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Abstract

Let G be a connected graph with the usual shortest-path metric d. The graph
G is δ-hyperbolic provided for any vertices x, y, u, v in it, the two larger of the three
sums d(u, v) + d(x, y), d(u, x) + d(v, y) and d(u, y) + d(v, x) differ by at most 2δ.
The graph G is k-chordal provided it has no induced cycle of length greater than
k. Brinkmann, Koolen and Moulton find that every 3-chordal graph is 1-hyperbolic
and that graph is not 1

2 -hyperbolic if and only if it contains one of two special graphs
as an isometric subgraph. For every k ≥ 4, we show that a k-chordal graph must be
⌊k

2
⌋

2 -hyperbolic and there does exist a k-chordal graph which is not
⌊k−2

2
⌋

2 -hyperbolic.
Moreover, we prove that a 5-chordal graph is 1

2 -hyperbolic if and only if it does not
contain any of a list of five special graphs as an isometric subgraph.

Keywords: isometric subgraph; metric; tree-likeness.

1 Introduction

1.1 Tree-likeness

Trees are graphs with some very distinctive and fundamental properties and it is legitimate
to ask to what degree those properties can be transferred to more general structures
that are tree-like in some sense [28, p. 253]. Roughly speaking, tree-likeness stands for
something related to low dimensionality, low complexity, efficient information deduction
(from local to global), information-lossless decomposition (from global into simple pieces)
and nice shape for efficient implementation of divide-and-conquer strategy. For the very
basic interconnection structures like a graph or a hypergraph, tree-likeness is naturally
reflected by the strength of interconnection, namely its connectivity/homotopy type or
cyclicity/acyclicity, or just the degree of deviation from some characterizing conditions
of a tree/hypertree and its various associated structures and generalizations. In vast
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applications, one finds that the borderline between tractable and intractable cases may
be the tree-like degree of the structure to be dealt with [18]. A support to this from the
fixed-parameter complexity point of view is the observation that on various tree-structures
we can design very good algorithms for many purposes and these algorithms can somehow
be lifted to tree-like structures [4, 31, 32, 62]. It is thus very useful to get information on
approximating general structures by tractable structures, namely tree-like structures. On
the other hand, one not only finds it natural that tree-like structures appear extensively
in many fields, say biology [38], structured programs [75] and database theory [40], as
graphical representations of various types of hierarchical relationships, but also notice
surprisingly that many practical structures we encounter are just tree-like, say the internet
[1, 60, 73] and chemical compounds [80]. This prompts in many areas the very active study
of tree-like structures. Especially, lots of ways to define/measure a tree-like structure
have been proposed in the literature from many different considerations, just to name
a few, say asymptotic connectivity [5], boxicity [69], combinatorial dimension [34, 38],
coverwidth [19], cycle rank [18, 65], Domino treewidth [9], doubling dimension [50], ǫ-
three-points condition [29], ǫ-four-points condition [1], hypertree-width [48], Kelly-width
[54], linkage (degeneracy) [26, 58, 66], McKee-Scheinerman chordality [67], persistence
[31], s-elimination dimension [26], sparsity order [63], spread-cut-width [24], tree-degree
[17], tree-length [30, 77], tree-partition-width [79], tree-width [70, 71], various degrees of
acyclicity/cyclicity [39, 40], and many other width parameters [32, 52]. It is clear that
many relationships among these concepts should be expected as they are all formulated in
different ways to represent different aspects of our vague but intuitive idea of tree-likeness.
An attempt to clarify these relationships may help to bridge the study in different fields
focusing on different tree-likeness measures and help to improve our understanding of
the universal tree-like world. As a small step in pursuing further understanding of tree-
likeness, we take up in this paper the modest task of comparing two parameters of tree-
likeness, namely (Gromov) hyperbolicity and chordality of a graph. We discuss these two
parameters separately in the next two subsections. We then close this section with a
summary of known relationship between them and an outlook for some further research.

1.2 Hyperbolicity

We only consider simple, unweighted, connected, but not necessarily finite graphs. Any
graph G together with the usual shortest-path metric on it, dG : V (G) × V (G) 7→
{0, 1, 2, . . .}, gives rise to a metric space. We often suppress the subscript and write
d(x, y) instead of dG(x, y) when the graph is known by context. Moreover, we may use
the shorthand xy for d(x, y) to further simplify the notation. Note that a pair of vertices
x and y form an edge if and only if xy = 1. For S, T ⊆ V (G), we write d(S, T ) for
minx∈S,y∈T d(x, y). We often omit the brackets and adopt the convention that x stands
for the singleton set {x} when no confusion can be caused. A subgraph H of a graph G

is isometric if for any u, v ∈ V (H) it holds dH(u, v) = dG(u, v).
For any vertices x, y, u, v of a graph G, put δG(x, y, u, v), which we often abbreviate to

δ(x, y, u, v), to be the difference between the largest and the second largest of the following
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three terms:
uv + xy

2
,

ux + vy

2
, and

uy + vx

2
.

Clearly, δ(x, y, u, v) = 0 if x, y, u, v are not four different vertices. A graph G, viewed
as a metric space as mentioned above, is δ-hyperbolic (or tree-like with defect at most
δ) provided for any vertices x, y, u, v in G it holds δ(x, y, u, v) ≤ δ and the (Gromov)
hyperbolicity of G, denoted δ∗(G), is the minimum half integer δ such that G is δ-hyperbolic
[11, 13, 21, 22, 27, 49]. Note that it may happen δ∗(G) = ∞. But for a finite graph G,
δ∗(G) is clearly finite and polynomial time computable. A graph G is minimally δ-
hyperbolic if δ = δ∗(G) and any isometric proper subgraph of G is (δ − 1

2
)-hyperbolic.

Similarly, a graph G is minimally non-δ-hyperbolic if δ < δ∗(G) and any isometric proper
subgraph of G is δ-hyperbolic.

Note that in some earlier literature the concept of Gromov hyperbolicity is used a
little bit different from what we adopt here; what we call δ-hyperbolic here is called 2δ-
hyperbolic in [1, 6, 7, 14, 23, 35, 38, 44, 61, 68] and hence the hyperbolicity of a graph is
always an integer according to their definition. We also refer to [2, 11, 13, 78] for some
equivalent and very accessible definitions of Gromov hyperbolicity which involve some
other comparable parameters.

The concept of hyperbolicity comes from the work of Gromov in geometric group
theory which encapsulates many of the global features of the geometry of complete, simply
connected manifolds of negative curvature [13, p. 398]. This concept not only turns out
to be strikingly useful in coarse geometry but also becomes more and more important
in many applied fields like networking and phylogenetics [20, 21, 22, 23, 33, 34, 35, 36,
38, 44, 56, 57, 60, 73]. The hyperbolicity of a graph is a way to measure the additive
distortion with which every four-points sub-metric of the given graph metric embeds into
a tree metric [1]. Indeed, it is not hard to check that the hyperbolicity of a tree is zero
– the corresponding condition for this is known as the four-point condition (4PC) and is
a characterization of general tree-like metric spaces [34, 38, 55]. Moreover, the fact that
hyperbolicity is a tree-likeness parameter is reflected in the easy fact that the hyperbolicity
of a graph is the maximum hyperbolicity of its 2-connected components – This observation
implies the classical result that 0-hyperbolic graphs are exactly block graphs, namely those
graphs in which every 2-connected subgraph is complete, which are also known to be those
diamond-free chordal graphs [8, 37, 53]. More results on bounding hyperbolicity of graphs
and characterizing low hyperbolicity graphs can be found in [6, 7, 14, 20, 21, 30, 61].

For any vertex u ∈ V (G), the Gromov product, also known as the overlap function,
of any two vertices x and y of G with respect to u is equal to 1

2
(xu + yu − xy) and is

denoted by (x · y)u [13, p. 410]. As an important context in phylogenetics [35, 36, 42], for
any real number ρ, the Farris transform based at u, denoted Dρ,u, is the transformation
which sends dG to the map

Dρ,u(dG) : V (G) × V (G) → R : (x, y) 7→ ρ − (x · y)u.

We say that G is δ-hyperbolic with respect to u ∈ V (G) if the following inequality

(x · y)u ≥ min((x · v)u, (y · v)u) − δ (1)
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holds for any vertices x, y, v of G. The inequality (1) can be rewritten as

xy + uv ≤ max(xu + yv, xv + yu) + 2δ

and so we see that G is δ-hyperbolic if and only if G is δ-hyperbolic with respect to
every vertex of G. By a simple but nice argument, Gromov shows that G is 2δ-hyperbolic
provided it is δ-hyperbolic with respect to any given vertex [2, Proposition 2.2] [49, 1.1B].

1.3 Chordality

Let G be a graph. A walk of length n in G is a sequence of vertices x0, x1, x2, . . . , xn such
that xi−1xi = 1 for i = 1, . . . , n. If these n + 1 vertices are pairwise different, we call the
sequence a path of length n. A cycle of length n, or simply an n-cycle, in G is a cyclic
sequence of n different vertices x1, . . . , xn ∈ V (G) such that xixj = 1 whenever j = i + 1
(mod n); we will reserve the notation [x1x2 · · ·xn] for this cycle. A chord of a cycle is
an edge joining nonconsecutive vertices on the cycle. A cycle without chord is called an
induced cycle, or a chordless cycle. For any n ≥ 3, the n-cycle graph is the graph with n

vertices which has a chordless n-cycle and we denote this graph by Cn.
We say that a graph is k-chordal if it does not contain any induced n-cycle for n > k.

Clearly, trees are nothing but 2-chordal graphs. A 3-chordal graph is usually termed as a
chordal graph and a 4-chordal graph is often called a hole-free graph. The class of k-chordal
graphs is also discussed under the name k-bounded-hole graphs [45]. The chordality of a
graph G is the smallest integer k ≥ 2 such that G is k-chordal [10]. Following [10], we use
the notation l(G) for this parameter as it is merely the length of the longest chordless
cycle in G when G is not a tree. Note that our use of the concept of chordality is basically
the same as that used in [15, 16] but is very different from the usage of this term in [67].

The recognition of k-chordal graphs is coNP-complete for k = Θ(nǫ) for any constant
ǫ > 0 [76]. Especially, to determine the chordality of the hypercube is attracting much
attention under the name of the snake-in-the-box problem due to its connection with
some error-checking codes problem [59]. Nevertheless, just like many other tree-likeness
parameters, quite a few natural graph classes are known to have small chordality [12];
also see Section 5.

1.4 Hyperbolicity versus chordality

Firstly, we point out that a graph with low hyperbolicity may have large chordality.
Indeed, take any graph G and form the new graph G′ by adding an additional vertex and
connecting this new vertex with every vertex of G. It is obvious that we have δ∗(G′) ≤ 1
and l(G′) = l(G) as long as G is not a tree. Moreover, it is equally easy to see that
G′ is even 1

2
-hyperbolic if G does not have any induced 4-cycle [61, p. 695]. Surely, this

example does not preclude the possibility that for many important graph classes we can
bound their chordality in terms of their hyperbolicity.
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Figure 1: Five 5-chordal graphs with hyperbolicity 1.
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Let C4, H1, H2, H3 and H4 be the graphs displayed in Fig. 1. It is simple to check
that

{ l(H1) = 3, l(H2) = 3, l(C4) = 4, l(H3) = 5, l(H4) = 5;
δ∗(H1) = δ∗(H2) = δ∗(C4) = δ∗(H3) = δ∗(H4) = 1.

(2)

Brinkmann, Koolen and Moulton obtain the following interesting result.

Theorem 1 [14, Theorem 1.1] Every chordal graph is 1-hyperbolic and it has hyperbolicity
one if and only if it contains either H1 or H2 as an isometric subgraph.

Now, we come to the general observation that k-chordal graphs have bounded hyper-
bolicity for any fixed k, generalizing the corresponding fact reported in Theorem 1 for

k = 3. Note that a chordal graph is certainly 4-chordal and
⌊k

2
⌋

2
is just 1 for k = 4.

Theorem 2 For each k ≥ 4, all k-chordal graphs are
⌊k

2
⌋

2
-hyperbolic.

For any given integer k ≥ 4, we can find graphs G of chordality k such that the equality

δ∗(G) =
⌊ l(G)

2
⌋

2
(3)

holds; see Section 4. In this sense, the inequality obtained in Theorem 2 is tight. Surely,
the logical next step would be to characterize all those extremal graphs G satisfying Eq.
(3). However, there seems to be still a long haul ahead in this direction. A graph is
bridged [3, 64] if it does not contain any finite isometric cycles of length at least four. In
contrast to Theorem 2, it is interesting to note that the hyperbolicity of bridged graphs
can be arbitrarily high [61, p. 684].

We know that a graph with small hyperbolicity can be said to be very tree-like. But
how do these tree-like graphs look alike? Or, “what is the structure of graphs with
relative small hyperbolicity” [14, p. 62]? As mentioned in Section 1.2, the structure of
0-hyperbolic graphs is well-understood. The next important step forward in this direction
is the characterization of all 1

2
-hyperbolic graphs obtained by Bandelt and Chepoi [6]. We

refer to [6, Fact 1] for two other characterizations; also see [41, 74].
Let x, y, u, v be four vertices in a graph G. These four vertices consist of a slingshot

from x to y in G provided xu = xv = 1, uv = 2 and xu + uy = xv + vy = xy (and hence
δ(x, y, u, v) ≥ 1) and the length of this slingshot is defined to be xy. Let E1, E2, G1, G2

be the graphs depicted in Fig. 2. Note that
{ l(G1) = l(G2) = 6, l(E1) = 7, l(E2) = 8;

δ∗(G1) = δ∗(G2) = δ∗(E1) = δ∗(E2) = 1.
(4)

Theorem 3 [6, p. 325] A graph G is 1
2
-hyperbolic if and only if G contains neither

any slingshot nor any isometric n-cycle for any n > 5, and none of the six graphs
H1, H2, G1, G2, E1, E2 occurs as an isometric subgraph of G.

Starting from Theorem 3, it is only a short step to the next result.
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Figure 2: Four bridged graphs with hyperbolicity 1.

Theorem 4 A 5-chordal graph is minimally non-1
2
-hyperbolic if and only if it is one of

C4, H1, H2, H3, or H4.

It is noteworthy that Theorem 2 together with Theorem 4 implies Theorem 1. More-
over, here is another immediate consequence of Theorems 2 and 4.

Corollary 5 Every 4-chordal graph must be 1-hyperbolic and it has hyperbolicity one if
and only if it contains one of C4, H1 and H2 as an isometric subgraph.

Let Sk stand for the set of all k-chordal minimally non-1
2
-hyperbolic graphs and S ′

k the
set of all k-chordal minimally 1-hyperbolic graphs. It is trivially true that S ′

k ⊆ Sk.

Notice that Theorem 2 and Theorem 4 assert that S
′
5 = S5 = {C4, H1, H2, H3, H4}. We

have found that S6 contains quite many elements. In general, it seems to be of interest
to investigate the sizes of Sk and S ′

k. When will they become infinite sets? Given a fixed
integer k ≥ 4, another question, which sounds natural due to Theorem 2, is whether or

not there exist infinitely many k-chordal graphs which are minimally
⌊k

2
⌋

2
-hyperbolic.

The plan of the remainder of this paper is as follows. We prove Theorem 4 in Section
2. Then, we deduce Theorem 2 in Section 3 and give examples in Section 4 to show the
sharpness of Theorem 2. The last section, Section 5, is devoted to an examination of
various low chordality graph classes in algorithmic graph theory from the viewpoint of
the hyperbolicity parameter.

2 Proof of Theorem 4

In the course of our proof, we will frequently make use of the triangle inequality for the
shortest-path metric, namely ab + bc ≥ ac, without any claim. We also observe that for
any induced subgraph H of a graph G, H is an isometric subgraph of G if and only if
dH(u, v) = dG(u, v) for each pair of vertices (u, v) ∈ V (H)×V (H) satisfying dH(u, v) ≥ 3.
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Lemma 6 Let G be a graph. Let C4, H3 and H4 be three graphs as displayed in Fig. 1. (i)
If C4 is an induced subgraph of G, then it is isometric. (ii) If H3 is an induced subgraph
of G, then it is isometric if and only if xy = 3. (iii) If H4 is an induced subgraph of G,
then it is isometric if and only if uv3 = vu3 = 3 and xy = 4.

Proof: Claims (i) and (ii) directly come from the simple observation listed before
this lemma. What we have to show is the “if” part of (iii). Based on the fact that
dG(x, y) = 4, we can derive from the triangle inequality that dG(x, u3) = dG(x, v3) =
dG(y, u) = dG(y, v) = 3. Since {u, v3}, {v, u3}, {x, u3}, {x, v3}, {y, u}, {y, v}, {x, y} are all
pairs inside

(

V (H4)
2

)

which are of distance at least 3 apart in H4, the result then follows
from the above-mentioned observation, as desired. �

Lemma 7 Let G be a graph and suppose that the length of a shortest slingshot in G is
ℓ ≥ 2. Let x, y, u, v be a slingshot from x to y and let Pu : u0 = x, u1 = u, u2, . . . , uℓ = y

and Pv : v0 = x, v1 = v, v2, . . . , vℓ = y be two shortest paths connecting x and y. Then
the subgraph of G induced by Pu ∪ Pv is either the 2ℓ-cycle C = [u0u1 · · ·uℓvℓ−1 · · · v1] or
the graph obtained from C by adding one additional edge connecting ui and vi for some
1 ≤ i ≤ ℓ − 1. More precisely, the following hold: (i) For any i, j ∈ {1, 2, . . . , ℓ − 1},
uivj > |i − j|; (ii) there are no 0 < i < j < ℓ such that uivi = ujvj = 1.

Proof: To prove (i), we need only consider the case that i ≤ j. Note that uivj =
uivj + xui − i ≥ xvj − i = j − i = |i − j|. If equality holds, we have two shortest paths
between x and vj , one being v0, v1, . . . , vj, the other being u0, u1, . . . , ui, followed by any
shortest path from ui to vj. This means that there is a slingshot from x to vj of length
j < ℓ, contradicting the minimality of ℓ and that is it.

Assume that (ii) were not true. Then, making use of (i), we know that ui, vi, vi+1, . . . , vj

and ui, ui+1, . . . , uj, vj are two shortest paths connecting ui and vj . Appealing to (i) again,
we can check that ui, vj, vi, ui+1 form a slingshot from ui to vj of length j − i + 1 ≤ ℓ− 1.
This is impossible and so we are done. �

Proof of Theorem 4: It is straightforward to see that C4, H1, H2, H3, and H4 are
all 5-chordal and minimally 1-hyperbolic. So, our remaining task is to show that any
5-chordal graph G with δ∗(G) > 1

2
must contain one of C4, H1, H2, H3 and H4 as an

isometric subgraph. In view of Theorem 3 and Eqs. (2) and (4), we need only consider
the case that G contains a slingshot from x to y, say x, y, u, v. We assume that this is the
shortest slingshot in G and base the subsequent argument on the notation as well as the
claims given in Lemma 7.

Since G is 5-chordal and the cycle C can have at most one chord (by Lemma 7), we
know that the length ℓ of the slingshot is at most 4. When ℓ = 2, the cycle C is an induced
C4 of G, and hence by Lemma 6 (i), an isometric C4. When ℓ = 3 or 4, considering that
G is 5-chordal, the cycle C must have exactly one chord which connects u2 and v2. For
the case of ℓ = 3, it follows from Lemma 6 (ii) that the subgraph induced by Pu ∪ Pv

is an isometric H3. As with the case of ℓ = 4, we first apply Lemma 7 (i) to get that
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Figure 3: The geodesic quadrangle Q(x, u, y, v).

u1v3 = u3v1 = 3 and then conclude from Lemma 6 (iii) that the subgraph induced by
Pu ∪ Pv is an isometric H4, completing the proof. �

3 Proof of Theorem 2

We break the proof into several steps and so we will go through several lemmas and
assumptions before we arrive at the final proof.

Let G be a graph. When studying δG(x, y, u, v) for some vertices x, y, u, v of G, it
is natural to look at a geodesic quadrangle Q(x, u, y, v) with corners x, u, y and v, which
is just the subgraph of G induced by the union of all those vertices on four geodesics
connecting x and u, u and y, y and v, and v and x, respectively. Let us fix some notation
to be used later.

Assumption I: Let us assume that x, u, y, v are four different vertices of a graph G and
the four geodesics corresponding to the geodesic quadrangle Q(x, u, y, v) are















Pa : x = a0, a1, . . . , axu = u;
Pb : x = b0, b1, . . . , bxv = v;
Pc : y = c0, c1, . . . , cyu = u;
Pd : y = d0, d1, . . . , dyv = v.

We call Pa, Pb, Pc and Pd the four sides of Q(x, u, y, v) and often just think of them as
vertex subsets of V (G) rather than as vertex sequences. Let us say that Pa and Pb are
adjacent to each other and refer to x as their common peak; similar concepts are used in
an obvious way.
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Lemma 8 Let G be a graph and let Q(x, u, y, v) be one of its geodesic quadrangles for
which Assumption I holds. If

2δG(x, y, u, v) = (xy + uv) − max(xu + yv, xv + yu), (5)

then δG(x, y, u, v) ≤ min(d(Pa, Pd), d(Pb, Pc)).

Proof: Without loss of generality, we assume that there exist i and j such that

aidj = min(d(Pa, Pd), d(Pb, Pc)). (6)

It is clear that
xy ≤ xai + aidj + djy = i + aidj + j; (7)

see Fig. 4. Analogously, we have

uv ≤ uai + aidj + djv = (xu − i) + aidj + (yv − j). (8)

Henceforth, we arrive at the following:

2δ(x, y, u, v) = (xy + uv) − max(xu + yv, xv + yu) (By Eq. (5))
≤ (xy + uv) − (xu + yv)
≤ (i + aidj + j) + ((xu − i) + aidj + (yv − j))

−(xu + yv) (By Eqs. (7) and (8))
= 2aidj .

Combining this with Eq. (6), we finish the proof of the lemma. �
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Lemma 9 Let G be a graph and we will adopt Assumption I. We choose i to be the
minimum number such that bidyv−xv+i ≤ 1, j the maximum number such that ajbj ≤ 1, m
the minimum number such that amcyu−xu+m ≤ 1, and n the maximum number such that
cndn ≤ 1. Put



















π(a) = m− j +
ajbj+amcyu−xu+m

2
,

π(b) = i− j +
ajbj+bidyv−xv+i

2
,

π(c) = (yu− xu + m)− n + amcyu−xu+m+cndn
2

,

π(d) = (yv − xv + i) − n +
bidyv−xv+i+cndn

2
.

(9)

If Eq. (5) is valid, then δG(x, y, u, v) ≤ min(π(a), π(b), π(c), π(d)).

Proof: By symmetry, we only need to establish the inequality δG(x, y, u, v) ≤ π(b). The
crucial observation is as shown in Fig. 5, that is,

{

xy ≤ xbi + bidyv−xv+i + dyv−xv+iy = i + bidyv−xv+i + (yv − (xv − i));
uv ≤ uaj + ajbj + bjv = (xu − j) + ajbj + (xv − j). (10)

Accordingly, we have

2δG(x, y, u, v) = (xy + uv) − max(xu + yv, xv + yu) (By Eq. (5))
≤ (xy + uv) − (xu + yv)
≤ (i + bidyv−xv+i + (yv − (xv − i))) + ((xu − j)

+ajbj + (xv − j)) − (xu + yv) (By Eq. (10))
= 2π(b),

which is exactly what we want. �

Brinkmann, Koolen and Moulton [14] introduce an extremality argument to deduce
upper bounds of hyperbolicity of graphs. We follow their approach to make the following
standing assumption in the main steps leading towards Theorem 2.

the electronic journal of combinatorics 18 (2011), #P43 11



Assumption II: We assume x, y, u, v are four different vertices of G such that the sum
xy + uv is minimal subject to the condition

xy + uv = max(xu + yv, xv + yu) + 2δ∗(G). (11)

The following key lemma of Brinkmann, Koolen and Moulton is found as a piece of
their long proof of Theorem 1. We include a complete proof below, which is basically the
one presented in [14], hoping to convince the readers that this lemma does hold in our
more general setting.

Lemma 10 [14, p. 67, Claim 1] [61, p. 690, Claim 1] Let G be any graph and u, v, x, y ∈
V (G). Under the Assumptions I and II, we have a1v ≥ xv, axu−1y ≥ uy, b1u ≥ xu,
bxv−1y ≥ vy, c1v ≥ yv, cyu−1x ≥ ux, d1u ≥ yu, dyv−1x ≥ vx.

Proof: By symmetry, we only need to show that a1v ≥ xv. If a1v < xv, then, as a
result of a1v ≥ xv − xa1 = xv − 1, we have

a1v = xv − 1. (12)

Notice the obvious fact that
a1u = xu − 1. (13)

We then come to the following:

a1y + uv ≥ (xy − xa1) + uv

= (xy − 1) + uv

= (xy + uv) − 1
= max(xu + yv − 1, xv + yu − 1) + 2δ∗(G) (By Eq. (11))
= max(a1u + yv, a1v + yu) + 2δ∗(G). (By Eqs. (12) and (13))

(14)

According to the definition of δ∗(G), we read from Eq. (14) that a1y+uv = max(a1u+
yv, a1v + yu) + 2δ∗(G) and hence that a1y + uv = xy + uv − 1. This contrasts with the
minimality of the sum xy + uv (Assumption II), completing the proof. �

With the help of the previous lemma, we can derive the next one in a way similar to
that of Lemma 7 (i).

Lemma 11 Suppose that Assumptions I and II are met. (i) Any two adjacent sides of
Q(x, u, y, v) only intersect at their common peak. (ii) Let w be the common peak of two
adjacent sides P and P ′ of Q(x, u, y, v). If it holds αα′ = 1 for some α ∈ P \ {w} and
α′ ∈ P ′ \ {w}, then αw = α′w.

Proof: (i) By symmetry, it suffices to prove that ap 6= bq for any p ≥ q > 0. Suppose
otherwise, it then follows that b1, b2, . . . , bq = ap, ap+1, . . . , axu = u is a path connecting
b1 and u and so b1u < xu, violating Lemma 10. (ii) It is no loss to merely prove that if
i, j > 0 and aibj = 1 then i = j. In the case of i > j, b1, b2, . . . , bj , ai, ai+1, . . . , axu = u is
a path connecting b1 and u of length smaller than xu, contrary to Lemma 10. Similarly,
i < j is impossible as well. �
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Figure 6: A chordless cycle in Q(x, u, y, v).

Lemma 12 Let G be a k-chordal graph for some k ≥ 4 and let Q(x, u, y, v) be a geodesic
quadrangle for which Assumptions I and II hold. Let π(a), π(b), π(c) and π(d) be as defined
in Eq. (9). Then we have

min(π(a), π(b), π(c), π(d)) ≤
⌊k

2
⌋

2
. (15)

provided
min(d(Pa, Pd), d(Pb, Pc)) > 1. (16)

Proof: Suppose, for a contradiction, that the inequality (15) does not hold. In this

event, as
⌊k

2
⌋

2
≥ 1, we know that min(m− j, i− j, (yu− xu +m)−n, (yv− xv + i)−n) ≥

min(π(a), π(b), π(c), π(d)) >
⌊k

2
⌋

2
≥ 1. By virtue of Lemma 11 (i) and Eq. (16), this

implies that

C = [ajbjbj+1 · · · bidyv−xv+i · · · dn−1dncncn+1 · · · cyu−xu+mamam−1 · · ·aj+1]

is a cycle, where the redundant aj should be deleted from the above notation when
aj = bj = x, the redundant bi should be deleted from the above notation when bi =
dyv−xv+i = v, etc.; see Fig. 6. Moreover, by Lemma 11 (ii), Eq. (16) and the choice
of i, j,m,n, we know that C is even a chordless cycle. But the length of C is just
π(a) + π(b) + π(c) + π(d), which, as the assumption is that (15) is violated, is no smaller

than 4(1
2

+
⌊k

2
⌋

2
) and hence is at least k + 1. This contradicts the assumption that G is

k-chordal, finishing the proof. �

Proof of Theorem 2: Using typical compactness argument, it suffices to prove that

every connected finite induced subgraph of a k-chordal graph G is
⌊k

2
⌋

2
-hyperbolic. There-

fore, we can assume that G is itself finite. If δ∗(G) = 0, then we are already finished.
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Figure 7: The outerplanar graph F2 has chordality 6, hyperbolicity 3
2
, and tree-length 2.

Otherwise, there surely exists a geodesic quadrangle Q(x, u, y, v) in G fulfilling Assump-
tions I and II. When min(d(Pa, Pd), d(Pb, Pc)) ≤ 1, the result is direct from Lemma 8 and

the fact that 1 ≤
⌊k

2
⌋

2
; when min(d(Pa, Pd), d(Pb, Pc)) > 1, an application of Lemma 9 and

Lemma 12 yields the required inequality. �

4 Tightness of Theorem 2

We begin with an example from Brinkmann, Koolen and Moulton.

Example 13 [61, p. 683] For any n ≥ 3, the chordality of Cn is n while the hyperbolicity
of Cn is ⌊n

4
⌋ − 1

2
for n ≡ 1 (mod 4) and ⌊n

4
⌋ else.

Example 14 For any t ≥ 2 we set Ft to be the outerplanar graph obtained from the
4t-cycle [v1v2 · · · v4t] by adding the two edges {v1, v3} and {v2t+1, v2t+3}; see Fig. 7 for an
illustartion of F2. Clearly, δ(v2, vt+2, v2t+2, v3t+2) = t− 1

2
. Furthermore, we can check thatl(Ft) = 4t − 2 and δ∗(Ft) = t − 1

2
= δ(v2, vt+2, v2t+2, v3t+2) = l(Ft)

4
.

It is clear that if the bound claimed by Theorem 2 is tight for k = 4t (k = 4t−2) then
it is tight for k = 4t + 1 (k = 4t − 1). Consequently, Examples 13 and 14 indeed mean
that the bound reported in Theorem 2 is tight for every k ≥ 4.

For any graph G and any positive number t, we put St(G) to be a subdivision graph of
G, which is obtained from G by replacing each edge {u, v} of G by a path u, n1

u,v, . . . , n
t−1
u,v , v

of length t connecting u and v through a sequence of new vertices n1
u,v, . . . , n

t−1
u,v (we surly

require that nq
v,u = nt−q

u,v ). For any four vertices x, y, u, v ∈ V (G), we obviously have
δSt(G)(x, y, u, v) = tδG(x, y, u, v) and so δ∗(St(G)) ≥ tδ∗(G). Instead of the trivial factl(St(G)) ≥ tl(G), if the good shape of G permits us to deduce a good upper bound
of l(St(G)) in terms of l(G), we will see that δ∗(St(G)) is high relative to l(St(G))
provided so is G. Recall that the cycles whose lengths are divisible by 4 as discussed in
Example 13 are used to demonstrate the tightness of the bound given in Theorem 2; also
observe that the graphs suggested by Example 14 is nothing but a slight “perturbation”
of cycles of length divisible by 4. Since C4t = St(C4), these examples can be said to be
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generated by the “seed” C4. It might deserve to look for some other good “seeds” from
which we can use the above subdivision operation or its variant to produce graphs G

satisfying Eq. (3).
The rest of this section aims to provide more constructions showing the tightness of

Theorem 2. The next example is suggested by Gavoille, which uses H2 as the “seed”.

Example 15 Let t, q be two positive integer with q < t and let H2 be the graph shown in
the upper-right corner of Fig. 1. We construct a planar graph G

q
4t from St(H2) as follows:

let ua = nq
u,a, uc = nq−1

c,u , yc = nq
y,c, yd = n

q−1
d,y , vd = n

q
v,d, vb = n

q−1
b,v , xb = n

q
x,b, xa =

nq−1
a,x , and then add the new edges {ua, uc}, {xa, xb}, {yc, yd}, {vb, vd} to St(H2); see Fig.

8. It can be checked that C = [ua · · ·a · · ·xaxb · · · b · · · vbvd · · · d · · ·ydyc · · · c · · ·uc] is an
isometric 4t-cycle of G

q
4t and that l(Gq

4t) = 4t. It is also easy to see that δG
q
4t
(u, y, v, x) = t

and thus Theorem 2 tells us that δ∗(Gq
4t) = t.

Motivated by the above construction of Gavoille, we discover the next graph family whose
chordality parameters are 1 modulo 4.

Example 16 By deleting the edge {yc, n
q−1
d,y } and adding a new edge {yc, n

q
d,y}, we obtain

from G
q
4t a graph G

q
4t+1. Using similar analysis like Example 15, we find that l(Gq

4t) =

4t + 1 and δ∗(Gq
4t+1) = t =

⌊ 4t+1

2
⌋

2
.

To get extremal graphs whose chordality parameters are 2 or 3 modulo 4, we can use
F2 (see Fig. 7) as the “seed”.

Example 17 Let t > q be two positive integers. We construct an outerplanar graph
G

q

6(2t+1) by adding two new edges {v21, v23} and {v65, v67} to the graph S2t+1(F2) where

v21 = nq
v2,v1

, v23 = nq−1
v3,v2

, v65 = nq
v6,v5

, v67 = nq−1
v7,v6

; see Fig. 9 for an illustration. It
is not hard to check that l(Gq

6(2t+1)) = 6(2t + 1) and δ∗(Gq

6(2t+1)) = 3t + 3
2
. Moreover,

if we replace the edge {v21, v23} by the edge {v21, n
q
v3,v2

}, then we obtain from G
q

6(2t+1)

another outerplanar graph G
q

6(2t+1)+1 for which we have l(Gq

6(2t+1)+1) = 6(2t+1)+1 and

δ∗(Gq

6(2t+1)+1) = 3t + 3
2
.
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5 Graph classes with low chordality

An asteroidal triple (AT ) of a graph G is a a set of three vertices of G such that for any
pair of them there is a path connecting the two vertices and having a distance at least
two to the remaining vertex. A graph is AT-free if no three vertices form an AT [12, p.
114]. Obviously, all AT -free graphs are 5-chordal. A graph is an interval graph exactly
when it is both chordal and AT -free [12, Theorem 7.2.6]. AT -free graphs also include
cocomparability graphs [12, Theorem 7.2.7]; moreover, all bounded tolerance graphs are
cocomparability graphs [46] [47, Theorem 2.8] and a graph is a permutation graph if and
only if itself and its complement are cocomparability graphs [12, Theorem 4.7.1]. An
important subclass of cocomparability graphs is the class of threshold graphs, which are
those graphs without any induced subgraph isomorphic to the 4-cycle, the complement of
the 4-cycle or the path of length 3 [47, p. 23].

A graph is weakly chordal [46, 51] when both itself and its complement are 4-chordal.
Note that all tolerance graphs [47] are domination graphs [72] and all domination graphs
are weakly chordal [25]. An odd chord of a cycle of even length is a chord connecting
different vertices the distance between which in the cycle is odd. A graph is strongly
chordal if it is chordal and if every even cycle of length at least 6 in this graph has an odd
chord [46, p. 21]. A graph is distance-hereditary if each of its induced paths, and hence
each of its connected induced subgraphs, is isometric [53]. We call a graph a cograph
provided it does not contain any induced path of length 3 [12, Theorem 11.3.3]. It is easy
to see that each cograph is distance-hereditary and all distance-hereditary graphs form a
proper subclass of 4-chordal graphs. It is also known that cocomparability graphs are all
4-chordal [10, 43].

Corollary 18 Each weakly chordal graph is 1-hyperbolic and has hyperbolicty one if and
only if it contains one of C4, H1, H2 as an isometric subgraph.

Proof: By definition, each weakly chordal graph is 4-chordal. It is also easy to check
that that C4, H1 and H2 are all weakly chordal. Hence, the result follows from Corollary
5. �

Corollary 19 All strongly chordal graphs are 1
2
-hyperbolic.
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Proof: Note that the even cycle C = [x, a, u, c, y, d, v, b] in H1 and H2 does not have any
odd chord and hence neither H1 nor H2 can appear as an induced subgraph of a strongly
chordal graph. Since strongly chordal graphs must be chordal graphs, this result holds by
Theorem 1. �

Corollary 20 All threshold graphs are 1
2
-hyperbolic.

Proof: It is obvious that threshold graphs are chordal as they contain neither 4-cycle
nor path of length 3 as induced subgraph. Since the subgraph induced by x, u, b, c in
either H1 or H2 is just the complement of C4, the result follows from Theorem 1 and the
definition of a threshold graph. �

Corollary 21 Every AT -free graph is 1-hyperbolic and it has hyperbolicity one if and
only if it contains C4 as an isometric subgraph.

Proof: First observe that an AT -free graph must be 5-chordal. Further notice that the
triple u, y, v is an AT in any of the graphs H1, H2, H3, and H4. Now, an application of
Theorem 4 concludes the proof. �

Corollary 22 A cocomparability graph is 1-hyperbolic and has hyperbolicity one if and
only if it contains C4 as an isometric subgraph.

Proof: We know that cocomparability graphs are AT -free and C4 is a cocomparability
graph. Thus the result comes directly from Corollary 21. The deduction of this result
can also be made via Corollary 5 and the fact that cocomparability graphs are 4-chordal
[10, 43]. �

Corollary 23 A permutation graph is 1-hyperbolic and has hyperbolicity one if and only
if it contains C4 as an isometric subgraph.

Proof: Every permutation graph is a cocomparability graph and C4 is a permutation
graph. So, the result follows from Corollary 22. �

Corollary 24 [7, p. 16] A distance-hereditary graph is always 1-hyperbolic and is 1
2
-

hyperbolic exactly when it is chordal, or equivalently, when it contains no induced 4-cycle.

Proof: It is easy to see that distance-hereditary graphs must be 4-chordal and can
contain neither H1 nor H2 as an isometric subgraph. The result now follows from Corollary
5. �
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Corollary 25 A cograph is 1-hyperbolic and has hyperbolicity one if and only if it contains
C4 as an isometric subgraph.

Proof: We know that C4 is a cograph and every cograph is ditance-hereditary. Applying
Corollary 24 yields the required result. �
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