = {(0, 0, 0)} × U2 ∪ {(1, 0, 1), (0, 1, 1)} × σk
sU1 ∪ {(1, 1, 0)} × σk

sU2.

The intersection of L1 and L2 is the set of triples {(i, i, 0) | 0 ≤ i ≤ m−1} ∪ {(j, j, 1) |
k ≤ j ≤ k + m − 1}, two disjoint m-flowers. Hence, the following result has been
established.

Lemma 4.14. Assume 6 ≤ n = 2k, then there exists a pair of latin squares of order n
that intersect precisely in two disjoint m-flowers, where m ∈ {i | 2 ≤ i ≤ k − 2} ∪ {k}.

Two disjoint (k − 1)-flowers

A pair of latin squares, {L1, L3}, of order 2k ≥ 6 that intersect precisely in two disjoint
(k − 1)-flowers will now be constructed.

Using the above, construct a pair of latin squares, {L1, L2}, that intersect precisely in
two disjoint k-flowers. Then, let L3 = ρk−1

2k−1L2 (the map ρk−1
2k−1 simply interchanges column

k − 1 with column 2k − 1 in L2).
This yields a pair of latin squares, of order 2k, whose intersection is precisely composed

of two disjoint (k − 1)-flowers. Hence, the following result has been established.

Lemma 4.15. Assume 3 ≤ k, then there exists a pair of latin squares of order n = 2k
that intersect in two disjoint (k − 1)-flowers.

4.2.2 Case B: n = 2k + 1

Two disjoint k-flowers

First, a pair of latin squares, {L′
1, L2}, of order 2k + 1 ≥ 7 that intersect precisely in

one (k+ 1)-flower and one disjoint k-flower will be constructed. This pair is then used to
construct a pair of latin squares, {L1, L2}, of order 2k + 1 ≥ 7 that intersect precisely in
two disjoint k-flowers.

Consider a pair of latin squares (constructed in Section 4.1), {U1, U2}, of order k ≥ 3,
whose intersection is composed precisely of the triples {(i, i, 0) | 0 ≤ i ≤ k− 1} (a symbol
k-flower). The symbols in U1 and U2 can be permuted, hence, without loss of generality
(k − 2, k − 1, 1) ∈ U1.

First, a latin square L′
1 will be constructed. From the previous section, the partial

latin squares C(2k + 1), D(2k + 1), F1(2k + 1) and G(2k + 1) will be made use of. In
addition the following partial latin square will also be used.

H(2k+1) = {(i, j, (i−j−1 (mod k+1))), (i, (i−1 (mod k+1))+k, 0) | k ≤ i, j ≤ 2k, i 6= j,

(i− 1 (mod k + 1)) + k 6= j, (i (mod k + 1)) + k 6= j}.
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Example 4.4.

H(9) : 3 2 0
3 2 0

0 3 2
2 0 3
3 2 0

Construct the following latin square of order 2k + 1;

L′
1 = U1 ∪ C(2k + 1) ∪ D(2k + 1) ∪ F1(2k + 1) ∪ H(2k + 1) ∪ σk+1

s G(2k + 1).

The following set is claimed to be a latin square of order 2k + 1;

L2 = U2 ∪ σk,2k+1
s (C(2k+1) ∪ D(2k+1) ∪ F1(2k+1)) ∪ ψ2k+1

k H(2k+1) ∪ σk+1
s G(2k+1).

Proof. The set of symbols in H(2k+1) is the set {h | 0 ≤ h ≤ k−1, h 6= 1}. Thus, ψ2k+1
k

merely permutes the symbols of H such that there are no fixed points. Hence, as L′
1 is a

latin square of order 2k + 1 it follows that L2 is a latin square of order 2k + 1.

The intersection of L′
1 and L2 is the set of triples {(i, i, 0) | 0 ≤ i ≤ k− 1}∪ {(j, j, 1) |

k ≤ j ≤ 2k}, a k-flower and a disjoint k + 1-flower. Hence, the following result has been
established.

Lemma 4.16. Assume 3 ≤ k. Let n = 2k+ 1, then there exists a pair of latin squares of
order n that intersect precisely in one (k + 1)-flower and one disjoint k-flower.

Notice, S1 = {(k − 2, k − 1, 1), (k − 2, 2k, (3k − 1 (mod k + 1)) + k), (2k, k − 1, (3k −
1 (mod k + 1)) + k), (2k, 2k, 1)} ⊂ L′

1; forms one mate of the latin bitrade (S1, S2) (an
intercalate) where S2 = {(k − 2, k − 1, (3k − 1 (mod k + 1)) + k), (k − 2, 2k, 1), (2k, k −
1, 1), (2k, 2k, (3k − 1 (mod k + 1)) + k)}. Hence, construct the latin square L1 = (L′

1 \
S1) ∪ S2.

The intersection of L1 and L2 is composed precisely of the triples in the set {(i, i, 0) |
0 ≤ i ≤ k − 1} ∪ {(j, j, 1) | k ≤ j ≤ 2k − 1}, two disjoint k-flowers. Thus, the following
result has been established.

Lemma 4.17. Assume 3 ≤ k. Let n = 2k+ 1, then there exists a pair of latin squares of
order n that intersect precisely in two disjoint k-flowers.

Two disjoint m-flowers, where: m ∈ {i | 2 ≤ i ≤ k − 1}
In the following, a pair of latin squares, {L3, L2}, that intersect precisely in two disjoint

m-flowers, where 2 ≤ m ≤ k − 1, will be constructed.
Begin by using the above construction to form the pair, {L1, L2}, of latin squares of

order 2k + 1 that intersect in two disjoint k-flowers.
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Let 2 ≤ m < k. Note that if L is a latin square of order n and 0 ≤ i, j ≤ n, then
the map ρ

j
i applied to a latin square L simply swaps column j with column i. Thus the

following set is a latin square of order 2k + 1;

L3 = ρk
1 ◦ ρ

k+1
2 ◦ ρk+2

3 ◦ . . . ◦ ρ2k−m−1
k−m L1.

Furthermore, L3 intersects L2 precisely in two disjoint m-flowers, specifically {(0, 0, 0),
(i, i, 0) | k−m+1 ≤ i ≤ k−1} and {(i, i, 1) | 2k−m ≤ i ≤ 2k−1}. Hence, the following
result has been established.

Lemma 4.18. Assume 3 ≤ k. Let n = 2k+ 1, then there exists a pair of latin squares of
order n that intersect precisely in two disjoint m-flowers, where m ∈ {i | 2 ≤ i ≤ k − 1}.

Combining Lemmas 4.14, 4.15, 4.17 and 4.18 yields the following result.

Lemma 4.19. There exists a pair of latin squares of order n ≥ 6 whose intersection is
composed of two disjoint m-flowers, where 2 ≤ m ≤ ⌊n

2
⌋.

4.3 n = 2m+ 2k + 1, where 0 ≤ k ≤ m−1
2

In this section pairs of latin squares of order n = 2m + 2k + 1, where k ∈ N and 1 ≤
k ≤ m−1

2
, that intersect precisely in three disjoint m-flowers, and pairs of latin squares of

order 2m+ 1 that intersect precisely in three disjoint m-flowers and one other triple (by
Lemma 4.2 there does not exist a pair of latin squares of order 2m+ 1 whose intersection
is precisely three disjoint m-flowers) are constructed.

Example 4.5. A pair of latin squares, {L1, L2}, of order five that intersect in three
disjoint 2-flowers and one other triple is shown below (the triples in the 2-flowers are
shown in bold, while the additional triple is shown in italics).

L1 :

4 3 1 0 2
2 4 0 1 3
0 2 3 4 1

3 1 4 2 0

1 0 2 3 4

L2 :

4 2 0 1 3
1 4 3 0 2
3 0 4 2 1

2 3 1 4 0

0 1 2 3 4

Let 3 ≤ m.
First, latin squares, Li, where i ∈ {1, 2}, of order 2m will be constructed. Then,

using a method similar to prolongation pairs of latin squares of the required orders will
be obtained.

Let A = {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)}.
Let B be a latin square of order m that contains at least ⌊m

2
⌋+1 transversals labelled

T i, where 0 ≤ i ≤ ⌊m
2
⌋, (such a latin square exists by Lemma 3.2); without loss of

generality, in the latin square B, T 0 = {(i, i, i) | 0 ≤ i ≤ m− 1}.
First a latin square, L1, of order 2m is constructed; L1 = A× B.

Recall that k ≤ m−1
2

; construct the following latin square of order 2m+ 2k + 1;
L1(+2k + 1) =
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L1 \ [{(0, 0, 0)} × T 0 ∪ {(1, 0, 1)} × T 0 ∪ {(1, 1, 0)} × T 0 ∪
⋃

1≤i≤k(A× T i)] ∪

γ2m
c ({(0, 0, 0)} × T 0) ∪ γ2m

s ({(0, 0, 0)} × T 0) ∪ γ2m
r ({(1, 0, 1)} × T 0) ∪

γ2m
c ({(1, 0, 1)} × T 0) ∪ γ2m

r ({(1, 1, 0)} × T 0) ∪ γ2m
s ({(1, 1, 0)} × T 0) ∪

{(m+ i, i, i) | 0 ≤ i ≤ m− 1} ∪
⋃

1≤h≤k

[γ2m+2h−1
r ({(0, 0, 0)}×T h) ∪ γ2m+2h−1

c ({(0, 0, 0)}×T h) ∪ γ2m+2h−1
s ({(0, 0, 0)}×T h) ∪

γ2m+2h
r ({(1, 0, 1} × T h) ∪ γ2m+2h−1

c ({(1, 0, 1)} × T h) ∪ γ2m+2h
s ({(1, 0, 1)} × T h) ∪

γ2m+2h
r ({(1, 1, 0)} × T h) ∪ γ2m+2h

c ({(1, 1, 0)} × T h) ∪ γ2m+2h−1
s ({(1, 1, 0)} × T h) ∪

γ2m+2h−1
r ({(0, 1, 1)}×T h) ∪ γ2m+2h

c ({(0, 1, 1)}×T h) ∪ γ2m+2h
s ({(0, 1, 1)}×T h)] ∪

{(2m+ j, 2m+ l, 2m+ (j + l (mod 2k + 1))) | 0 ≤ j, l ≤ 2k}.

See Example A.2.
Next, a second latin square, L2, of order 2m is constructed; L2 = A × fαB, where

f(0,0,0) = f(0,1,1) = φm
s , f(1,0,1) = σm

c , and f(1,1,0) = σm
r .

Construct the following latin square of order 2m+ 2k + 1;
L2(+2k + 1) =

L2 \ [{(0, 0, 0)}× φm
s T

0 ∪ {(1, 0, 1)}× σm
c T

0 ∪ {(1, 1, 0)} × σm
r T

0) ∪
⋃

1≤i≤k(A×
fαT

i)]∪

γ2m
c ({(0, 0, 0)} × φm

s T
0) ∪ γ2m

s ({(0, 0, 0)} × φm
s T

0) ∪ γ2m
r ({(1, 0, 1)} × σm

c T
0) ∪

γ2m
c ({(1, 0, 1)} × σm

c T
0) ∪ γ2m

r ({(1, 1, 0)} × σm
r T

0) ∪ γ2m
s ({(1, 1, 0)} × σm

r T
0) ∪

{(m+ i, i+ 1 (mod m), i− 1 (mod m)) | 0 ≤ i ≤ m− 1} ∪
⋃

1≤h≤k

[γ2m+2h
r ({(0, 0, 0)} × φm

s T
h) ∪ γ2m+2h

c ({(0, 0, 0)} × φm
s T

h) ∪ γ2m+2h
s ({(0, 0, 0)} ×

φm
s T

h) ∪

γ2m+2h−1
r ({1, 0, 1)}×σm

c T
h) ∪ γ2m+2h

c ({(1, 0, 1)}×σm
c T

h) ∪ γ2m+2h−1
s ({(1, 0, 1)}×

σm
c T

h) ∪

γ2m+2h−1
r ({(1, 1, 0)}×σm

r T
h) ∪ γ2m+2h−1

c ({(1, 1, 0)}×σm
r T

h) ∪ γ2m+2h
s ({(1, 1, 0)}×

σm
r T

h) ∪

γ2m+2h
r ({(0, 1, 1)}×φm

s T
h) ∪ γ2m+2h−1

c ({(0, 1, 1)}×φm
s T

h) ∪ γ2m+2h−1
s ({(0, 1, 1)}×

φm
s T

h)] ∪

{(2m+ j, 2m+ l, 2m+ (j + l + 1 (mod 2k + 1))) | 0 ≤ j, l ≤ 2k}.

See Example A.3.
Consider the intersection of L1(+2k + 1) and L2(+2k + 1). Note that
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for k ≥ 1 this intersection is composed precisely of the disjoint m-flowers {(i, i, 2m) |
0 ≤ i ≤ m− 1}, {(m+ i, 2m,m+ i) | 0 ≤ i ≤ m− 1} and {(2m,m+ i, i) | 0 ≤ i ≤
m− 1};

for k = 0 this intersection is composed precisely of the disjoint m-flowers {(i, i, 2m) |
0 ≤ i ≤ m− 1}, {(m+ i, 2m,m+ i) | 0 ≤ i ≤ m− 1} and {(2m,m+ i, i) | 0 ≤ i ≤
m− 1} and the additional triple (2m, 2m, 2m).

See Example A.4.
The existence of latin squares of order seven that intersect precisely in three disjoint

2-flowers is shown in [13]. Also, Example 4.5 shows a pair of latin squares of order five that
intersect precisely in three disjoint 2-flowers and one other triple. Hence, the following
result has been established.

Lemma 4.20. Assume 2 ≤ m and n = 2m + 2k + 1, where 1 ≤ k ≤ m−1
2

, then there
exists a pair of latin squares of order n that intersect precisely in three disjoint m-flowers.
Furthermore, there exists a pair of latin squares of order 2m + 1 that intersect precisely
in three disjoint m-flowers and one other triple.

4.4 n = 2m+ 2k, where 1 ≤ k ≤ m
2

Example 4.6. A pair of latin squares, {L1, L2}, of order six that intersect in three disjoint
2-flowers is shown below (the triples in the 2-flowers are shown in bold).

L1 :

0 2 4 3 5 1
1 0 5 4 2 3
3 5 1 2 0 4
2 4 0 1 3 5
5 1 3 0 4 2
4 3 2 5 1 0

L2 :

0 1 5 4 2 3
5 0 2 3 1 4
4 3 1 2 5 0
1 5 4 0 3 2
3 2 0 5 4 1
2 4 3 1 0 5

Let 3 ≤ m. In the remainder of this section pairs of latin squares of order n = 2m+2k,
where 3 ≤ m, k ∈ N ∪ {0} and 1 ≤ k ≤ m

2
, that intersect precisely in three disjoint m-

flowers will be constructed.
The constructions all start by forming a latin square, Li, where i ∈ {1, 2}, of order

2m and then increasing this order through a method similar to prolongation.
For the first latin square (of the pair) two separate constructions are used, one for

when k = 1 and one for when 2 ≤ k ≤ m
2
. The same construction, for both k = 1 and

2 ≤ k ≤ m
2
, is used for the second latin square.

Let A = {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)}.
Let B be a latin square of order m that contains at least ⌊m

2
⌋+1 transversals labelled

T i, where 0 ≤ i ≤ ⌊m
2
⌋ (such a latin square exists by Lemma 3.2); without loss of

generality, in the latin square B, T 0 = {(i, i, i) | 0 ≤ i ≤ m− 1}.
First a latin square, L1, of order 2m is constructed; L1 = A× B.

Now construct the following latin square of order 2m+ 2;
L′

1(+2) =
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L1 \ [A× T 0] ∪

γ2m
c ({(0, 0, 0)× T 0) ∪ γ2m

s ({(0, 0, 0)× T 0) ∪ γ2m
r ({(0, 0, 0)× T 0) ∪

γ2m
c ({(1, 0, 1)× T 0) ∪ γ2m+1

s ({(1, 0, 1) × T 0) ∪ γ2m+1
r ({(1, 0, 1) × T 0) ∪

γ2m+1
c ({(0, 1, 1)× T 0) ∪ γ2m+1

s ({(0, 1, 1) × T 0) ∪ γ2m
r ({(0, 1, 1) × T 0) ∪

γ2m+1
c ({(1, 1, 0)× T 0) ∪ γ2m

s ({(1, 1, 0) × T 0) ∪ γ2m+1
r ({(1, 1, 0) × T 0) ∪

{(2m+ j, 2m+ l, 2m+ (j + l (mod 2))) | 0 ≤ j, l ≤ 1}.

See Example A.5.
Notice, (R1 = {(2m − 1, i, x), (2m + 1, i,m + i) | 0 ≤ i ≤ m − 2, (2m − 1, i, x) ∈

L′
1(+2)}, R2 = {(2m−1, i,m+ i), (2m+1, i, x) | 0 ≤ i ≤ m−2, (2m−1, i, x) ∈ L′

1(+2)})
is a latin bitrade where R1 ⊂ L′

1(+2).
Similarly, (S1 = {(2m− 1, m− 1, 2m+ 1), (2m− 1, 2m, 2m− 1), (2m+ 1, m− 1, 2m−

1), (2m + 1, 2m, 2m + 1)}, S2 = {(2m − 1, m − 1, 2m − 1), (2m − 1, 2m, 2m + 1), (2m +
1, m− 1, 2m+ 1), (2m+ 1, 2m, 2m− 1)}) is a latin bitrade where S1 ⊂ L′

1(+2).
Hence, construct the latin square L1(+2) = (L′

1(+2) \ (R1 ∪ S1)) ∪ (R2 ∪ S2). See
Example A.6

Let 2 ≤ k ≤ m
2
; consider the latin square of order 2m+ 2k; L1(+2k) =

L1 \ [
⋃

0≤h≤k−1A× T h]

⋃

0≤h≤1

[γ2m+h
r ({(0, 0, 0) × T h}) ∪ γ2m+2h

c ({(0, 0, 0)} × T h) ∪ γ2m+2h
s ({(0, 0, 0)× T h}) ∪

γ2m+h
r ({(0, 1, 1)×T h}) ∪ γ2m+2h+1

c ({(0, 1, 1)}×T h) ∪ γ2m+2h+1
s ({(0, 1, 1)×T h}) ∪

γ2m+2+h
r ({(1, 0, 1)×T h}) ∪ γ2m+2h

c ({(1, 0, 1)}×T h) ∪ γ2m+2h+1
s ({(1, 0, 1)×T h}) ∪

γ2m+3−h
r ({(1, 1, 0)×T h}) ∪ γ2m+2h+1

c ({(1, 1, 0)}×T h) ∪ γ2m+2h
s ({(1, 1, 0)×T h})] ∪

⋃

2≤h≤k−1

[γ2m+2h
r ({(0, 0, 0)× T h}) ∪ γ2m+2h

c ({(0, 0, 0)} × T h) ∪ γ2m+2h
s ({(0, 0, 0)× T h}) ∪

γ2m+2h
r ({(0, 1, 1)×T h}) ∪ γ2m+2h+1

c ({(0, 1, 1)}×T h) ∪ γ2m+2h+1
s ({(0, 1, 1)×T h}) ∪

γ2m+2h+1
r ({(1, 0, 1)×T h}) ∪ γ2m+2h

c ({(1, 0, 1)}×T h) ∪ γ2m+2h+1
s ({(1, 0, 1)×T h}) ∪

γ2m+2h+1
r ({(1, 1, 0)×T h}) ∪ γ2m+2h+1

c ({(1, 1, 0)}×T h) ∪ γ2m+2h
s ({(1, 1, 0)×T h})] ∪

{(2m+ j, 2m+ l, 2m+ (j + l (mod 2k))) | 0 ≤ j, l ≤ 2k − 1}.

See Example A.7.
Next, a latin square, L2, of order 2m will be constructed; L2 = A × fαB, where

f(0,0,0) = σm
s , f(1,0,1) = f(0,1,1) = σm

r and f(1,1,0) = σm
c .

Let 1 ≤ k ≤ m
2
. Consider the latin square of order 2m+ 2k;

L2(+2k) =
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L2 \ [
⋃

0≤h≤k−1A× {fαT
h}α∈A] ∪

γ2m
r ({(0, 0, 0)} × σm

s T
0) ∪ γ2m

c ({(0, 0, 0)} × σm
s T

0) ∪ γ2m
s ({(0, 0, 0)} × σm

s T
0) ∪

γ2m
r ({(0, 1, 1)}×σm

r T
0) ∪ γ2m+1

c ({(0, 1, 1)}×σm
r T

0) ∪ γ2m+1
s ({(0, 1, 1)}×σm

r T
0) ∪

γ2m+1
r ({(1, 0, 1)}×σm

r T
0) ∪ γ2m

c ({(1, 0, 1)}×σm
r T

0) ∪ γ2m+1
s ({(1, 0, 1)}×σm

r T
0) ∪

γ2m+1
r ({(1, 1, 0)} × σm

c T
0) ∪ γ2m+1

c ({(1, 1, 0)} × σm
c T

0) ∪ γ2m
s ({(1, 1, 0)} × σm

c T
0)

⋃

1≤h≤k−1

[γ2m+2h+1
r ({(0, 0, 0)}×σm

s T
h)∪ γ2m+2h+1

c ({(0, 0, 0)}×σm
s T

h) ∪ γ2m+2h+1
s ({(0, 0, 0)}×

σm
s T

h) ∪

γ2m+2h+1
r ({(0, 1, 1)} × σm

r T
h) ∪ γ2m+2h

c ({(0, 1, 1)} × σm
r T

h) ∪ γ2m+2h
s ({(0, 1, 1)} ×

σm
r T

h) ∪

γ2m+2h
r ({(1, 0, 1)} × σm

r T
h) ∪ γ2m+2h+1

c ({(1, 0, 1)} × σm
r T

h) ∪ γ2m+2h
s ({(1, 0, 1)} ×

σm
r T

h) ∪

γ2m+2h
r ({(1, 1, 0)} × σm

c T
h) ∪ γ2m+2h

c ({(1, 1, 0)} × σm
c T

h) ∪ γ2m+2h+1
s ({(1, 1, 0)} ×

σm
c T

h)] ∪

{(2m+ j, 2m+ l, 2m+ (j + l + 1 (mod 2k))) | 0 ≤ j, l ≤ 2k − 1}.

See Example A.8
The intersection of L1(+2) and L2(+2) is composed precisely of the disjoint m-flowers

{(i, i, 2m) | 0 ≤ i ≤ m− 1}, {(2m,m+ i,m+ i) | 0 ≤ i ≤ m− 1} and {(m+ i, 2m+ 1, i) |
0 ≤ i ≤ m− 1}. See Example A.9.

Recall that, Example 4.6 shows a pair of latin squares of order six that intersect
precisely in three disjoint 2-flowers. Thus, the following result has been established.

Lemma 4.21. Assume 2 ≤ m then there exists a pair of latin squares of order 2m + 2
that intersect precisely in three disjoint m-flowers.

Let 4 ≤ m. Let 2 ≤ k ≤ m
2
. Consider the intersection of L1(+2k) and L2(+2k). This

intersection is composed precisely of the disjoint m-flowers {(i, i, 2m) | 0 ≤ i ≤ m − 1},
{(2m,m+ i,m+ i) | 0 ≤ i ≤ m−1} and {(m+ i, 2m+1, i) | 0 ≤ i ≤ m−1}. See Example
A.10. Hence, the following result has been established.

Lemma 4.22. Assume 4 ≤ m and 2 ≤ k ≤ m−1
2

then there exists a pair of latin squares
of order 2m+ 2k that intersect precisely in three disjoint m-flowers.

Combining Lemmas 4.21 and 4.22 yields the following result.

Lemma 4.23. Assume 2 ≤ m and 1 ≤ k ≤ m−1
2

then there exists a pair of latin squares
of order 2m+ 2k that intersect precisely in three disjoint m-flowers.
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4.5 3m+ 1 ≤ n ≤ 4m

Let 3 ≤ m. In this section pairs of latin squares of order n = 3m + k, where k ∈ N and
1 ≤ k ≤ m, that intersect precisely in three or four disjoint m-flowers will be constructed.

First, a pair of latin squares, of order 3m+k, that intersect in three disjoint m-flowers
is constructed. Then this construction is modified to obtain a pair of latin squares, of
order 3m+ k that intersect in four disjoint m-flowers.

Let A = {(0, 0, 0), (0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 1, 1), (1, 2, 0), (2, 0, 1), (2, 1, 0), (2, 2, 2)}.
Let B be a latin square of order m that contains at least ⌊m

2
⌋+1 transversals labelled

T i, where 0 ≤ i ≤ ⌊m
2
⌋ (such a latin square exists by Lemma 3.2); without loss of

generality, in the latin square B, T 0 = {(i, i, i) | 0 ≤ i ≤ m− 1}.
Begin by constructing a latin square, L1, of order 3m; L1 = A×B.

Let k1 = ⌈k−1
2
⌉ and k2 = ⌊k−1

2
⌋. Also let, 1 ≤ i ≤ k1 and 1 ≤ j ≤ k2. By Lemma 3.3

the sets {(t, t, t) | 0 ≤ t ≤ 2} × T 0, {(0, 1, 2), (1, 2, 0), (2, 0, 1)}× T i and {(t, t, t) | 0 ≤ t ≤
2} × T j are transversals in L1. So, k-prolongate down the following k transversals in L1:

T0 = {(t, t, t) | 0 ≤ t ≤ 2} × T 0;

Ti = {(0, 1, 2), (1, 2, 0), (2, 0, 1)}× T i, where 1 ≤ i ≤ k1; and

Tk1+j = {(t, t, t) | 0 ≤ t ≤ 2} × T j, where 1 ≤ j ≤ k2;

using the completing square {(3m+ h, 3m + l, 3m+ (h + l (mod k))) | 0 ≤ h, l ≤ k − 1}
to form the latin square L1(+k). See Example A.11.

Now, a latin square, L2, of order 3m will be constructed. Let A′ be the set A \
{(1, 1, 1), (2, 2, 2)}. Then, L2 = A×{fαB}α∈A, where fα = σm

s when α ∈ A′, f(1,1,1) = σm
c ,

and f(2,2,2) = σm
r .

As before, let k1 = ⌈k−1
2
⌉ and k2 = ⌊k−1

2
⌋. Also, as before, let 1 ≤ i ≤ k1 and 1 ≤ j ≤

k2. By Lemma 3.3 the sets {(t, t, t) | 0 ≤ t ≤ 2} × fαT
0, {(t, t, t) | 0 ≤ t ≤ 2} × fαT

i

and {(0, 1, 2), (1, 2, 0), (2, 0, 1)}× fαT
j are transversals in L2. So, k-prolongate down the

following k transversals

Ti = {(h, h, h) | 0 ≤ h ≤ 2} × fαT
i, where 0 ≤ i ≤ k1; and

Tk1+j = {(0, 1, 2), (1, 2, 0), (2, 0, 1)}× fαT
j, where 1 ≤ j ≤ k2;

and use the completing square {(3m+h, 3m+l, 3m+(h+l+1 (mod k))) | 0 ≤ h, l ≤ k−1}
to form the latin square L2(+k). See Example A.12.

The latin squares L1(+k) and L2(+k) intersect precisely in three disjoint m-flowers
if 2 ≤ k (namely {(i, i, i) | 0 ≤ i ≤ m − 1}, {(m + i, 3m,m + i) | 0 ≤ i ≤ m − 1} and
{(3m, 2m + i, 2m + i) | 0 ≤ i ≤ m − 1} (see Example A.13)) and precisely in the same
three disjoint m-flowers and one other triple (namely (3m, 3m, 3m)) if k = 1.

Notice,

R1 = {(0, m, 2m), (0, 2m,m), (0, 3m, 0), (m, 0, 2m), (m,m, 3m), (m, 2m, 0),

(2m, 0, m), (2m, 2m, 3m), (2m, 3m, 2m), (3m, 0, 0), (3m,m,m), (3m, 3m, 3m)} ⊂ L1(+1);
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this set is one mate of the latin bitrade (R1, R2), where

R2 = {(0, m,m), (0, 2m, 0), (0, 3m, 2m), (m, 0, 0), (m,m, 2m), (m, 2m, 3m), (2m, 0, 2m)

, (2m, 2m,m), (2m, 3m, 3m), (3m, 0, m), (3m,m, 3m), (3m, 3m, 0)}.

Construct the latin square L3(+1) = (L1 \R1) ∪R2. See Example A.14.
The latin squares L3(+1) and L2(+1) intersect precisely in three disjoint m-flowers.

Hence, the following result has been established.

Lemma 4.24. Assume 3 ≤ m and 3m + 1 ≤ n ≤ 4m, then there exists a pair of latin
squares of order n that intersect precisely in three disjoint m-flowers.

Next a latin square L4(+k), where 1 ≤ k ≤ m, is constructed in the same manner as
L2(+k) except letting f(2,1,0) = υm

s .
The latin squares L1(+k) and L4(+k), where 2 ≤ k ≤ m, and L3(+1) and L4(+1)

intersect precisely in four disjoint m-flowers, namely {(i, i, i) | 0 ≤ i ≤ m − 1}, {(m +
i, 3m,m+ i) | 0 ≤ i ≤ m− 1}, {(3m, 2m+ i, 2m+ i) | 0 ≤ i ≤ m− 1} and {(2m+ i,m+
i,m− 1) | (i, j,m− 1) ∈ B}. Thus, the following result has been proved.

Lemma 4.25. Assume 3 ≤ m and 3m + 1 ≤ n ≤ 4m, then there exists a pair of latin
squares of order n that intersect precisely in four disjoint m-flowers.

4.6 n = 4m+ 1

In this section pairs of latin squares of order n = 4m + 1 that intersect precisely in 3, 4
and 5 disjoint m-flowers, are constructed.

Let A = {(0, 0, 0), (0, 1, 3), (0, 2, 1), (0, 3, 2), (1, 0, 2), (1, 1, 1), (1, 2, 3), (1, 3, 0), (2, 0, 3),
(2, 1, 0), (2, 2, 2), (2, 3, 1), (3, 0, 1), (3, 1, 2), (3, 2, 0), (3, 3, 3)}.

Let B be a latin square of order m that contains a transversal, labelled T 0 (such
a latin square exists by Lemma 3.2); without loss of generality, in the latin square B,
T 0 = {(i, i, i) | 0 ≤ i ≤ m− 1}.

First the latin square, L1, of order 4m is constructed; L1 = A × B. By Lemma 3.3,
the set {(i, i, i) | 0 ≤ i ≤ 3} × T 0 is a transversal in L1. Thus, prolongate down this
transversal to form the latin square L1(+1) of order 4m+ 1. See Example A.15.

Now a latin square, L2, of order 4m is constructed. Let A′ = A\{(1, 1, 1), (2, 2, 2), (3, 3,
3)}. Then, L2 = A× {fαB}α∈A, where fα = σm

s when α ∈ A′, f(1,1,1) = σm
r , f(2,2,2) = σm

c

and f(3,3,3) = id.

By Lemma 3.3 the set {(i, i, i) | 0 ≤ i ≤ 3} × fαT
0 is a transversal in L2. Prolongate

down this transversal to form the latin square L′
2(+1).

Note that the triples in the set R1 = {(x, y, z) | 3m ≤ x, y ≤ 4m, (x, y, z) ∈ L1(+1)}
occur in both L1(+1) and L′

2(+1). Also, note that these triples form one mate of a latin
bitrade (R1, R2), where R2 = {(x, y, (z − 3m + 1 (mod m + 1)) + 3m) | (x, y, z) ∈ R1}
(R1 is in fact a latin square where N = {i | 3m ≤ i ≤ 4m}). Construct L2(+1) =
(L′

2(+1) \R1) ∪ R2. See Example A.16.
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The latin squares L1(+1) and L2(+1) intersect precisely in three disjoint m-flowers,
namely {(i, i, i) | 0 ≤ i ≤ m − 1}, {(4m,m + i,m + i) | 0 ≤ i ≤ m − 1} and {(2m +
i, 4m, 2m+ i) | 0 ≤ i ≤ m− 1}. Hence, the following result has been proved.

Lemma 4.26. Assume 3 ≤ m then there exists a pair of latin squares of order 4m + 1
that intersect precisely in three disjoint m-flowers.

Now construct a latin square L3(+1) in the same manner as L2(+1) except let f(3,2,0) =
υm

s ; and construct L4(+1) in the same manner as L2(+1) except let f(3,2,0) = υm
s and

f(1,3,0) = ǫms .
The latin squares L1(+1) and L3(+1) intersect precisely in four disjoint m-flowers

(namely {(i, i, i) | 0 ≤ i ≤ m−1}, {(4m,m+i,m+i) | 0 ≤ i ≤ m−1}, {(2m+i, 4m, 2m+
i) | 0 ≤ i ≤ m−1} and {(3m+ i, 2m+ j,m−1) | (i, j,m−1) ∈ B}) and the latin squares
L1(+1) and L4(+1) intersect precisely in five disjoint m-flowers (namely {(i, i, i) | 0 ≤ i ≤
m − 1}, {(4m,m + i,m + i) | 0 ≤ i ≤ m − 1}, {(2m + i, 4m, 2m + i) | 0 ≤ i ≤ m − 1},
{(3m+ i, 2m+j,m−1) | (i, j,m−1) ∈ B} and {(m+ i, 3m+j,m−2) | (i, j,m−2) ∈ B}).
Hence, the following result has been established.

Lemma 4.27. Assume 3 ≤ m. Then there exists a pair of latin squares of order 4m+ 1
that intersect precisely in four disjoint m-flowers and there exists a pair of latin squares
of order 4m+ 1 that intersect precisely in five disjoint m-flowers.

4.7 4m+ 2 ≤ n ≤ 6m+ 2

Let 3 ≤ m. In this section pairs of latin squares of order n are constructed that intersect
in: 3, 4, 5 or 6 disjoint m-flowers when 4m+ 2 ≤ n ≤ 5m + 1; in 3, 4, 5, 6 or 7 disjoint
m-flowers when 5m + 2 ≤ n ≤ 6m + 1; and in 3, 4, 5, 6, 7 or 8 disjoint m-flowers when
n = 6m+ 2.

First a pair of latin squares of order n, where 4m+ 2 ≤ n ≤ 6m+ 2, that intersect in
5 disjoint m-flowers will be constructed.

Let B be a latin square of order m that contains at least ⌈m
2
⌉+1 transversals labelled

T i, where 0 ≤ i ≤ ⌈m
2
⌉ (such a latin square exists by Lemma 3.2); without loss of

generality, in the latin square B, T 0 = {(i, i, i) | 0 ≤ i ≤ m− 1}.
Let A1 = {(0, 0, 0), (0, 1, 1), (0, 2, 2), (0, 3, 3), (1, 0, 1), (1, 1, 0), (1, 2, 3), (1, 3, 2), (2, 0, 2),

(2, 1, 3), (2, 2, 0), (2, 3, 1), (3, 0, 3), (3, 1, 2), (3, 2, 1), (3, 3, 0)}. Notice that A1 = U1 ∪ U2 ∪
U3 ∪ U4, where:

U1 = {(0, 0, 0), (1, 2, 3), (2, 3, 1), (3, 1, 2)}; U2 = {(0, 1, 1), (1, 3, 2), (2, 2, 0), (3, 0, 3)};
U3 = {(0, 2, 2), (1, 0, 1), (2, 1, 3), (3, 3, 0)}; U4 = {(0, 3, 3), (1, 1, 0), (2, 0, 2), (3, 2, 1)}.

Also, note that each Ui, where 1 ≤ i ≤ 4, is a transversal in A1 and that these transversals
are disjoint.

A1 :

0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

Transversals:

U1 U2 U3 U4

U3 U4 U1 U2

U4 U3 U2 U1

U2 U1 U4 U3
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First, a latin square, L1, of order 4m is constructed; L1 = A1 ×B.

Next, let 2 ≤ k ≤ 2m + 2 and k − 2 = k1 + k2 + k3 + k4, where 0 ≤ k4 ≤ k3 ≤ k2 ≤
k1 ≤ ⌈m

2
⌉. Construct the following latin square of order 4m+ k;

L′
1(+k) =

L1 \ [((A1 \ {(0, 1, 1), (0, 3, 3), (2, 1, 3), (2, 3, 1)})× T 0) ∪
⋃

1≤h1≤k1
(U1 × T h1)∪

⋃

1≤h2≤k2
(U2 × T h2) ∪

⋃

1≤h3≤k3
(U3 × T h3) ∪

⋃

1≤h4≤k4
(U4 × T h4)]∪

γ4m
r ({(1, 0, 1), (1, 1, 0), (1, 2, 3), (1, 3, 2)}× T 0)∪
γ4m+1

r ({(3, 0, 3), (3, 1, 2), (3, 2, 1), (3, 3, 0)}× T 0)∪
γ4m

c ({(3, 0, 3), (2, 0, 2), (1, 0, 1), (0, 0, 0)}× T 0)∪
γ4m+1

c ({(3, 2, 1), (2, 2, 0), (1, 2, 3), (0, 2, 2)}× T 0)∪
γ4m

s ({(0, 0, 0), (1, 1, 0), (2, 2, 0), (3, 3, 0)}× T 0)∪
γ4m+1

s ({(0, 2, 2), (1, 3, 2), (2, 0, 2), (3, 1, 2)}× T 0)∪

{(m+ i, i, i), (m+ i, 2m+ i, 2m+ i), (3m+ i, i, 2m+ i), (3m+ i, 2m+ i, i) | 0 ≤ i ≤
m− 1}∪

⋃

1≤h1≤k1
(γ4m+1+h1

r (U1 × T h1) ∪ γ4m+1+h1

c (U1 × T h1) ∪ γ4m+1+h1

s (U1 × T h1))∪

⋃

1≤h2≤k2
(γ4m+1+k1+h2

r (U2×T
h2) ∪ γ4m+1+k1+h2

c (U2×T
h2) ∪ γ4m+1+k1+h2

s (U2×T
h2))∪

⋃

1≤h3≤k3
(γ4m+1+k1+k2+h3

r (U3×T
h3)∪ γ4m+1+k1+k2+h3

c (U3×T
h3)∪γ4m+1+k1+k2+h3

s (U3×

T h3))∪

⋃

1≤h4≤k4
(γ4m+1+k1+k2+k3+h4

r (U4 × T h
4 ) ∪ γ4m+1+k1+k2+k3+h4

c (U4 × T h4) ∪

γ4m+1+k1+k2+k3+h4

s (U4 × T h
4 ))∪

{(4m+ j, 4m+ l, 4m+ (j + l (mod k))) | 0 ≤ j, l ≤ k − 1}.

See Example A.17.
Notice, R1 = {(m+ i,m+ i, 4m), (m+ i, 3m+ i, 4m+1), (3m+ i,m+ i, 4m+1), (3m+

i, 3m+i, 4m) | 0 ≤ i ≤ m−1} ⊂ L′
1(+k); this set is one mate of the latin bitrade (R1, R2),

where R2 = {(m+ i,m+ i, 4m+1), (m+ i, 3m+ i, 4m), (3m+ i,m+ i, 4m), (3m+ i, 3m+
i, 4m+ 1) | 0 ≤ i ≤ m− 1}.

Hence, construct the latin square L1(+k) = (L′
1(+k) \R1) ∪R2.

Let A2 = {(0, 0, 0), (0, 1, 1), (0, 2, 3), (0, 3, 2), (1, 0, 1), (1, 1, 0), (1, 2, 2), (1, 3, 3), (2, 0, 3),
(2, 1, 2), (2, 2, 0), (2, 3, 1), (3, 0, 2), (3, 1, 3), (3, 2, 1), (3, 3, 0)}. Notice that A2 = U ′

1 ∪ U ′
2 ∪

U ′
3 ∪ U ′

4, where:

U ′
1 = {(0, 3, 2), (1, 1, 0), (2, 0, 3), (3, 2, 1)}; U ′

2 = {(0, 2, 3), (1, 0, 1), (2, 1, 2), (3, 3, 0)};
U ′

3 = {(0, 1, 1), (1, 3, 3), (2, 2, 0), (3, 0, 2)}; U ′
4 = {(0, 0, 0), (1, 2, 2), (2, 3, 1), (3, 1, 3)}.

Also, note that each U ′
i , where 1 ≤ i ≤ 4, is a transversal in A2 and that these transversals

are disjoint.
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A2 :

0 1 3 2
1 0 2 3
3 2 0 1
2 3 1 0

Transversals:

U ′

4
U ′

3
U ′

2
U ′

1

U ′

2
U ′

1
U ′

4
U ′

3

U ′

1
U ′

2
U ′

3
U ′

4

U ′

3
U ′

4
U ′

1
U ′

2

Now, the latin square, L2, of order 4m will be constructed. L2 = A2 × fαB, where
f(0,3,2) = f(1,2,2) = f(1,3,3) = f(2,0,3) = f(3,1,3) = id, f(2,1,2) = f(3,0,2) = f(0,0,0) = f(0,1,1) =
f(1,0,1) = f(1,1,0) = f(2,3,1) = f(0,2,3) = σm

s , f(3,3,0) = φm
s , f(2,2,0) = σm

c and f(3,2,1) = σm
r .

σm

s
σm

s
σm

s
id

σm

s
σm

s
id id

id σm

s
σm

c
σm

s

σm

s
id σm

r
φm

s

Let 2 ≤ k ≤ 2m + 2, and ki, where 1 ≤ i ≤ 4, be the same as in the construction of
L′

1(+k). So consider the following latin square of order 4m+ k.
L2(+k) =

L2 \ [((A \ {(0, 1, 1), (1, 3, 3), (2, 0, 3), (2, 3, 1)})× fαT
0) ∪

⋃

1≤h1≤k1
(U ′

1 × fαT
h1)∪

⋃

1≤h2≤k2
(U ′

2 × fαT
h2) ∪

⋃

1≤h3≤k3
(U ′

3 × fαT
h3) ∪

⋃

1≤h4≤k4
(U ′

4 × fαT
h4)]∪

γ4m
r ({(1, 0, 1), (1, 1, 0), (0, 2, 3), (0, 3, 2)}× fαT

0)∪
γ4m+1

r ({(3, 0, 2), (3, 1, 3), (3, 2, 1), (3, 3, 0)}× fαT
0)∪

γ4m
c ({(0, 0, 0), (1, 0, 1), (2, 1, 2), (3, 1, 3)}× fαT

0)∪
γ4m+1

c ({(0, 2, 3), (1, 2, 2), (2, 2, 0), (3, 2, 1)}× fαT
0)∪

γ4m
s ({(0, 0, 0), (1, 1, 0), (2, 2, 0), (3, 3, 0)}× fαT

0)∪
γ4m+1

s ({(0, 3, 2), (1, 2, 2), (2, 1, 2), (3, 0, 2)}× fαT
0)∪

{(i, 2m+ i, 2m+ i), (m+ i, i, (i+1 (mod m))), (3m+ i,m+ i, 2m+(i+1 (mod m))),
(3m+ (i+ 1 (mod m)), 2m+ i, (i− 1 (mod m))) | 0 ≤ i ≤ m− 1}∪
⋃

1≤h1≤k1
(γ4m+1+h1

r (U ′
1 ×fαT

h1) ∪ γ4m+1+h1

c (U ′
1 ×fαT

h1) ∪ γ4m+1+h1

s (U ′
1 ×fαT

h1))∪

⋃

1≤h2≤k2
(γ4m+1+k1+h2

r (U ′
2 × fαT

h2) ∪ γ4m+1+k1+h2

c (U ′
2 × fαT

h2) ∪ γ4m+1+k1+h2

s (U ′
2 ×

fαT
h2))∪

⋃

1≤h3≤k3
(γ4m+1+k1+k2+h3

r (U ′
3 × fαT

h3) ∪ γ4m+1+k1+k2+h3

c (U ′
3 × fαT

h3) ∪

γ4m+1+k1+k2+h3

s (U ′
3 × fαT

h3))∪
⋃

1≤h4≤k4
(γ4m+1+k1+k2+k3+h4

r (U ′
4 × fαT

h4) ∪ γ4m+1+k1+k2+k3+h4

c (U ′
4 × fαT

h4) ∪

γ4m+1+k1+k2+k3+h4

s (U ′
4 × fαT

h4))∪

{(4m+ j, 4m+ l, 4m+ (j + l + 1 (mod k))) | 0 ≤ j, l ≤ k − 1}.

See Example A.18.
The latin squares L1(+k) and L2(+k) intersect precisely in five disjoint m-flowers

(namely {(i, i, 4m) | 0 ≤ i ≤ m−1}, {(2m+i, 4m+1, i) | 0 ≤ i ≤ m−1}, {3m+i, 4m, 3m+
i | 0 ≤ i ≤ m− 1}, {(4m, 3m+ i, 2m+ i) | 0 ≤ i ≤ m− 1} and {(4m+ 1, 2m+ i,m+ i) |
0 ≤ i ≤ m− 1}) and no other triples. See Example A.19.

Thus, the following result has been established.
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Lemma 4.28. Assume 3 ≤ m and 4m+2 ≤ n ≤ 6m+2, then there exists a pair of latin
squares of order n that intersect precisely in five disjoint m-flowers.

Notice S1 = {(m+ i,m+ i, 4m), (m+ i, 2m+ i, 4m+1), (2m+ i,m+ i, 4m+1), (2m+
i, 2m+ (i+ 1 (mod m)), 4m) | 0 ≤ i ≤ m− 1} ⊂ L2(+k); this set of triples is one mate of
the latin bitrade (S1, S2), where S2 = {(m+ i,m+ i, 4m+ 1), (m+ i, 2m+ i, 4m), (2m+
i,m+ i, 4m), (2m+ i, 2m+ (i+ 1 (mod m)), 4m+ 1) | 0 ≤ i ≤ m− 1}.

Construct the latin square L3(+k) = (L2(+k) \ S1) ∪ S2.
The latin squares L1(+k) and L3(+k) intersect in precisely in six disjoint m-flowers,

specifically {(i, i, 4m) | 0 ≤ i ≤ m − 1}, {(2m + i, 4m + 1, i) | 0 ≤ i ≤ m − 1}, {3m +
i, 4m, 3m+ i | 0 ≤ i ≤ m− 1}, {(4m, 3m+ i, 2m+ i) | 0 ≤ i ≤ m− 1}, {(4m+ 1, 2m+
i,m + i) | 0 ≤ i ≤ m − 1} and {(m + i,m + i, 4m + 1) | 0 ≤ i ≤ m − 1}. Hence, the
following result has been established.

Lemma 4.29. Assume 3 ≤ m and 4m+2 ≤ n ≤ 6m+2, then there exists a pair of latin
squares of order n that intersect precisely in six disjoint m-flowers.

Let m+2 ≤ k ≤ 2m+2; let V1 = {(i, j, u) | 4m ≤ i, j ≤ 4m+k−1, (i, j, u) ∈ L1(+k)}
and W1 = {(i, j, v) | 4m ≤ i, j ≤ 4m+ k − 1, (i, j, v) ∈ L3(+k)}.

From Lemma 4.11 there exists a pair of latin squares of order k, where m+ 2 ≤ k ≤
2m+2, that intersect precisely in one symbol-m-flower. By relabelling the rows, columns
and symbols (the same permutations are applied to both squares) the symbol-m-flower is
the set {(i, i, 2) | 2 ≤ i ≤ m+ 1}. Denote this pair of latin squares by {V ′

2 ,W
′
2}.

Let V2 = δ4mV ′
2 and W2 = δ4mW ′

2. Note that, (V1, V2) and (W1,W2) are latin biswaps.
So, construct the latin squares L4(+k) = (L1(+k) \ V1) ∪ V2 and L5(+k) = (L1(+k) \
W1) ∪W2.

Thus, the latin squares L4(+k) and L5(+k) intersect precisely in seven disjoint m-
flowers, specifically {(i, i, 4m) | 0 ≤ i ≤ m − 1}, {(2m + i, 4m + 1, i) | 0 ≤ i ≤ m − 1},
{3m + i, 4m, 3m + i | 0 ≤ i ≤ m − 1}, {(4m, 3m + i, 2m + i) | 0 ≤ i ≤ m − 1},
{(4m+ 1, 2m+ i,m+ i) | 0 ≤ i ≤ m− 1}, {(m+ i,m+ i, 4m+ 1) | 0 ≤ i ≤ m− 1} and
{(4m+ 2 + i, 4m+ 2 + i, 4m+ 2) | 0 ≤ i ≤ m− 1}. Hence, the following result has been
established.

Lemma 4.30. Assume 3 ≤ m and 5m+2 ≤ n ≤ 6m+2, then there exists a pair of latin
squares of order n that intersect precisely in seven disjoint m-flowers.

Let k = 2m + 2; let X1 = {(i, j, u) | 4m ≤ i, j ≤ 4m + k − 1, (i, j, u) ∈ L1(+k)} and
Y1 = {(i, j, v) | 4m ≤ i, j ≤ 4m+ k − 1, (i, j, v) ∈ L3(+k)}.

From Lemma 4.19 there exists a pair of latin squares of order k = 2m+2 that intersect
precisely in two disjoint symbol-m-flowers. By relabelling the rows, columns and symbols
(the same permutations are applied to both squares) the symbol-m-flowers are the sets
{(i, i, 2) | 2 ≤ i ≤ m + 1} and {(i, i, 3) | m + 2 ≤ i ≤ 2m + 1}. Denote this pair of latin
squares by {X ′

2, Y
′
2}.

Let X2 = δ4mX ′
2 and Y2 = δ4mY ′

2 . Note that, (X1, X2) and (Y1, Y2) are latin biswaps.
Construct the latin squares L6(+k) = (L1(+k)\X1)∪X2 and L7(+k) = (L3(+k)\Y1)∪Y2.
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The latin squares L6(+k) and L7(+k) intersect precisely in eight disjoint m-flowers,
specifically {(i, i, 4m) | 0 ≤ i ≤ m − 1}, {(2m + i, 4m + 1, i) | 0 ≤ i ≤ m − 1}, {3m +
i, 4m, 3m+i | 0 ≤ i ≤ m−1}, {(4m, 3m+i, 2m+i) | 0 ≤ i ≤ m−1}, {(4m+1, 2m+i,m+
i) | 0 ≤ i ≤ m−1}, {(m+i,m+i, 4m+1) | 0 ≤ i ≤ m−1}, {(4m+2+i, 4m+2+i, 4m+2) |
0 ≤ i ≤ m − 1} and {(5m + 2 + i, 5m + 2 + i, 4m + 3) | 0 ≤ i ≤ m − 1}. Hence, the
following result has been established.

Lemma 4.31. Assume 3 ≤ m, then there exists a pair of latin squares of order 6m + 2
that intersect precisely in eight disjoint m-flowers.

Now a pair of latin squares of order n, where 4m+ 2 ≤ n ≤ 6m+ 2, that intersect in
3 disjoint m-flowers; and a pair of latin squares of order n, where 4m+ 2 ≤ n ≤ 6m+ 2,
that intersect in 4 disjoint m-flowers will be constructed.

Let B be a latin square of order m that contains at least ⌈m
2
⌉+1 transversals labelled

T i, where 0 ≤ i ≤ ⌈m
2
⌉ (such a latin square exists by Lemma 3.2); without loss of

generality, in the latin square B, T 0 = {(i, i, i) | 0 ≤ i ≤ m− 1}.
Let A = {(0, 0, 0), (0, 1, 1), (0, 2, 2), (0, 3, 3), (1, 0, 1), (1, 1, 0), (1, 2, 3), (1, 3, 2), (2, 0, 2),

(2, 1, 3), (2, 2, 0), (2, 3, 1), (3, 0, 3), (3, 1, 2), (3, 2, 1), (3, 3, 0)}. Notice that A = U1 ∪ U2 ∪
U3 ∪ U4, where:

U1 = {(0, 0, 0), (1, 2, 3), (2, 3, 1), (3, 1, 2)}; U2 = {(0, 1, 1), (1, 3, 2), (2, 2, 0), (3, 0, 3)};
U3 = {(0, 2, 2), (1, 0, 1), (2, 1, 3), (3, 3, 0)}; U4 = {(0, 3, 3), (1, 1, 0), (2, 0, 2), (3, 2, 1)}.

Also note that each Ui, where 1 ≤ i ≤ 4, is a transversal in A and that these transversals
are disjoint.

A :

0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

Transversals:

U1 U2 U3 U4

U3 U4 U1 U2

U4 U3 U2 U1

U2 U1 U4 U3

First, a latin square, N1, of order 4m is constructed; N1 = A×B.

Let 2 ≤ k ≤ 2m+2 and k−2 = k1 +k2 +k3 +k4, where 0 ≤ k4 ≤ k3 ≤ k2 ≤ k1 ≤ ⌈m
2
⌉.

Let 0 ≤ j ≤ ⌈m
2
⌉ and 1 ≤ i ≤ 4; by Lemma 3.3 the sets Ui × T j are transversals in N1.

Consider the transversals

D0 = U1 × T 0; D1 = U3 × T 0; D1+h1
= U1 × T h1, where 1 ≤ h1 ≤ k1;

Dk1+1+h2
= U2×T

h2, where 1 ≤ h2 ≤ k2; Dk1+k2+1+h3
= U1×T

h3, where 1 ≤ h3 ≤ k3;
and Dk1+k2+k3+1+h4

= U1 × T h4 , where 1 ≤ h4 ≤ k4.

Hence, k-prolongate down the k disjoint transversals Di, where 0 ≤ i ≤ k−1, and use
the completing square {(4m+ i, 4m+ j, 4m+ (i+ j (mod k))) | 0 ≤ i, j ≤ k − 1} to form
the latin square N1(+k). See Example A.20.

Next, the latin square, N2, of order 4m will be constructed; N2 = A × fαB, where
f(0,0,0) = f(0,1,1) = f(0,2,2) = f(0,3,3) = f(1,1,0) = f(1,3,2) = f(2,0,2) = f(2,1,3) = f(2,2,0) =
f(2,3,1) = f(3,0,3) = f(3,2,1) = σm

s , f(1,0,1) = f(3,1,2) = σm
c and f(1,2,3) = f(3,3,0) = σm

r .
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By Lemma 3.3 the sets {Ui × fαT
j} are transversals in N2. Consider the transversals

E0 = U3 × fαT
0; E1 = U1 × fαT

0; E1+h1
= U2 × fαT

h1, where 1 ≤ h1 ≤ k1;
Ek1+1+h2

= U3 × fαT
h2, where 1 ≤ h2 ≤ k2; Ek1+k2+1+h3

= U4 × fαT
h3, where

1 ≤ h3 ≤ k3; and Ek1+k2+k3+1+h4
= U1 × fαT

h4, where 1 ≤ h4 ≤ k4.

Let ζr = ζv = (1 2). Now, (ζr, ζc)-k-prolongate down the k disjoint transversals Ei,
where 0 ≤ i ≤ k − 1, and use the completing square {(4m + i, 4m + j, 4m + (i + j +
1 (mod k))) | 0 ≤ i, j ≤ k − 1} to form the latin square N2(+k). See Example A.21.

The latin squares N1(+k) and N2(+k) intersect precisely in four disjoint m-flowers,
namely {(4m, 2m + i, 3m + i) | 0 ≤ i ≤ m − 1}, {(4m + 1, 3m + i, i) | 0 ≤ i ≤ m − 1},
{(3m+ i, 4m, 2m+ i) | 0 ≤ i ≤ m− 1} and {(m+ i, 4m+ 1, m+ i) | 0 ≤ i ≤ m− 1}. See
Example A.22.

Hence, the following result has been proved.

Lemma 4.32. Assume 3 ≤ m and 4m+2 ≤ n ≤ 6m+2, then there exists a pair of latin
squares of order n that intersect precisely in four disjoint m-flowers.

Now a latin square N3(+k) is constructed. This construction is the same as the
construction for N2(+k) except that f(1,2,3) = σm

s .
The latin squares N1(+k) and N3(+k) intersect precisely in three disjoint m-flowers,

namely {(4m+ 1, 3m+ i, i) | 0 ≤ i ≤ m− 1}, {(3m+ i, 4m, 2m+ i) | 0 ≤ i ≤ m− 1} and
{(m+ i, 4m+1, m+ i) | 0 ≤ i ≤ m−1}. Hence, the following result has been established.

Lemma 4.33. Assume 3 ≤ m and 4m+2 ≤ n ≤ 6m+2, then there exists a pair of latin
squares of order n that intersect precisely in three disjoint m-flowers.

4.8 6m+ 3 ≤ n

In this section constructions for the remaining cases required to prove Theorem 1 will be
provided.

Let 2 ≤ m.
Let A be a latin square of order l ≥ 3 that contains at least three disjoint transversals

labelled U0, U1 and U2; without loss of generality, in the latin square A, U0 = {(i, i, i) |
0 ≤ i ≤ l − 1}.

Let B1 be a latin square of order 2m+ 1 which contains 2m+ 1 disjoint transversals.
Without loss of generality (0, 0, 0) ∈ B1. Label the 2m + 1 disjoint transversals in B1

as V j
1 , where 0 ≤ j ≤ 2m, such that (0, 0, 0) ∈ V 0

1 . Let B2 = σ2m+1
s B1 and label the

transversal σ2m+1
s V

j
1 as V j

2 , where 0 ≤ j ≤ 2m. Note that B1 ∩B2 = ∅.
The existence of the above latin squares (A and B1) is guaranteed by Lemma 3.2.
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Let C1 and C2 be a pair of latin squares of order 2m+1 that intersect in three disjoint
m-flowers and one other triple, namely the triple (0, 0, 0) (note that this triple will not be
disjoint from the m-flowers). Such a pair exists by Lemma 4.20.

Let D1 and D2 be a pair of latin squares of order 2m + 1 that intersect precisely in
two disjoint m-flowers. Without loss of generality (0, 0, 0) ∈ D1 and (0, 0, 0) 6∈ D2. Such
a pair exists by Lemma 4.19.

Let E1 and E2 be a pair of latin squares of order 2m+1 that intersect precisely in one
m-flower. Without loss of generality (0, 0, 0) ∈ E1 and (0, 0, 0) 6∈ E2. Such a pair exists
by Lemma 4.11.

Recall 3 ≤ l. A pair of latin squares, {Lh
1(+k), L

h
2(+k)}, of order l(2m+1)+ k, where

0 ≤ k ≤ 2m, that intersect in precisely h, where 0 ≤ h ≤ 3l, disjoint m-flowers will now
be constructed.

Determine b, c, d, e ∈ N∪{0} such that 3c+2d+ e = h and b+ c+ d+ e = l (it should
be noted that this is always possible).

First, construct the latin square Lh
1(+0)′ of order l(2m+ 1).

Lh
1(+0)′ = {(i, i, i) | 0 ≤ i ≤ c− 1} × C1 ∪ {(i, i, i) | c ≤ i ≤ c+ d− 1} ×D1 ∪

{(i, i, i) | c+d ≤ i ≤ c+d+e−1}×E1 ∪ {(i, i, i) | c+d+e ≤ i ≤ l−1}×B1 ∪ (A\U0)×B1.

As (0, 0, 0) ∈ B1 ∩ C1 ∩ D1 ∩ E1, the set R1 = {(x(2m + 1), y(2m + 1), z(2m + 1)) |
(x, y, z) ∈ A} is one mate of the latin bitrade (R1, R2), where R2 = {(x(2m+ 1), y(2m+
1), (z + 1 (mod l))(2m+ 1)) | (x, y, z) ∈ A}. Hence, construct the latin square Lh

1(+0) =
(Lh

1(+0)′ \R1) ∪R2.
Let 1 ≤ k ≤ 2m.
By Lemma 3.3 the set of triples U1 × V

f
1 , where 0 ≤ f ≤ 2m− 1, forms a transversal

in Lh
1(+0).

The latin square Lh
1(+k) is constructed by k-prolongating Lh

1(+0) down the transver-
sals

T
f
1 = U1 × V

f
1 , where 1 ≤ f ≤ k,

and using the completing square

{(i, j, (i+ j − 2l(2m+ 1) (mod k)) + l(2m+ 1)) | l(2m+ 1) ≤ i, j ≤ l(2m+ 1) + k − 1}.

See Example A.23.
A second latin square, Lh

2(+0), of order l(2m+ 1) will now be constructed.

Lh
2(+0) = {(i, i, i) | 0 ≤ i ≤ c− 1} × C2 ∪ {(i, i, i) | c ≤ i ≤ c+ d− 1} ×D2 ∪

{(i, i, i) | c+d ≤ i ≤ c+d+e−1}×E2 ∪ {(i, i, i) | c+d+e ≤ i ≤ l−1}×B2 ∪ (A\U0)×B2.

By Lemma 3.3 the set of triples U2 × V
f
2 , where 0 ≤ f ≤ 2m − 1, forms a transversal in

Lh
2(+0).

Let 1 ≤ k ≤ 2m. Construct the latin square Lh
2(+k) by k-prolongating Lh

2(+0) down
the transversals

T
f
2 = U2 × V

f
2 , where 1 ≤ f ≤ k,
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and using the completing square

{(i, j, (i+ j−2l(2m+1)+1 (mod k))+ l(2m+1)) | l(2m+1) ≤ i, j ≤ l(2m+1)+k−1}.

See Example A.24.
Let 0 ≤ k ≤ 2m; when k 6= 1, Lh

1(+k) intersects Lh
2(+k) precisely in h disjoint m-

flowers and, when k = 1, Lh
1(+1) intersects Lh

2(+1) precisely in h disjoint m-flowers and
one other disjoint triple. See Example A.25.

Hence, the following result has been established.

Lemma 4.34. Assume 2 ≤ m, 3 ≤ l, 6m + 3 ≤ n and 0 ≤ h ≤ 3⌊ n
2m+1

⌋. If n 6=
l(2m + 1) + 1 then there exists a pair of latin squares of order n that intersect precisely
in h disjoint m-flowers. If n = l(2m + 1) + 1 then there exists a pair of latin squares of
order n that intersect in precisely h disjoint m-flowers and one additional disjoint triple.

Let k = 1; as above prolongate Lh
1(+0) down the transversal T 1

1 = U1 × V 1
1 to achieve

the latin square Lh
1(+1).

Note that the set S1 = {(l(2m + 1), l(2m + 1), l(2m + 1)), (l(2m + 1) − 1, l(2m +
1), z), (l(2m + 1) − 1, y, l(2m + 1)), (l(2m + 1), y, z) | (l(2m + 1) − 1, y, z) ∈ T 1

1 }, forms
one mate of the latin bitrade (S1, S2), where S2 = {(l(2m+ 1), l(2m+ 1), z), (l(2m+ 1)−
1, l(2m+1), l(2m+1)), (l(2m+1)−1, y, z), (l(2m+1), y, l(2m+1)) | (l(2m+1)−1, y, z) ∈
T 1

1 }. Construct the latin square Lh
3(+1) = (Lh

1(+1) \ S1) ∪ S2.

The latin squares Lh
3(+1) and Lh

2(+1) intersect precisely in h disjoint m-flowers. Thus,
the following result has been established.

Lemma 4.35. Assume 2 ≤ m, 3 ≤ l, n = l(2m+1)+1 and 0 ≤ h ≤ 3l, then there exists
a pair of latin squares of order n that intersect in precisely h disjoint m-flowers.

Next, a pair of latin squares of order l(2m + 1) + m ≤ n < (l + 1)(2m + 1), n 6=
l(2m + 1) + m + 1 and (n,m) 6= (5l + 2, 2) that intersect precisely in 3l + 1 disjoint
m-flowers will be constructed.

Let m ≤ k ≤ 2m, k 6= m+ 1 and (k,m) 6= (2, 2).
Let X1 = {(i, j, (i + j − 2l(2m + 1) (mod k)) + l(2m + 1)) | l(2m + 1) ≤ i, j ≤

l(2m + 1) + k − 1} and Y1 = {(i, j, (i + j − 2l(2m + 1) + 1 (mod k)) + l(2m + 1)) |
l(2m + 1) ≤ i, j ≤ l(2m + 1) + k − 1}. Note that X1 ⊂ L3l

1 (+k) and Y1 ⊂ L3l
2 (+k) (they

are the completing squares used in the k-prolongations).
By Lemma 4.11, as k 6= m+ 1 and (k,m) 6= (2, 2), there exists a pair of latin squares

of order k that intersect precisely in one m-flower. Denote this pair of latin squares by
{X ′

2, Y
′
2}. Let X2 = δl(2m+1)X ′

2 and Y2 = δl(2m+1)Y ′
2 .

Hence, (X1, X2) and (Y1, Y2) are latin biswaps. Construct the latin squares

L3l+1
4 (+k) = (L3l

1 (+k) \X1) ∪X2 and L3l+1
5 (+k) = (L3l

2 (+k) \ Y1) ∪ Y2.

The latin squares L3l+1
4 (+k) and L3l+1

5 (+k) intersect precisely in 3l + 1 disjoint m-
flowers. Hence, the following result has been established.
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Lemma 4.36. Assume 2 ≤ m, 3 ≤ l, l(2m + 1) + m ≤ n ≤ l(2m + 1) + 2m, n 6=
l(2m + 1) + m + 1 and (n,m) 6= (5l + 2, 2); then there exists a pair of latin squares of
order n that intersect precisely in 3l + 1 disjoint m-flowers.

A pair of latin squares of order l(2m + 1) + m + 1 that intersect precisely in 3l + 1
disjoint m-flowers will now be constructed.

Similarly to before, let X1 = {(i, j, (i + j − 2l(2m + 1) (mod m + 1)) + l(2m + 1)) |
l(2m + 1) ≤ i, j ≤ l(2m + 1) + m} and Y1 = {(i, j, (i + j − 2(l(2m + 1)) + 1 (mod m +
1)) + l(2m+ 1)) | l(2m+ 1) ≤ i, j ≤ l(2m+ 1) +m}. Again, note that X1 ⊂ L3l

1 (+m+ 1)
and Y1 ⊂ L3l

2 (+m+ 1).
By Lemma 4.11 there exists a pair of latin squares of order m + 1 that intersect

precisely in one (m+1)-flower. Without loss of generality the (m+1)-flower is comprised
by the set of cells {(i, i, i) | 0 ≤ i ≤ m}. Denote this pair of latin squares by {X ′

2, Y
′
2}.

Let X2 = δl(2m+1)X ′
2 and Y2 = δl(2m+1)Y ′

2 .
Hence, (X1, X2) and (Y1, Y2) are latin biswaps. Construct the latin squares

L3l+1
6 (+m+ 1) = (L3l

1 (+m+ 1) \X1)∪X2 and L3l+1
7 (+m+ 1) = (L3l

2 (+m+ 1) \ Y1) ∪ Y2.

Note that the set of triples S1 = {(l(2m+1), l(2m+1), l(2m+1)), (l(2m+1)−1, l(2m+
1), z), (l(2m + 1) − 1, y, l(2m + 1)), (l(2m + 1), y, z) | (l(2m + 1) − 1, y, z) ∈ T 1

1 }, forms
one mate of the latin bitrade (S1, S2), where S2 = {(l(2m+ 1), l(2m+ 1), z), (l(2m+ 1)−
1, l(2m+1), l(2m+1)), (l(2m+1)−1, y, z), (l(2m+1), y, l(2m+1)) | (l(2m+1)−1, y, z) ∈
T 1

1 }.
Construct the latin square L3l+1

8 (+m+ 1) = (L3l+1
6 (+m+ 1) \ S1) ∪ S2.

The latin squares L3l+1
8 (+m+1) and L3l+1

7 (+m+1) intersect precisely in 3l+1 disjoint
m-flowers. Hence, the following result has been established.

Lemma 4.37. Assume 2 ≤ m, 3 ≤ l and n = l(2m+ 1) +m+ 1, then there exists a pair
of latin squares of order n that intersect precisely in 3l + 1 disjoint m-flowers.

A pair of latin squares of order 5l+2 that intersect precisely in 3l+1 disjoint 2-flowers
will now be constructed. Recall that there does not exist a pair of latin squares of order
two that intersect precisely in one 2-flower.

Consider the latin square of order two, G1 = {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)}.
Let m = 2. Consider the permutation ζ = (1 2). Construct the latin squares L3l

1 (+2)
as above using the transversals T 1

1 and T 2
1 and the completing square δ5lG1.

Note, the set of triples S1 = {(0, y, 5l), (0, 5l, z), (5l, y, z), (5l, 5l, 5l) | (0, y, z) ∈ T 1
1 } ⊂

L3l
1 (+2), forms one mate of the latin bitrade (S1, S2), where S2 = {(0, y, z), (0, 5l, 5l),

(5l, y, 5l), (5l, 5l, z) | (0, y, z) ∈ T 1
1 }. Hence, construct the latin square L3l+1

9 (+2) =
(L3l

1 (+2) \ S1) ∪ S2.

Next, construct the latin square L3l+1
10 (+2) by (ζ, ζ)-2-prolongating the latin square

L3l
2 (+0) down the transversals T 1

2 and T 2
2 and using the completing square δ5lG1.

Note that the set of triples S3 = {(0, p, 5l), (0, 5l + 1, q), (5l + 1, p, q), (5l + 1, 5l +
1, 5l) | (0, p, q) ∈ T 1

2 } ⊂ L3l+1
10 (+2), forms one mate of the latin bitrade (S3, S4), where
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S4 = {(0, p, q), (0, 5l+1, 5l), (5l+1, p, 5l), (5l+1, 5l+1, q) | (0, p, q) ∈ T 1
2 }. Construct the

latin square L3l+1
11 (+2) = (L3l+1

10 (+2) \ S3) ∪ S4.

The latin squares L3l+1
9 (+2) and L3l+1

11 (+2) intersect precisely in 3l + 1 disjoint 2-
flowers. Hence, the following result has been established.

Lemma 4.38. Assume 3 ≤ l and n = 5l + 2, then there exists a pair of latin squares of
order n that intersect precisely in 3l + 1 disjoint 2-flowers.

Let 3 ≤ m. Next, a pair of latin squares of order l(2m + 1) + 2m, where 3 ≤ l that
intersect precisely in 3l + 2 disjoint m-flowers will be constructed.

Let X1 = {(i, j, (i + j − 2l(2m + 1) (mod 2m)) + l(2m + 1)) | l(2m + 1) ≤ i, j ≤
l(2m + 1) + 2m − 1} and Y1 = {(i, j, (i + j − l(2m + 1) + 1 (mod 2m)) + l(2m + 1)) |
l(2m + 1) ≤ i, j ≤ l(2m + 1) + 2m − 1}. Once again, note that X1 ⊂ L3l

1 (+2m) and
Y1 ⊂ L3l

2 (+2m).
By Lemma 4.19 there exists a pair of latin squares of order 2m that intersect precisely

in two disjoint m-flowers. Denote this pair of latin squares by {X ′
2, Y

′
2}. Let X2 =

δl(2m+1)X ′
2 and Y2 = δl(2m+1)Y ′

2 .
Hence, (X1, X2) and (Y1, Y2) are latin biswaps. Construct the latin squares

L3l+2
12 (+2m) = (L3l

1 (+2m) \X1) ∪X2 and L3l+2
13 (+2m) = (L3l

2 (+2m) \ Y1) ∪ Y2.

The latin squares L3l+2
12 (+2m) and L3l+2

13 (+2m) intersect precisely in 3l + 2 disjoint
m-flowers. Hence, the following result has been established.

Lemma 4.39. Assume 3 ≤ m, 3 ≤ l and n = l(2m+ 1) + 2m, then there exists a pair of
latin squares of order n that intersect precisely in 3l + 2 disjoint m-flowers.

Finally, a pair of latin squares of order 5l+4 that intersect in 3l+2 disjoint 2-flowers will
be constructed. This construction uses similar ideas to those underlying the construction
used to prove Lemma 4.38.

Consider the following pair of latin squares of order four, G′
2 = {(0, 0, 0), (0, 1, 1), (0,

2, 2), (0, 3, 3), (1, 0, 1), (1, 1, 0), (1, 2, 3), (1, 3, 2), (2, 0, 2), (2, 1, 3), (2, 2, 1), (2, 3, 0), (3, 0, 3),
(3, 1, 2), (3, 2, 0), (3, 3, 1)} and G′

3 = {(0, 0, 0), (0, 1, 1), (0, 2, 3), (0, 3, 2), (1, 0, 1), (1, 1, 0),
(1, 2, 2), (1, 3, 3), (2, 0, 3), (2, 1, 2), (2, 2, 1), (2, 3, 0), (3, 0, 2), (3, 1, 3), (3, 2, 0), (3, 3, 1)}.

Let m = 2. Consider the permutations ζa = (1 2 3) and ζb = (1 4). Construct the latin
square L3l+2

14 (+4) by (ζa, ζb)-4-prolongating the latin square L3l
1 (+0) down the transversals

T i
1, where 1 ≤ i ≤ 4 and using the completing square G2 = δ5lG′

2.
Note that the set of triples S1 = {(0, y, 5l), (0, 5l+3, z), (5l+2, y, z), (5l+2, 5l+3, 5l),

(0, v, 5l + 1), (0, 5l + 1, w), (5l, v, w), (5l, 5l + 1, 5l + 1) | (0, y, z) ∈ T 1
1 , (0, v, w) ∈ T 2

1 } ⊂
L3l+2

14 (+4), forms one mate of the latin bitrade (S1, S2), where S2 = {(0, y, z), (0, 5l +
3, 5l), (5l+2, y, 5l), (5l+2, 5l+3, z), (0, v, w), (0, 5l+1, 5l+1), (5l, v, 5l+1), (5l, 5l+1, w) |
(0, y, z) ∈ T 1

1 , (0, v, w) ∈ T 2
1 }. Construct the latin square L3l+2

16 (+4) = (L3l+2
9 (+4)\S1)∪S2.

Now, construct the latin square L3l+2
15 (+4) by (ζb, ζa)-4-prolongating the latin square

L3l
2 (+0) down the transversals T i

2, where 1 ≤ i ≤ 4, and using the completing square
G3 = δ5lG′

3.
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Note that the set of triples S3 = {(0, p, 5l), (0, 5l+2, q), (5l+3, p, q), (5l+3, 5l+2, 5l),
(0, s, 5l + 1), (0, 5l, t), (5l + 1, s, t), (5l + 1, 5l, 5l + 1) | (0, p, q) ∈ T 1

2 , (0, s, t) ∈ T 2
2 } ⊂

L3l+2
15 (+4), forms one mate of the latin bitrade (S3, S4), where S4 = {(0, p, q), (0, 5l +

2, 5l), (5l+ 3, p, 5l), (5l+ 3, 5l+ 2, q), (0, s, t), (0, 5l, 5l+ 1), (5l+ 1, s, 5l+ 1), (5l+ 1, 5l, t) |
(0, p, q) ∈ T 1

2 , (0, s, t) ∈ T 2
2 }. Hence, construct the latin square L3l+2

17 (+4) = (L3l+2
15 (+4) \

S3) ∪ S4.
The latin squares L3l+2

16 (+4) and L3l+2
17 (+4) intersect precisely in 3l + 2 disjoint 2-

flowers. Hence, the following result has been proved.

Lemma 4.40. Assume m = 2, 3 ≤ l and n = 5l + 4; then there exists a pair of latin
squares of order n that intersect precisely in 3l + 2 disjoint 2-flowers.

4.9 Main theorem

At the beginning of this paper necessary conditions for the disjoint m-flower intersection
problem in latin squares were established. Through the rest of the paper pairs of latin
squares that prove that these conditions are in fact sufficient have been constructed.

Theorem 1. There exists a pair of latin squares of order n whose intersection is composed
precisely of x disjoint m-flowers, where 2 ≤ m ≤ n, 0 ≤ x ≤ i and

i = 3l for l(2m+ 1) ≤ n < l(2m+ 1) +m and n 6= 2m+ 1,
i = 3l + 1 for l(2m+ 1) +m ≤ n < l(2m+ 1) + 2m and

(m,n) 6∈ {(n− 1, n), (2, 4)},
i = 3l + 2 for n = l(2m+ 1) + 2m,
i = 0 for m = n− 1,
i = 2 for n = 2m+ 1, and
i = 1 for m = 2 and n = 4.

Furthermore there does not exist a pair of latin squares of order n that intersect in
precisely x > i disjoint m-flowers.

Proof. The necessary conditions for this result follow from Lemmas 4.1, 4.2, 4.4, 4.5 and
4.13. The sufficient conditions follow from Lemmas 4.3, 4.11, 4.19, 4.20, 4.23, 4.24, 4.25,
4.26, 4.27, 4.28, 4.29, 4.30, 4.31, 4.32, 4.33, 4.34, 4.35, 4.36, 4.37, 4.38, 4.39 and 4.40.
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