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Abstract

In this paper we determine the orbits of the braid group Bn action on Gn when
G is a dihedral group and for any T ∈ Gn. We prove that the following invariants
serve as necessary and sufficient conditions for Hurwitz equivalence. They are: the
product of its entries, the subgroup generated by its entries, and the number of
times each conjugacy class (in the subgroup generated by its entries) is represented
in T .

Introduction

Let G be a group and Gn be the cartesian product of G with itself n times. The braid
group Bn acts on Gn by Hurwitz moves. We study the orbits of this action when G
is a dihedral group. When the tuple T ∈ Gn consists only of reflections, the orbits are
determined by the following invariants: the product of the entries, the subgroup generated
by the entries, and the number of times each conjugacy class (in the subgroup generated
by its entries) is represented in T .

Our study of Hurwitz equivalence in the dihedral group was inspired by the paper [1],
which gives a simple criterion for Hurwitz equivalence in the symmetric group analogous
to our Main Theorem. That paper studies tuples of transpositions in the symmetric group,
which is the reason why we originally chose to restrict to reflections in the dihedral group.
(Recall that the symmetric group Sm acts on Rm−1 in such a way that every transposition
acts by a Euclidean reflection.) Utlimately, we extend these results to include rotations
as well.

After the bulk of this work was completed we discovered the paper [3] that considers,
using a different method, the case of a dihedral group of order 2pα where p is prime. Our
results were obtained independently and cover the case of dihedral groups of any order. In
addition, after this paper was finished, [5] was published, extending the results of [3]. The
results of our paper are complementary to the work in [5], since our results are derived
from first principles using what is perhaps a more intuitive approach.
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1 Definitions

1.1 The Braid Group

The braid group on n strands, Bn, may be described by n− 1 generators σ1, ..., σn−1 and
the following defining relations.

σiσj = σjσi if |i− j| ≥ 2

σiσi+1σi = σi+1σiσi+1

1.2 Hurwitz Moves

Consider Gn, the set of tuples of length n with entries in G. The braid group acts on Gn

by Hurwitz moves. Let T = (a1, a2, ..., an) with ai ∈ G. In this sense, σi, a Hurwitz move,
may be realized as the following.

σiT = (a1, ..., aiai+1a
−1
i , ai, ..., an)

It must be shown that the defining relations as seen in the presentation of Bn hold.
Clearly, σi and σj commute when |j− i| ≥ 2. The second relation is more subtle. Assume
T has length three for simplicity.

σ1σ2σ1T =
((

a1a2a
−1
1

) (
a1a3a

−1
1

) (
a1a2a

−1
1

)−1
, a1a2a

−1
1, a1

)
=

(
a1a2a3a

−1
2 a−1

1, a1a2a
−1
1, a1

)
= σ2σ1σ2T

Also, inverse Hurwitz moves are defined by σ−1
i (...ai, ai+1, ...) → (...ai+1, a

−1
i+1aiai+1...).

With this action, we may study the orbits of the elements of Gn, motivating the following
definition.

1.3 Hurwitz Equivalence

Two elements T, T ′ ∈ Gn are defined to be Hurwitz equivalent if there exists a finite
sequence of Hurwitz moves transforming T into T ′. Equivalently, T ∼ T ′ if both are
contained in the same orbit.

2 Necessary Conditions for Hurwitz Equivalence

Let T = (a1, ..., an) and T ′ = (a′
1, ..., a

′
n) be elements of Gn. Certain properties of T are

invariant under Hurwitz moves. These properties will serve as necessary conditions for
Hurwitz Equivalence.
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2.1 Product of the Elements T

Define
∏

T = a1a2...an, then T ∼ T ′ implies
∏

T =
∏

T ′.

Proof. Any σi transforms T = (..., ai, ai+1, ...) to T̃ = (..., aiai+1a
−1
i , ai, ...).∏

T̃ = a1...aiai+1a
−1
i ai...an = a1...aiai+1...an =

∏
T

Therefore, any Hurwitz move preserves
∏

T , so T ∼ T ′ implies
∏

T =
∏

T ′.

2.2 Subgroup Generated by Elements in T

Suppose T and T ′ generate subgroups S and S ′ respectively, if T ∼ T ′ then S = S ′.

Proof. T ∼ T ′ implies there exists some sequence of Hurwitz moves transforming T into
T ′. If a and b are in S, so is aba−1, so S ⊆ S ′. By symmetry and the use of inverse
Hurwitz moves, S ′ ⊆ S, so S = S ′.

2.3 The number of times each conjugacy class of S occurs in T

T ∼ T ′ implies the number of times each conjugacy class with respect to the subgroup
S = S ′ appears in T is the same as in T ′.

Proof. Notice that σi acts as the transposition (i i+1) on conjugacy classes in T . Without
loss of generality, let i = 1 and n = 2.

σ1(a1, a2) = (a1a2a
−1
1, a1)

Clearly, a1 is in the conjugacy class of a1 and a1a2a
−1
1 in that of a2. Therefore, σi only

transposes elements of conjugacy classes, and thus leaves the number of elements in each
conjugacy class fixed.

2.4 Main Theorem

Theorem 2.1. Let G be a dihedral group of order 2m and T, T ′ tuples of length N whose
entries are elements of Dm. The necessary conditions stated above for an arbitrary group
G serve as sufficient conditions for T ∼ T ′.

We first prove the main theorem for T containing only reflections, we call this the
reflection main theorem. We then generalize to all T ∈ Dn

m.

3 Preliminaries and the Main Lemma

Before proving the reflection main theorem, we fix notation and present elementary facts
about the dihedral group. In addition, we prove the main lemma which will be used in
Section 4.
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3.1 Notation

We define notation by labeling the vertices and edges of a polygon. Firstly, alter the
polygon by adjoining a vertex to the mid-point of each edge. Begin by labeling some
adjoined vertex 1 and continue in the counterclockwise direction alternately numbering
adjoined vertices and regular vertices 1 through m twice. Images of the numbering for
m = 5 and m = 6 are below.

Define the line connecting the pair of vertices (adjoined or normal) labeled i to be li
and the reflection fixing li to be rli , or simply ri. In addition, define the distance between
two reflections d(ri, rj) to be the length of the minimal path through adjoined and regular
vertices connecting some vertex on li to some vertex on lj.

Figure 1: Numbering of reflections

3.2 Conjugation and Products in the Dihedral Group

In order to understand the action of Bn, conjugation of reflections by reflections and
products of reflections must be explained.

3.2.1 Conjugation of reflections by reflections

In general, conjugation by a reflection has the following formula

rirjri = rri(lj)

where ri(lj) represents the line to which ri maps lj. Geometrically, ri(lj) is the line
symmetric to lj with respect to reflecting about li, namely lk where k − i = i − j or
k = i + (i− j).

Lemma 3.1.
rirjri = ri+(i−j)

Corollary 3.2. The product rirjri may also be written as rj+2(i−j) which shows that when
m is even, not all reflections are conjugate to each other. They are split into edge-edge
refections and vertex-vertex reflections because rk and rk′ are conjugate if and only if
k′ − k ≡ 0 (mod 2).
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3.2.2 Product of two reflections

Consider the product of two reflections, say rirj. The product of any two reflections must
be some rotation. By definition, rj fixes lj, so the rotation is determined by which line lj
gets mapped to by ri. Geometrically, it is clear that this line is lk where i − j = k − i.
Therefore, if we fix counterclockwise to be the positive direction, rirj is a rotation through
(i− j)2π

m
.

Lemma 3.3.

The product rirj is a rotation through (i− j)
2π

m
.

Lemma 3.4. The the orbit of (ri, rj) is O = {(ri+k(i−j), ri+(k−1)(i−j)) | k ∈ Zm}

Proof. By Lemma 3.1,

(ri, rj) ∼ σ(ri, rj) = (rirjri, ri) = (ri+(i−j), ri).

Since i+(i− j)− i = i− j, the above shows σi does not change the the difference between
the ith and i + 1st entries. For fixed k we have

σ(ri+k(i−j), ri+(k−1)(i−j)) = (ri+(k+1)(i−j), ri+(k)(i−j))

since

i + (k + 1)(i− j) = i + k(i− j) +
(
i + k(i− j)

)
−

(
i + (k − 1)(i− j)

)
.

We apply σ (at times we will omit the i attached to σi) in repetition to obtain the orbit
O of (ri, rj).

O = {(ri+k(i−j), ri+(k−1)(i−j)) | k ∈ Zm}

We remark that the size of the orbit is determined by the smallest k > 0 such that
k(i− j) ≡ 0 (mod m). At this time, the first entry of the pair has returned to ri, causing
the second to return to rj.

Remark 1. The subgroups of Dm including reflections are isomorphic to Dk where k
divides m.

Theorem 3.5. Define D = gcd(i − j, m). The size of O is m
D

and the reflections of O
generate a subgroup with index D in Dm, isomorphic to Dm

D
.

Corollary 3.6. If the gcd(i − j, m) = 1, the orbit of (ri, rj) is of size m and contains
all pairs (ri′ , rj′) where i′ − j′ = i − j. In otherwords, (rk, rk−(i−j)) ∈ O for all k. The
reflections in O generate Dm.
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3.3 Main Lemma

Lemma 3.7. Given a tuple T of length greater than two whose entries generate Dm, we
may pull a pair of reflections (r, r′) ∈ D2

m to the left most or right most positions of T
given gcd(d(r, r′), m) = 1.

Proof. The case in which T is constant is trivial, so assume otherwise. Consider all the
pairwise distances of reflections, choose the pair with the smallest positive difference, say
(ri, rj). Using Hurwitz moves, we may move any reflection rightward leaving it unchanged.
Suppose ri is to the left of rj in T , move ri rightward until ri and rj are adjacent. We
have altered T using Hurwitz moves to form some equivalent but likely different tuple
T̃ . Consider the orbit O of (ri, rj). The subgroup generated by O is the subgroup S
generated by ri and rj. There are two cases, either there exist reflections in T̃ outside of
S, or there do not. We discuss both cases separately.

If there do not exist reflections in T̃ outside of S, then T̃ generates S, which im-
plies T does as well. By assumption, T generates Dm so S must be Dm, and therefore
gcd(d(ri, rj), m) = 1. Assume there is a reflection rk immediately to the left of the
pair (ri, rj) (if there is not move the pair (ri, rj) to the right so that there is). Because
gcd(d(ri, rj), m) = 1, we may transform (ri, rj) into (ri′ , rj′) so that d(rk, ri′ , ) = d(r, r′)
with the correct orientation so that rkri′ = rr′. Move the pair (rk, ri′) to the left-most
or right-most positions unchanged and apply Hurwitz moves to transform (rk, ri′) into
(r, r′).

On the other hand, suppose now that there does exist some reflection R in T̃ outside
of S. Suppose S has index D in Dm. R must lie between some s, s′ ∈ S of distance D
apart with D ≤ d(ri, rj). Apply Hurwitz moves to (ri, rj) until s or s′ is in the tuple,
creating a pair of reflections with distance strictly less than D. Continue to reduce D in
this manner until the current pair generates Dm as in the above case. This must occur
eventually because when D = 1, Dm is generated.

4 Proof of the Reflection Main Theorem

4.1 Proof Structure

We prove the reflection main theorem for the case when T generates the whole group Dm.
If it does not, it must generate some subgroup isomorphic to Dk for some k. Applying
the reflection main theorem to T as if the group in question is in fact Dk is sufficient. We
begin by proving the theorem for when

∏
T = I and later extend it to arbitrary products

of T . Recall in this case, T may only contain reflections.
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4.2 Hurwitz Equivalence when
∏

T = I

4.2.1 Canonical forms

We will prove our claim by using Hurwitz moves to transform any T into a particular
canonical form. In the case where m is odd, this form is (r0, ..., r0, r1, r1).

The canonical form chosen for even m differs slightly from the odd case. When m is
even, we will use the following lemma to motivate the choice of canonical form.

Lemma 4.1. Let m be even. If
∏

T = I, then the number of reflections from each
conjugacy class must be even.

Proof. Assume for the sake of contradiction the numbers of reflections from each conjugacy
class in T are odd. Transform T into an equivalent T̃ with all edge-edge reflections to the
left and all vertex-vertex reflections to the right. We have

T ∼ T̃ = (∆, ∆′) with
∏

T̃ = I

The product of an odd number of edge-edge reflections must be an edge-edge reflection
and the analogous is true for vertex-vertex reflections. Therefore,

∏
∆ 6=

∏
∆′, but∏

∆
∏

∆′ = I. There do not exist a pair of distinct reflections whose product is I, which
is a contradiction.

Suppose T contains 2nv vertex-vertex reflections and 2ne edge-edge reflections. Both
nv and ne > 0, else T does not generate Dm. T will be transformed into (r0, ..., r0, r1, ..., r1)
with exactly 2nv r0 reflections and 2ne r1 reflections.

4.2.2 Transformation moves

We show we may transform T into the canonical forms described above using the following
moves.

Proof. The way we transform T into its canonical from depends on m. For m odd, we
show that we may transform T into the following

T ∼ (r0, r0, T
′).

When m is even and T contains more than two vertex-vertex reflections, we show

T ∼ (r0, r0, T
′).

Similarly, when m is even and T contains more than two edge-edge reflections, we show

T ∼ (T ′, r1, r1).

In each case, T ′ is arbitrary except that we require the entries of T ′ to generate Dm.
Assuming we may apply the transformations above (we will prove that we may in Lemma
4.2), we show how to transform T into the desired canonical form.
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When m is odd we continue pulling out pairs (r0, r0) left, leaving a tuple of four
rightward entries.

When m is even, while the number of vertex-vertex reflections is greater than two, we
move pairs (r0, r0) leftward and while the number of edge-edge reflections is greater than
two, we move pairs (r1, r1) rightward. At the end of this process, we are left with a tuple
of length four.

In each case, call the remaining tuple of length four τ . When m is odd, τ consists of
the four right-most reflections of T . When m is even, τ may lie in the middle of T as well.
By the way we transformed T , we know that

∏
τ = 1 and the entries of τ generate Dm.

We transform τ into the canonical form (r0, r0, r1, r1).

Proof.
τ ∼ (r0, r1, rk, rk−1) ∼ (r0, r1, r2, r1) ∼ (r0, r0, r1, r1)

The main lemma may be used to fix the first two entries as (r0, r1). The last two
entries must then differ by one, since

∏
τ = I. A sequence of σ3’s and σ2’s are then

applied to arrive at the canonical form (r0, r0, r1, r1).

In both m odd and m even cases, we have arrived at our described canonical form.

Lemma 4.2. We may transform T in the ways described by 4.2.2.

Proof. Suppose T has length greater than 4, by Lemma 3.7 we may transform T into the
following

T ∼ (r0, r1, ∆)

and continue by moving r1 to the right to obtain

T ∼ (r0, r1, ∆) ∼ (r0, ∆
′, r1).

We have
∏

(∆′) = r0r1 is a rotation through 2π
m

by Lemma 3.3, which implies the subgroup
generated by ∆′ is Dm. Applying Lemma 3.7 again,

T ∼ (r0, ∆
′, r1) ∼ (r0, r0, r−1, ∆

′′, r1)

T has now been reduced to a pair (r0, r0) and the tuple T ′ = (r−1, ∆
′′, r1).

When m is odd, the reflections in T ′ must generate Dm because r−1 and r1 ∈ T ′ and
are distance two apart, which is relatively prime to m.

When m is even and T contains more than two vertex-vertex reflections, while the
orbit of r−1, r1 only contains edge-edge reflections, it contains all of them. We have ∆′′

must contain a vertex-vertex reflection, which must be distance one from some edge-edge
reflection, all of which are generated. Therefore T ′ generates Dm and we are done.

At this point we have shown that when m is odd or m is even and T contains more
than two vertex-vertex reflections, we may transform T into a pair (r0, r0) and T ′ such
that

∏
T ′ = I and the entries of T ′ generate Dm.
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Below we briefly show without explanation how to remove a pair (r1, r1) to the right
leaving some T ′ which satisfies the same conditions as above for the case where m is even
and T contains more than two edge-edge reflections.

T ∼ (∆, r0, r1) ∼ (r0, ∆
′, r1) ∼ (r0, ∆

′′, r2, r1, r1).

This concludes the proof.

4.3 Arbitrary Products

To prove the entirety of the reflection main theorem, cases in which
∏

T 6= I must be
resolved. Before proceeding, we prove the following lemma.

4.4 Number Theory Lemmas

Lemma 4.3. Number Theory Lemma
Let m be some odd positive integer. Given a fixed k with 0 ≤ k < m, there exist q, q′

such that q + q′ ≡ k (mod m) with gcd(q, m) = gcd(q′, m) = 1.

Proof. Consider the prime factorization m = pα1
1 pα2

2 ... pαn
n . Suppose k satifies the set

of congruence relations k ≡ bi (mod pαi
i ) for all i ≤ n while q, q′ satisfy the analogous

congruence relations ai, a
′
i respectively.

We examine two cases: fix i, if bi 6≡ 1 (mod pi), choose ai = 1 which leaves a′
i =

bi − 1 6≡ 0 (mod pi) and hence is relatively prime to pαi
i . In the case of bi ≡ 1 (mod pi),

choose ai = 2, a′
i = bi − 2 6≡ 0 (mod pi). Then ai and a′

i are both relatively prime to pαi
i .

By the Chinese Remainder Theorem, there exists some q which satisfies q ≡ ai (mod
pαi

i ) for all i. Choose q′ = k − q, q′ ≡ a′
i (mod pαi

i ) by construction. Since both ai and
a′

i are relatively prime to pαi
i for all i, gcd(q, m) = gcd(q′, m) = 1 and q + q′ ≡ k (mod

m).

4.4.1 Generalization of the Number Theory Lemma

Lemma 4.4. Suppose m is even and 0 ≤ k < m. When k is even, the above result still
holds, namely there exist q, q′ such that q+q′ ≡ k (mod m) with gcd(q, m) = gcd(q′, m) = 1.

Proof. Let m = 2α1pα2
2 ... pαn

n where α1 > 0 and let k ≡ b1 (mod 2α1). Fix a1 ≡ 1 (mod
2α1) and a′

1 ≡ b1 − 1 (mod 2α1) so that a1 + a′
1 ≡ b1 (mod 2α1). Since k is even, b1 − 1

is relatively prime to 2α1 . Combining this with the relations discussed in the m odd case
and applying the Chinese Remainder Theorem results in q, q′ relatively prime to m such
that q + q′ ≡ k (mod m).

Lemma 4.5. Suppose m is even and 0 ≤ k < m. When k is odd, there exist q, q′ such
that q + q′ ≡ k (mod m) with gcd(q, m) = gcd( q′

2
, m) = 1.
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Proof. Since k is odd, we know k ≡ b1 (mod 2α1) for some odd b1. Using the same method
as in the m odd case, choose ai and a′

i for all i > 1. Define ci ≡ 2−1a′
i (mod pαi

i ) for all
i > 1 (by 2−1 we mean the multiplicative inverse of two (mod pαi

i ) for each i). Now define
a1 ≡ b1 − 2 (mod 2α1), c1 ≡ 1 (mod 2α1), and finally a′

i ≡ 2 (mod 2α1). Since b1 is odd,
b1 − 2 is relatively prime to (2α1) and by applying the Chinese Remainder Theorem, we
obtain q, q′ such that gcd(q, m) = 1 and q + q′ ≡ k (mod m). Applying the CRT to the
ci congruences, we get q′

2
relatively prime to m since c1 = 1 which is relatively prime to

(2α1) and ci is relatively prime to pαi
i for all i > 1.

4.5 Canonical Forms

As before, we choose canonical forms for each distinct case, first considering the case when
N > 4.

When
∏

T = rk, a reflection, we transform T into a tuple of the form (Λ, rk). When∏
T = r0rj, a rotation, we transform T into a tuple of the form (r0, Λ, rj). In each case,

Λ represents some tuple T ′ whose entries generate a subgroup that is maximal (to be
described in detail below),

∏
Λ = I, and Λ is in the appropriate canonical form as defined

in 4.2.1. When N = 3, we choose the canonical form to be (rk−1, rk−1, rk). When N = 4,
and m is odd we have the canonical form (r0, rj−1, rj−1, rj). When m is even, depending
on the number of elements from each conjugacy class, we either have (r0, rj−1, rj−1, rj) or
(r0, rj−2, rj−2, rj).

4.5.1
∏

T = rk

Proof. When N = 3, we would like to transform T into (rk−1, rk−1, rk). Use Lemma 3.7
to fix the right-most entries as (rk−1, rk) and

∏
T = rk implies the left-most entry is rk−1.

Consider the case where
∏

T = rk and N > 3. By assumption, the entries in T must
generate Dm, so we may use Lemma 3.7 to transform T in the following way.

T ∼ (rk−1, ∆) ∼ (rk−1, ∆
′, rk+1, rk) ∼ (Λ, rk)

We were able to use Lemma 3.7 for the second transformation because
∏

∆ = rk−1rk is a
rotation through 2π

m
, and therefore ∆ generates Dm. We now consider T ′.

In the case where m is odd, since T ′ = (rk−1, ∆
′, rk+1), its entries generate Dm because

rk−1 and rk+1 ∈ T ′ and are distance two, which is relatively prime to m. Since
∏

T ′ = I,
we may transform T ′ into its canonical form, from 4.2.1, Λ and this case is complete.

When m is even, if T contains more than one reflection in k’s conjugacy class, then
T ′ generates Dm. This is true because we get the entirety of rk−1’s conjugacy class from
the pair (rk−1, rk+1) and one of these reflections must be distance one from a reflection in
the conjugacy class of rk. Again, since

∏
T ′ = I, we may transform T ′ into its canonical

form, from 4.2.1, Λ and this case is complete.
Finally, when m is even but T only contains one element from rk’s conjugacy class,

we have that the entries of T ′ generate Dm
2
. A reasonable canonical form to choose is

that which would result from reducing the entries in T ′ to elements of Dm
2

and then
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transforming T ′ into what would be its canonical form with respect to Dm
2
. Following

this transformation, we once again view the reflections as elements of Dm and arrive at
Λ. This would result in Λ containing either only reflections r−1 and r1 (if k is even) or r0

and r2 (if k is odd), as opposed to the reflections r0 and r1 as in the more general cases.

4.5.2
∏

T = r0rj

Proof. Suppose
∏

T = r0rj. When N = 2, the two reflections in T must generate Dm by
assumption and therefore the first entry may be made r0 implying the second to be rj.
In the case where N > 3 (clearly N may not be equal to 3). By 4.4 and 4.4.1, we have
given j, there exist q and q′ such that q is relatively prime to m and depending on the
case, either q′ or q′

2
is relatively prime to m as well. Either way, we require that q + q′ ≡ j

(mod m). Using Lemma 3.7 we have the following transformation.

T ∼ (r0, rq, ∆)

In the case where q′ is relatively prime to m, namely when m is odd or m is even and
j is even, we have that q was chosen so that q′ ≡ j − q (mod m) is relatively prime to m,
and T ′ = (rq, ∆) is such that

∏
T ′ = rj. Because rq is in T ′ and

∏
T ′ = rj, we know that

T ′ generates Dm since d(rq, rj) = ±q′ (mod m) and thus gcd(d(rq, rj), m) = 1. Therefore,
we have reduced this cause to the previous one in which

∏
T ′ = rj and therefore by 4.5.1

we have: When N > 4,
T ∼ (r0, Λ, rj)

and where Λ has the appropriate form from 4.2.1. When N = 4, this reduces to 4.5.1
with product rj. Therefore, the canonical form is (r0, rj−1, rj−1, rj).

In the case where q′ is not relatively prime to m, namely when m is even and j is odd,
we may choose q, q′ so that gcd(q, m) = gcd( q′

2
, m) = 1 and q + q′ ≡ j by 4.4.1. We still

have
T ∼ (r0, rq, ∆)

and T ′ = (rq, ∆). There are two options for the subgroup generated by T ′. In either

case, the pair (rq, rj) generates the entirety of the conjugacy class of rj because q′

2
and m

are relatively prime. If there exists some ri ∈ T ′ not in the conjugacy class of rj, then
T ′ generates Dm. On the other hand, if there does not, T ′ generates the conjugacy class
of rj. If N > 4, this reduces to some case in 4.5.1 and we may transform T ′ into the
appropriate Λ.

For N = 4, depending on the number of elements from each conjugacy class, we either
have (r0, rj−1, rj−1, rj) or (r0, rj−2, rj−2, rj).

5 A generalization including rotations

In the second part of the paper, we show that the necessary conditions mentioned at the
start are sufficient conditions for Hurwitz equivalence for tuples whose entries are any
elements of dihedral groups, including rotations.
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5.1 Rotation preliminaries

Define pi (as an element of Dm) to be the counterclockwise rotation through i2π
m

. We say
pi has degree i. All rotations commute with each other. In order to work with rotations,
we must understand the orbit of a rotation and a reflection. Conjugating any rotation
pi by a reflection results in the rotation’s inverse pm−i. Conjugating a reflection by a
rotation is more subtle. We work out the details for each case below.

5.2 Orbit of (ri, pj)

We enumerate the orbit of (ri, pj) to describe conjugation of reflections by rotations and
vice versa. In the most general case, the orbit has four distinct pairs.

Lemma 5.1. The orbit of (ri, pj) consists of the following pairs

(ri, pj) ∼ (pm−j, ri) ∼ (ri+2(m−j), pm−j) ∼ (pj, ri+2(m−j)).

Proof. We begin by showing

σ1(ri, pj) = (ripjri, ri) = (pm−j, ri).

To see this equivalence, suppose ripj = rk for some k. We then have phri = rk for some h.
Therefore, pj = rirk and ph = rkri, but rirkrkri = I, which implies h = m− j. We remark
that this implies that the conjugacy class of a rotation is the rotation and its inverse since
rotations themselves commute.

We also must show

σ1(pj, ri) = (pjripj−m, pj) = (ri+2j, pj).

To see this, first notice that pi takes the kth index of the polygon to the k +2ith (mod m).
To determine the h for which pjripm−j = rh, we look for the index fixed by the reflection
pjripm−j. We have that rh fixes the hth index and therefore if pjripm−j = rh, then
pjripm−j(h) = h. It follows that ripm−j(h) = pm−j(h) and therefore, ri(h + (2m− 2j)) =
(h + (2m− 2j)) or ri(h− 2j) ≡ h− 2j (mod m). Since ri fixes i, we have that i = h− 2j
and hence h = i + 2j.

6 Proof of the Main Theorem

As in the proof of the reflection main theorem, if T contains at least one reflection, we
assume the subgroup S generated by the entries of T is the entire group Dm, if not we
reduce to Dm′ . We will see when T consists only of rotations the orbits are trivial. As
well, we assume that T contains at least one rotation, otherwise we have already handled
this case.

Let the number of reflections be denoted by Nr. We begin by describing the case
where Nr = 0 which is trivial, followed by Nr = 1, Nr = 2, and finally Nr > 2.
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6.1 Nr = 0

When T contains only rotations, all of its entries commute and therefore two tuples are
Hurwitz equivalent if and only if they are permutations of each other. This is consistent
with our three invariants since with respect the the subgroup generated by the entries of
T , some cyclic group, each rotation is its own conjugacy class. Therefore two tuples are
Hurwitz equivalent if and only if the conjugacy class condition is satisfied, which in this
case implies the subgroup and product conditions.

6.2 Nr = 1

The canonical form will only include rotations whose degree is ≤ m
2

since any rotation
may be turned into its inverse via Hurwitz moves. As well, we will order these rotations
with their degrees increasing from left to right. The right-most entry of the tuple will be
the reflection resulting from this particular ordering of rotations and fixed product. Given
this canonical form can be reached, which we will show below, it is clear that the neccesary
conditions for Hurwitz equivalence are indeed sufficient. Equivalently, the canonical form
described above is uniquely determined by the number of entries from each conjugacy
class and the product of the entries. Since we only have one reflection, the number of
entries from each conjugacy class determines the subgroup generated by the tuple, so this
is a weaker condition.

Proof. Use the reflection to perturb each rotation so that its degree k ≤ m
2
. By ‘use’

we mean apply Hurwitz moves to a rotation reflection pair so that the rotation has been
transformed into its inverse if necessary. Following this, the reflection may be moved
through the rotation from either the right or the left without changing the degree of the
rotation by applying σ or σ−1 respectively (we omit the index of σ). We then order the
rotations so that they are increasing in degree from left to right. This results in the
described canonical form and only depends on the conjugacy classes of the rotations in
the tuple and the original product, which determines the final reflection.

Lemma 6.1. Suppose T has at least two reflections and S = Dm. If we write T in the
form (∆, ri), then for every k, there exists ∆′ such that

(∆, ri) ∼ (∆′, ri′).

where i′ ≡ i + 2k (mod m).

Proof. Begin by moving all reflections rightward, we will also call this new tuple T since it
is equivalent to our original. In this position, let Srot and Sref be the subgroups generated
by the rotations in T and reflections in T respectively. Let irot be the index of Srot in Cm

and iref the index of Sref in Dm. We remark that Sref and thus iref are dependent on the
positions of the entries and may change under Hurwitz moves. As well, we always define
Sref and iref with respect to an initial position with all reflections rightward.

Observe that in order for S = Dm, it is necessary that the gcd(irot, iref ) = 1, (otherwise
S will not contain p1).
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Given irot, there exists some product of the rotations in T , perhaps including some
rotations more than once, equal to pirot since the index in Cm corresponds to the smallest
positive degree of a rotation in Srot. Equivalently, the sum of their degrees is irot.

For iref , first consider the case where T has two reflections. Suppose ri and rj are
the two reflections used to determine iref , then the gcd(d(ri, rj), m) = iref and therefore
there exists a such that

a · d(ri, rj) ≡ iref (mod m).

When the number of reflections in T is greater than two, by Lemma 3.7 we may pull
a pair of reflections whose distance (mod m) is iref to the left-most positions amongst
the reflections (who are all to the right of the rotations). We say (mod m) for the case in
which all reflections are the same and therefore the index is m but the distance is zero.
The main lemma actually shows that in the case were Sref = Dm, we may extract a pair
whose distance is one, but the above claim follows by reducing to Dm′ if needed. In this
case, we will still label the pair (ri, rj) and we have d(ri, rj) ≡ iref (mod m) (in this case
a = 1).

Since irot and iref are relatively prime, we may find n1 and n2 such that

2 · n1 · irot + n2 · iref ≡ 2 (mod m).

Therefore, we have

2 · k · n1 · irot + k · n2 · iref ≡ 2k (mod m).

We use k, n1, and n2 to transform ri into ri+2k. Suppose we have the pair (ri, rj) in the
left-most positions within the set of reflections (either ri and rj are the two reflections,
or when there are more than two, this pair has been generated using the algorithm from
Lemma 3.7). Without loss of generality, let i > j. Apply σ to (ri, rj) exactly k · n2 · a + 1
times so that the right-most entry is now ri+k·n2·a·(i−j) = ri+k·n2·iref

.
From this point on, we distinguish between the reflections starting in the positions

of ri and rj and will call them r and r′ respectively (at this time r′ = ri+k·n2·iref
). We

are no longer concerned with which reflection r specifically is and therefore we may use r
to perturb rotations freely. We use the rotations described earlier whose degrees sum to
irot and apply σ2 to the pair (p, r′) for each p included in the sum the correct number of
times. After applying this once, we ought to have ri+k·n2·iref+2·irot . We remark that once a
rotation is used in this way, it becomes its inverse in the tuple. If we wish to use it more
than one, we perturb it back to its original state with r. We preform this k ·n1 times and
obtain ri+k·n2·iref+2·k·n1·irot = ri+2k. This leaves us with T ∼ (∆′, ri+2k).

6.3 Nr = 2

In this case, we choose our canonical form to be (∆, r, r0) (or (∆, r, r1) if m is even and
both reflections are edge-edge reflections). We require that ∆ contains only rotations of
degree ≤ m

2
increasing from left to right and we observe that r is uniquely determined by∏

T . When Nr = 2, we do not necessarily have by assumption that Srot = Cm. Once we
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include the reflections however, we must have that S = Dm. We show that there exists
∆′ such that T ∼ (∆′, r0) (or (∆′, r1) in the aforementioned special case), both of which
reduce to the case where Nr = 1.

Proof. By Lemma 6.1, given a reflection ri in T , we may transform ri into ri+2k for all
k. When m is odd, there exists k such that i + 2k ≡ 0 (mod m) for all i and so we may
obtain an r0. On the other hand, when m is even, there exists k such that i+2k ≡ 0 (mod
m) for all i even (so we may get r0) and there exists k such that i + 2k ≡ 1 (mod m) for
all j odd (so we may get r1). In terms of reflections, as long as there is one vertex-vertex
reflection, we have one ri such that i is even and for edge-edge reflections we have ri such
that i is odd.

6.4 Nr > 2

Our goal here is to transform the collection of reflections so that the subgroup generated
by this collection is maximal. When m is odd, Dm will always be maximal. When m
is even however, if all reflections belong to one conjugacy class, Dm

2
is maximal. We

then choose a reflection from the transformed collection that will not disrupt the previous
condition to perturb the rotations so that they are of the form of the case Nr = 1. Finally,
we transform the reflections into the canonical form described in the reflection only case,
section 4. The configuration of the rotations and

∏
T fix the product of the reflections and

the number from each conjugacy class is fixed from the start. The only work needed is to
show that we may transform the reflections into a collection whose subgroup is maximal.

Proof. By the proof of Lemma 6.1 in the case where there are more than two reflections, we
see that only the pair (ri, rj) is involved in the proof after it has been specified. Therefore,
at least one reflection may stay fixed when transforming ri to ri+2k. Choose a reflection
to be fixed, move it to the right-most position of the tuple, and label this reflection rh.

When m is odd, there exists some k such that i + 2k ≡ h + 1 (mod m) and therefore
we have a pair of reflections whose distance is one, meaning the reflections generate Dm.

When m is even, there exists k such that either i + 2k ≡ h + 1 (mod m) (if i− h odd)
or i + 2k ≡ h + 2 (mod m) (if i − h even). If we may obtain h + 1 we generate Dm and
we are done, so assume we are in the h + 2 case. If there do exist both vertex-vertex and
edge-edge reflections, by applying Hurwitz moves to (rh+2, rh) we enumerate either all
vertex-vertex or edge-edge reflections (depending on the parity of h), one of which must
be distance one from some reflection in the tuple lying not in the conjugacy class of rh.
In this case, we are done.

Finally assume there are only vertex-vertex or edge-edge reflections, then rh and rh+2

generate all of them. The subgroup Dm
2

is maximal in this case, and we may transfrom
the collection of reflections into its appropriate canonical form as if they were elements of
Dm

2
. This concludes the proof.
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Future Work

There exist many other reflection groups in higher dimensions. Similar problems could
be studied involving a number of these different groups. As well, one need not restrict
oneself to reflection groups.
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