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Abstract

In this paper we propose a multipartite version of the classical Turán problem of

determining the minimum number of edges needed for an arbitrary graph to contain

a given subgraph. As it turns out, here the non-trivial problem is the determination

of the minimal edge density between two classes that implies the existence of a given

subgraph. We determine the critical edge density for trees and cycles as forbidden

subgraphs, and give the extremal structure. Surprisingly, this critical edge density

is strongly connected to the maximal eigenvalue of the graph. Furthermore, we give

a sharp upper and lower bound in general, in terms of the maximum degree of the

forbidden graph.

1 Introduction

A Turán type problem is generally formulated in the following way: one fixes some graph
properties and tries to determine the maximum or minimum number of edges a graph on
n vertices with the prescribed properties can have, and furthermore describe the extremal
structure.

This paper deals with the following multipartite variant of the Turán problem, inspired
by previous research by Balázs Montágh. Fix a graph G on r labeled vertices. Consider
all r-partite graphs, with labeled partition classes of bounded cardinality satisfying the
property that G is not a subgraph in such a way that the ith vertex of G is in the ith
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partition class. The most natural question one can ask here is to determine the maximum
number of edges such a multipartite graph can have.
This question was mentioned in [1], in a bit specific form, and turned out to be rather
easy. However, as the author of the book [1] notes, the problem becomes considerably
more interesting if we ask for a bound on the minimal number of edges joining two classes
instead of a bound on the number of edges in the graph. In this context, the solution must
depend on the cardinality of the partition classes, though the asymptotic behavior would
be interesting, that is, a bound on the edge densities and the structure of the extremal
graphs.

Let us denote by Gr(n1, n2, . . . , nr) an r-partite graph with n1, n2, . . . , nr vertices in
its partition classes, and let us denote by Gr(n) an r-partite graph with uniform classes
of size n.
Throughout this paper G will be a connected graph on the labeled vertices {1, . . . , r}.
∆(G) will denote the maximum degree in G, Di the degree of vertex i, while Γ(z) will
denote the neighborhood of a vertex z.

We call an r-partite graph with labeled partition classes a blow-up graph of G and
denote it by G∗

r if there are edges between two classes only if there is an edge between
the corresponding two vertices of G. A complete blow-up graph of G is a blow-up graph
where two vertices from different classes are joined if and only if there is an edge between
the corresponding two vertices of G. We will also say that G is the factorgraph of G∗

r . G

is contained in its blow-up graph if one can find one vertex from each class such that the
chosen vertices induce (the labeled) G, or G is the subgraph of the induced graph.

In another point of view we may ask the following two equivalent questions. Given a
graph G on r vertices, and a complete blow-up graph G∗

r(n) with r classes. How many
edges should we delete from G∗

r(n) to assure the nonexistence of a subgraph G in G∗

r(n),
whose vertices are from different classes? How many edges should we delete, if we want
to delete the same number of edges between every pair of classes?

At first we state the solution to the first question.

Theorem 1.1. Suppose G is a graph on the vertex set {1, . . . , r} with M edges. If G is
not contained in its blow-up graph G∗

r(n), then G∗

r(n) has at most (M − 1)n2 edges.

Remark 1.2. The bound is sharp, and the structure of blow-up graphs for which equality
holds are as follows. One must choose a class Xi, and delete the edges connecting a vertex
v ∈ Xi and a class Xj for which j ∈ Γ(i) separately chosen for each vertex v of Xi.

Proof. The statement of the theorem can be deduced for example by using the Zykov
type symmetrization [17].

Remark 1.3. It is obvious that the theorem above can be extended easily to general r-
partite graphs of type Gr(n1, n2, . . . , nr) instead of uniform ones.

Focusing on the latter question we introduce further definitions concerning weighted
graphs since the general approach helps us to describe well the asymptotic behavior avoid-
ing the analysis of the cardinalities of the blow-up graphs which would make the descrip-
tion difficult.
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Let G∗

r be an r-partite graph on classes X1, X2, ..., Xr. Suppose that every vertex x of
G∗

r has a non-negative weight w(x). In fact, we consider weights as positive real numbers,
but in some cases it will be more convenient to use virtual vertices with weight zero. The
weight w(Xi) of a class Xi is defined as the sum of the weights of the vertices in Xi. The
weight of an edge uv is defined as w(uv) := w(u)w(v). The edge density between two
classes is defined as the sum of the weights of edges between the two classes, divided by
the product of the weights of the two classes.
Clearly, a graph may be regarded as a weighted graph in which all weights are equal to
1. On the other hand, every weighted r-partite graph can be interpreted as an r-partite
graph if the weights are rational, and so can be approximated in case of arbitrary real
weights. From now on, we prefer this more general approach, that is, we consider weighted
graphs with nonnegative real weights.

We can assume that every class has weight 1, as this condition does not make any
restriction on the edge densities. For an edge e = ij in G, de will denote the edge density
between the two classes of G∗

r corresponding to i and j (that is, between Xi and Xj). We
reformulate the main problem.

Problem 1.4. Given a graph G on n vertices, what is the maximal number d for which
there exists a weighted blow-up graph of G on the finite sets X1, X2,. . . , Xn with edge
densities at least d, without containing G as a subgraph?

We will call this maximal d the critical edge density of G, and denote it by d(G). It is
not immediately clear that d(G) is well-defined, but this will be a consequence of Lemma
2.1.

In other words, d(G) is the smallest number such that for every blow-up graph G∗

r of G

with edge densities strictly greater than d(G), G∗ contains a subgraph G as a transversal,
that is, the vertex set of G intersects every class Xi in one vertex.

For simplicity, we call a (weighted) blow-up graph of G not containing G construction
(for G). A construction will be called optimal if its minimal edge density is the critical
edge density. It makes sense to call optimal also an unweighted blow-up graph of G, if its
minimal edge density is the critical edge density with convenient weights.

For another motivation of studying this problem, see the paper [2], where the authors
solved (among others) this edge density problem for the case G = K3.

We would like to determine the value of, or at least achieve good bounds on, the critical
edge density of arbitrary graphs. Furthermore, we are interested in the description of the
structure an extremal blow-up graph can have.
In the forthcoming sections, we determine the critical edge density for trees and cycles.
Surprisingly, we get that the critical edge density of a tree T is 1

λ2
max(T )

, where λmax(T )
denotes the maximal eigenvalue of the adjacency matrix of the tree. We also prove general
lower and upper bounds in terms of ∆(G).
Furthermore, we describe the extremal structure for blow-up graphs of the mentioned
special graphs, and conjecture a general description. The extremal structures resemble
the ones appearing in the paper of Erdős, Brown and Simonovits [3, 4]. They consider
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the total edge density of multigraphs (or directed graphs) that do not contain a family of
excluded subgraphs.

The paper is divided into five sections. In Section 2 we prove general results for the
edge density problem. In Section 3 the solution for trees is presented, while Section 4 is
devoted to the solution of the problem for cycles. Finally, in Section 5 we present further
results and conjectures on arbitrary graphs, and raise open questions.

2 General remarks on the main problem

Let us mention that throughout the paper, all graphs are considered to be connected.
First we prove a lemma about the optimal constructions: it says that optimal con-

structions may have relatively few vertices. The lemma is the generalization of a claim in
the third section of the paper of Bondy, Shen, Thomassé and Thomassen [2], and will be
a key tool throughout the paper.

Lemma 2.1. Suppose G∗

r is a weighted blow-up graph of G not containing G. One can
modify G∗ in such a way, that it is still not inducing G, no edge density decreases, and
|Xi| ≤ Di holds for i = 1, . . . , r (where Di denotes the degree of vertex i in G).

Proof. We decrease the cardinality of the Xis one by one if necessary.
First suppose |X1| > D1, and let X1 := {x1, x2, ..., xk}, where k > D1. For simplicity,
suppose that the neighbors of 1 in G are 2, . . . , D1 + 1. Denote by βsj the weight of the
neighborhood of xs in Xj (for j = 2, . . . , D1 +1). If there is no edge from xs to any vertex
of Xj , then βsj is defined to be 0. Let αj be the edge density between X1 and Xj .
Hence αj =

∑
s w(xs)βsj . (1)

Consider the following points in R
D1: (βs2, βs3, ..., βs(D1+1)) (s = 1, . . . , k).

These are k > D1 points in a D1 dimensional space. As we saw it before, (see 1), the point
A(α2, α3, ..., αD1+1) lies in their convex hull. Take the positive cone pointed at A, and
intersect it with the boundary of the convex hull. The points in the intersection are convex
combinations with at most D1 non-zero coefficients, so if we change the weights in X1 to
the convex combination coefficients of an intersection point, then the new construction
has at most D1 non-zero weights in X1. Moreover, the αis cannot decrease. After this,
we may delete the points of X1 which has zero weight.

Applying the above procedure successively to X2, . . . , Xr, the lemma is proved.

Lemma 2.1 implies immediately that the critical edge density is well defined, since now
we know that the critical edge density d(G) can be obtained in a blow-up graph with a
bounded number of points and edges. Hence there is a bounded number of constructions
on which it can be obtained, and for every construction, the maximum of the minimal
edge density really exists because of Weierstrass’s theorem.

Theorem 2.2. d(G) ≤ (1 − 1
∆(G)2

).
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Proof. Consider an optimal construction for a graph G. According to the Lemma 2.1, we
may assume that every set Xi in G∗ has cardinality at most Di. Choose the vertex from
each class which has the greatest weight. Thus the weights are at least 1

∆
. The subgraph

induced by these r points do not contain G, hence at least one edge is missing between
them. This implies that the minimal edge density is at most (1 − 1

∆2 ).

The next lemma shows another important property of the optimal constructions.

Lemma 2.3. Let G∗ be an arbitrary optimal construction for G. Then every edge density
(corresponding to edges of G) in G∗ equals d(G).

Proof. We prove it by contradiction. Assume that there exists an edge e ∈ E(G), for
which de > min {df : f ∈ E(G)} =: d(G) holds. We will obtain a contradiction by
modifying G∗ to a construction G∗

′

, where min {df : f ∈ E(G)} is greater than d(G).
Choose two adjacent edges from E(G) denoted by e = ij1 and f = ij2 respectively,

for which de > df = d(G) holds. (The connectivity of G assures the existence of such an
edge.) G∗

′

arises from G∗ in the following way. We add a new vertex z to Xi, the class
corresponding to i in G∗. We join it to all vertices which are in the classes corresponding
to Γ(i) \ {j1}. The weights in G∗

′

are the same as the weights in G∗, except for the class
corresponding to i. Let the weight of z be ε > 0 for an ε to be chosen later, and we get
the other weights in the class Xi from the original construction by multiplying each one
by (1 − ε). As d(G) < 1, the edge density is strictly increasing on the edges containing i

except for e; while de is decreasing exactly by ε.
Let us choose ε such that ε < de − d(G) holds. Hence, the blow-up graph we get is a
construction, because it does not contain G. There are fewer edge densities which are
equal to the critical edge density d(G), though the minimal edge density of G′ is at least
d(G). Therefore, after repeating this finitely many times, we get a construction, in which
the edge densities are strictly greater than d(G), a contradiction.

Corollary 2.4. An optimal construction of a given graph G is saturated, that is, any
further edge having positive edge weight added to an optimal construction would create a
contained subgraph G.

Proof. Starting from an optimal construction, if one could add a further edge, then there
would be an edge density greater than the critical edge density in contrast to Lemma
2.3.

The critical edge density is monotone on subgraphs.

Theorem 2.5. If H is a proper subgraph of G, then d(H) < d(G).

Proof. Consider an optimal construction H∗ for the subgraph H . We find a construction
for G, in which the minimal edge density is d(H), and there exists an edge e in E(G)
where de > d(H) holds. By Lemma 2.3, this implies d(G) > d(H).

In the construction G∗ for G, let the image of V (H) ⊆ V (G) be V (H∗), and leave the
edges and the weights as they are in H∗. Let the image of each vertex in V (G) \ V (H)
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be a vertex with weight 1, For every edge e = ij in E(G) \ E(H), join each vertex of
Xi to each vertex of Xj . As our new construction restricted to the image of V (H) does
not contain H , G is not contained in the construction G∗. Finally, since H was a proper
subgraph, at least one edge density is 1 in the new construction.

3 Critical edge density of trees

In this section we give an optimal construction for trees and determine the critical edge
density.
First, we describe the extremal edge structure of the optimal construction for trees. Let
T = T (r) be a tree on the vertex set {1, 2, ..., r}.

Construction 3.1. Define a blow-up graph of T on the classes X1, X2,..., Xr. Let Xi

has Di subclasses for every i. Denote the subclasses of class Xi by Xij where j ∈ Γ(i), that
is, ij is an edge. Connect all pairs of vertices from Xik and Xjl if and only if ij ∈ E(T )
holds, except when k = j and l = i. In other words, complementing the edges with respect
to the complete blow-up graph of T , we get exactly the edges joining the subclass pairs Xij

and Xji.

Example 3.2. Let S4 be the star on 4 vertices, {1, 2, 3, 4}, 1 being the center. The blow-
up graph defined as follows. X1 consists of three parts, {X12, X13, X14}, while X2 = X21,
X3 = X31, and X4 = X41. X12 is joined to the vertices of X31 and X41; X13 is joined to
vertices of X21 and X41; X14 is joined to the vertices of X21 and X31.

Remark 3.3. Contracting the subclasses in Construction 3.1 into vertices (i.e. Xi con-
sists of xijs where j satisfies ij ∈ E(T )), we get a weighted construction that satisfies the
conditions of Lemma 2.1.

In this section we use the notation T ∗

r for the optimal construction for T mentioned
in Remark 3.3. In view of Lemma 2.1, it is on 2(r − 1) vertices. According to the
following theorem, optimal constructions must come from Construction 3.1. An optimal
construction is saturated (see Corollary 2.4) and T -free (by definition). We show that
these conditions imply the edge structure described in Construction 3.1, if we assume
that all edge densities are positive, i.e. there exist some edges between Xi and Xj for
every ij ∈ E(T ).

Theorem 3.4. If a blow-up graph of T (r) is saturated, contains no T graph, and every
edge density is positive, then it has the edge structure described in Construction 3.1.

Proof. We prove it by induction on r. For r = 2, the edge set must be empty, thus the
proposition follows.
Take an arbitrary saturated construction for T (r), r > 2, with positive edge densities. Let
us look at a leaf i in T , and the corresponding class Xi in its blow-up graph. Every vertex
in Xi has the same neighbors. Indeed, otherwise if y, z ∈ Xi, z is joined to u ∈ Xj, then
we could add the edge yu without creating a subgraph T . This contradicts Corollary 2.4.
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Let Xji denote the set of non-neighbours of Xi in Xj , that is the set Xj \Γ(Xi). Note that
the vertices of Xji are joined to all vertices of Xk where k ∈ (Γ(j) \ {i}. Indeed, since the
construction was saturated, every further edge joining to Xji would create a subgraph T .
By deleting Xi and Xji, we get an (r − 1)-partite blow-up graph of the tree T (r) \ {i}.
Note that it is a construction for the tree T (r) \ {i}, since we start from a construction
of T . It is saturated too, thus by induction, the edge structure is as stated.

Up to this point, we described the extremal structure of the optimal constructions.
Our next aim is to determine the critical edge density.

Observation 3.5. The critical edge density can be expressed if the weights of an optimal
construction T ∗

r in the form of Remark 3.3 are given. Furthermore, r equations hold for the
weights expressing that the sum of weights is one in each class, that is,

∑
j∈Γ(i) w(xij) = 1,

for i = 1, . . . , r.
In addition, using the parameter d(T ), r − 1 equations hold expressing that every edge
density is equal to d(T ) by Lemma 2.3, in other words, w(xij)w(xji) = 1− d(T ) for every
edge e = ij in T .
Since the number of (weighted) vertices is exactly 2(E(T )), the weights can be expressed
recursively in terms of d(T ), which yields d(T ) to be a root of a rational function as
follows. We take a rooted tree. Take the top level, that contain only leaves having weight
1. There is a unique edge missing between every pair of classes corresponding to an edge
of T . Since the edge density is d(T ), every missing edge has weight 1− d(T ), so then the
weight of every vertex can be determined as rational function of d(T ) on the level below.
Stepping down level by level, we can express the weights recursively. At the end, according
to the equality of the number of weights and parameters and the number of equalities,
d(T ) can be expressed as a root of a rational function, that is, a root of a polynomial.
The convenient root x should be a positive real number with the property that the formulas
expressing the weights in terms of d all take value from the interval (0, 1) when evaluated
at x.

Let us illustrate the procedure of Observation 3.5 for Example 3.2.

Example 3.6. Let S4 be the star on 4 vertices, {1, 2, 3, 4}, 1 being the center, and 4
being the root. Then w(x21) = 1 = w(x31), thus w(x12 = 1 − d = w(x13), and so
w(x14) = 1 − 2(1 − d), so finally we get that 1 = w(x41) = 1−d

2d−1
.

We make here some easy observations and corollaries.
Consider the star on r vertices, with r − 1 edges (denoted by Sr).

Proposition 3.7. d(Sr) = 1 − 1
r−1

.

Using Theorem 2.5 together with Proposition 3.7, we obtain a lower bound of d(G) in
terms of the maximum degree ∆(G).
In what follows, we suppose that G is connected and has more than one edge; implying
that ∆ ≥ 2. Combining Proposition 3.7 with Theorem 2.2, we get the following corollary.
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Corollary 3.8. (1 − 1
∆

) ≤ d(G) ≤ (1 − 1
∆2 ).

The lower bound turned out to be sharp for every ∆ according to Proposition 3.7.
However, the upper bound can be strengthened.
Using the observation of András Gács and Péter Csikvári [7], we can express the critical
edge density in a more natural form.

Theorem 3.9. For every tree T , d(T ) = 1 − 1
λ2

max(T )
.

Proof. We use the notation of Remark 3.3. By the theorem of Perron and Frobenius [5],
we know that the largest eigenvalue of the adjacency matrix of T belongs to a strictly
positive eigenvector v = (v1, v2, . . . , vr) ∈ R

r. Then for every xij ∈ Xi corresponding to an
edge, let w(xij) =

vj
P

k∈Γ(i) vk
=

vj

λmax(T )vi
. Hence

∑
j∈Γ(i) w(xij) = 1, and w(xijxji) = 1

λ2
max(T )

which is the weight of the missing edge between Xi and Xj . Thus the weights are positive
and satisfy the equations of Observation 3.5, so d(T ) equals to 1 − 1

λ2
max(T )

.

The well known result of Godsil [8], (also obtained by Stevanović [14]), states sharp
bounds on the maximal eigenvalue.

Theorem 3.10.
√

∆ ≤ λmax(T ) < 2
√

∆ − 1.

Thus we get the following theorem.

Theorem 3.11. The following inequality holds for the critical edge density d(T ) of a tree
T with maximum degree ∆:
(1 − 1

∆
) ≤ d(T ) < (1 − 1

4(∆−1)
).

As we can see, the difference between the critical edge density and 1 is linear in 1
∆

for
a tree and not quadratic.

Further results can be obtained by applying the results of Lovász and Pelikán. Let Pr

be the path on r vertices and Sr be the star on r vertices.

Theorem 3.12. [11] For every tree T on r vertices, the following holds:
2 cos π

r+1
= λmax(Pr) ≤ λmax(T ) ≤ λmax(Sr) =

√
r − 1.

Corollary 3.13. For every tree T on r vertices, the following holds:
1 − 1

4 cos2 π
r+1

= d(Pr) ≤ d(T ) ≤ d(Sr) = 1 − 1
r−1

.

Let us mention that Theorem 3.11 can also be proved directly using the previous re-
sults of this paper. This way, Theorem 3.9 could imply Theorem 3.10 which would mean
an alternative proof for it. We only sketch the proof here.

We take a well chosen sequence of trees (B∆,n) with maximum degree ∆, for which
every tree of maximum degree ∆ is a subgraph of an element of the sequence, and the
elements of the sequence contains the previous element as a subtree. By Lemma 2.5, it is
enough to prove that d(B∆,n) tends to (1 − 1

4(∆−1)
).

For this purpose, we define the so-called Bethe-trees recursively, as follows [10], [14].

the electronic journal of combinatorics 18 (2011), #P46 8



Definition 3.14. The tree B∆,1 is a single vertex. The tree B∆,n consists of a vertex u

which is joined by edges to the roots of each of ∆ − 1 copies of B∆,n−1. The vertex u is
the root of B∆,n.

By the symmetry of Bethe-trees, one can express the weights of the optimal construc-
tion of a Bethe-tree, starting from the root, level by level, recursively, in terms of ∆ and
d, the edge density. Let Fk(d) denote the weight of a vertex on the kth level, not joined
to all the vertices of the neighboring class of level k − 1. There is a unique vertex with
this property in each class of level k (k > 1), and their weights are equal by symmetry.

Then, one can obtain that Fk(d) is increasing while defined (by the equations express-

ing that the edge density is equal to d, i.e. Fk+1(d) = (∆ − 1) (1−d)
1−Fk(d)

). Furthermore,

Fk(d) = 1 holds for the tree B∆,k and its critical edge density. Suppose to the contrary,
that d > 1 − 1

4(∆−1)
holds for the critical edge density of a tree with maximum degree

∆. Then one can prove that Fk(d) < 1
2

< 1 would be true for all k > 1, which is a
contradiction.

On the other hand, it is not hard to prove that if d < 1 − 1
4(∆−1)

for a real number d,
then there exists a Bethe-tree which has critical edge density greater than d.
We leave the details to the reader.

4 Critical edge density of cycles

In this section we give an optimal construction for cycles and determine their critical edge
density. As it turns out, this problem is closely related to the critical edge density of
paths.
By Lemma 2.1 we assume that each class in the blow-up graph has cardinality at most
two. We will show that the optimal construction among such restricted blow-up graphs
is determined up to isomorphism.
Then we show that the critical edge density of Cr, a cycle on r vertices, is equal to d(Pr+1),
the critical density of a path on r + 1 vertices.

The difficulty of this case compared with the tree case comes from the following.
Lemma 2.1 reduces the number of vertices (and so the number of weights) to 2|E(G)|,
while we have |V (G)| equalities expressing that the sum of weights in every class is 1,
and |E(G)| equalities expressing with an extra parameter d that all edge densities are the
same by Lemma 2.3. For trees, the number of variables is the same as the number of
equalities, but generally it is not the case. The denser the graph is, the more difficult the
solution is.

Let us denote the vertices of the graph Cr by the elements of {1, 2, ..., r}. Since the
images of the vertices have cardinality two in our case, we denote the vertices and so their
weights by xi and (1−xi). This means that we suppose that every class has two vertices,
so we allow for some of them to have zero weight, in which case we call it a virtual vertex.
We assume that r > 2.

Construction 4.1. In the construction C∗

r let there be edges between the following ver-
tices:
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• xi and xi+1 for i = 1, ..., (r − 1),

• (1 − xi) and (1 − xi+1) for i = 1, ..., (r − 1),

• xi and (1 − xi+1) for i = 1, ..., (r − 1), and

• xr and (1 − x1).

We will show that using appropriate weights, C∗

r is an optimal construction for Cr.
To prove this we repeat the optimal construction of Pr, presented in the previous section,
in a more convenient form.

Construction 4.2. The path Pr has 2 leaves as a tree, so in its optimal construction
there are two classes with cardinality one (X1 and Xr). Let us denote their vertices by
x1, (1 − xr) respectively; their weight is 1. In the construction of P ∗

r let there be edges
between the following vertices:

• xi and xi+1 for i = 2, ..., (r − 2),

• (1 − xi) and (1 − xi+1) for i = 2, ..., (r − 2), and

• xi and (1 − xi+1) for i = 1, ..., (r − 1).

We have already seen that Construction 4.2 (with appropriate weights) is optimal.
The optimality of Construction 4.1 will be deduced from this statement.

Theorem 4.3. C∗

r is an optimal construction for Cr with appropriate weights.

The crucial step in the proof of this theorem (and also in the determination of the
optimal edge density) will be to prove that one can suppose that there is a class of size
one. First we will show that if there is no optimal construction of Cr in which one of the
classes has cardinality 1, then the edge structure of C∗

r should give an optimal construction
(with appropriate weights). Later it will turn out that for C∗

r the optimal weighting gives
weight 0 to one of the vertices, which means that it is a virtual vertex, and we may delete
it from the construction. So there surely exists an optimal construction in which one of
the classes has only one vertex. After this, we will see that this optimal construction
corresponds to the optimal construction for Pr+1 in some sense, completing the proof.
We mention in advance that d(Cr) > 1

2
holds; this trivial lower bound follows from

an appropriate weighting of the given construction. (We may refer to the first part of
Theorem 4.6.)

Lemma 4.4. Suppose that every class of the optimal construction has cardinality at most
two. If there is no optimal construction with a class of cardinality one, then the edge
structure of any optimal construction Ĉ∗

r must be the same as that of C∗

r .
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Proof. Assume that this cardinality condition holds. Hence every vertex i of Cr has two
vertices with positive weights in its image. Observe that if Ĉ∗

r is optimal, then the edge
structure is saturated, that is, any further edge would make a Cr subgraph in the blow-up
graph. We also know that all edge densities de are equal.
Suppose that for every class, the vertices in the class are joined to at least one vertex of
each neighboring classes. Then starting from x1, stepping from class to class, we have a
circuit on 2n vertices. It is a saturated edge structure, any further edge would make a
Cr subgraph, and so this is Ĉ∗

r itself. Let us choose the heavier vertices from each class.
They do not induce Cr, so there is an edge e = ij of Cr that is not induced. For this
edge, the edge density de is at most 1

2
, since

de = (1 − yj)yi + (1 − yi)yj ≤ 1
2

as 0 ≤ 2(yi − 1
2
)(yj − 1

2
),

which means that Ĉ∗

r cannot be optimal.
Hence we can suppose that a vertex in X1 has no neighbor in Xr. Let us denote this

vertex by x1, and note that its weight is less than 1
2
. This vertex cannot be contained in

an induced Cr, so it must be adjacent to every vertex in X2 due to the saturation of the
edge structure. Since 1

2
< d(Cr) < 1, (1−x1) must be non-adjacent to exactly one vertex

of X2. Let us call this vertex x2.
In the general step, we assume that the edges spanned by the first i classes are as in C∗

r ,
with the additional information that xi cannot be in an induced Cr regardless of the edges
outside the span of the first i classes.

xi is adjacent to all vertices of Xi+1, since the edge structure is saturated. So (1− xi)
is adjacent to at most one vertex of Xi+1, otherwise the edge density would be 1 for that
particular edge of Cr. We denote by xi+1 the vertex to which 1 − xi is not adjacent.
This vertex cannot be in an induced Cr, either. We have two cases according to whether
(1 − xi)(1 − xi+1) is an edge or not.

If (1− xi)(1− xi+1) is an edge in Ĉ∗

r , then the edges are the same as in C∗

r from X1 up to
Xi+1, and we may move on to the next class. If we reach Xr, we get that only the edge
xr(1 − x1) can be in the graph (otherwise we have an induced Cr), and this edge has to
be there, since d(Cr) > 0.

If (1 − xi)(1 − xi+1) is not an edge in Ĉ∗

r , then none of the vertices in Xi can be in an
induced Cr, as they are adjacent only to xi in Xi. Thus both vertices are adjacent to
both vertices in Xi+2, which is a contradiction with ∀de < 1, except in case i = (r − 1).
However, the neighbors of xr and (1−xr) would be the same (namely xr−1 and (1−x1)),
thus the vertex n ∈ V (Cr) could also have only one vertex in its image, contradicting our
assumption.

Lemma 4.5. If a weighting of C∗

r is optimal, then x1 = 0 or (1 − xr) = 0.

Proof. We prove it by contradiction. Assume that the optimal construction is C∗

r and
every weight is positive. Let us denote the minimal edge density by d, which is supposed
to be critical. Applying Lemma 2.3, we know that de = d for every edge e ∈ E(Cr) . This
yields n equations in (r + 1) variables: {x1, x2, ..., xr, d}. Our equations are as follows.

(1 − d) = (1 − x1)x2,
(1 − d) = (1 − x2)x3,
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...
(1 − d) = 1 − xr(1 − x1).
Considering x1 and d as parameters, all other weights can be expressed, since the

first i equations contain only the first i variables, and the first i − 1 can be expressed by
induction and no coefficients are zero. We claim that xi < xi+1 holds for 1 ≤ i < n.
For i = 1 it is true, because
(1 − x1) > xr(1 − x1) = d > (1 − x2) from the first and n-th equation. The general case
follows by induction using the i-th and (i + 1)-th equations:
xi+1

xi
= (1−xi−1)

(1−xi)
, hence 0 < x1 < ... < xr < 1.

Note that if we allow zero weights among them, we get the statement of the lemma (since
only the mentioned weights can be zero), as in this case the previous inequalities may be
not strict; but then x1 or (1 − xr) must be zero.
We may assume that x2x3...xr−1 ≤ (1− x2)(1− x3)...(1− xr−1), since otherwise changing
the weight of xi to (1 − xr+1−i), we achieve the same structure, but satisfying the above
inequality.
Let us take a sequence (ε1, ε2, ..., εr) of ε-s which fulfill the following equalities:

εr

εr−1
= xr

(1−xr−1)
,

...
ε4

ε3
= x4

(1−x3)
,

ε3

ε2
= x3

(1−x2)
,

ε2

ε1
= x2−ε2

(1−x1)
.

We choose εr small enough to guarantee the inequality (xi − εi) > 0 for all i. Each εi

can be expressed as a positive constant multiple of ε2, so there exists a good choice.
Now we change the weights in the following way: x′

i := xi − εi, and look at the change of
the edge densities.

It is not changing between X1 and X2, since 1 − d = (1 − x1)x2 = (1 − x′

1)x
′

2.
It is increasing between Xi and Xi+1 for 1 < i < n, since 1 − d = (1 − xi)xi+1 >

(1 − xi)xi+1 − εiεi+1 = (1 − xi)xi+1 + εixi+1 − εi+1(1 − xi) − εiεi+1 = (1 − x′

i)x
′

i+1.
It is not decreasing between Xr and X1, as we will prove soon, which yields a contra-

diction.
Hence, we have to prove that

d = xr(1− x1) ≤ x′

r(1− x′

1) = (xr − εr)(1− x1 + ε1), which is equivalent to the following

inequality: εr

ε1
≤ (xr−εr)

(1−x1)
.

The left hand side can be expressed as the product of the εi+1

εi
for i = 1, . . . , r − 1. Thus,

applying the equlities above, we get εr

ε1
= (x2−ε2)x3...xr

(1−x1)(1−x2)...(1−xr−1)
≤ (xr−εr)

(1−x1)
.

We assumed that x3...xr−1

(1−x2)...(1−xr−1)
≤ 1

x2
, so it is enough to prove that

(x2−ε2)xr

x2
≤ (xr − εr) holds.

This is equvivalent to have x2εr ≤ xrε2, which follows from our assumption too, as
multiplying the equalities expressing the proportion of the ε-s again, we get that
εr

ε2
= xrxr−1...x3

(1−xr−1)...(1−x3)(1−x2)
≤ xr

x2
holds,

which is equivalent to the one we wanted to prove.
Hence by changing the weights, we find a construction where the edge densities are not
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equal, although the minimal edge density is d. This contradicts Lemma 2.3, that is, x1 = 0
or (1 − xr) = 0 holds.

Theorem 4.6. d(Cr) = d(Pr+1) = 1 − 1
4cos2 π

r+2

Proof. We will see that an optimal construction for either Cr or Pr+1 can be used to find
a construction for the other with the same edge density.
If P ∗

r+1 is an optimal construction for the path Pr+1, satisfying the conditions of Lemma
2.1, then gluing the leaves together, we get a construction for Cr, inducing no Cr, and
having minimal edge density d(Pr+1). On the other hand, using our previous result, we
can assume that an optimal construction of Cr has a class with cardinality 1. If we split
it into two (and do not connect the two created vertices), we gain a construction for Pr+1,
(inducing no Pr+1,) having minimal edge density d(Cr). Hence, the critical edge densities
of the two graphs are equal.

Corollary 4.7. d(Cr) < d(Cr+1) < 3
4

and d(Cr) → 3
4
.

We thus get that the gluing trick gives an optimal construction of Cr from Construction
4.2. Note that this is exactly Construction 4.1 with a virtual, zero-weighted vertex as
described in Lemma 4.5; this confirms that Construction 4.1 is an optimal construction
for Cr if we let a vertex be virtual.

5 The critical edge density of complete graphs

Let us denote the complete graph on r vertices by Kr, and its critical edge density by
d(r). For r ≤ 3, we determined the value of d(r) before. In this section, we give a recursive
construction for complete graphs which we conjecture to be optimal.

Construction 5.1. For r = 2, K∗

2 is the empty graph on two vertices (this is obviously
optimal). Let K∗

r has r classes denoted by X1, X2, . . . , Xr for which the cardinality of Xi

is (r + 1− i), except X1, whose cardinality is r − 1. Choosing one vertex from each class,
and denoting them by xi according to their class, we define the edges of K∗

r as follows.

• xxr ∈ E(K∗

r ) for all x ∈
⋃

(Xi \ xi),

• xxi ∈ E(K∗

r ) for all i ≤ n and all x ∈ Xj if i 6= j < r,

• the edge structure restricted to the classes (Xi \ xi) (i < r) is the same as the edge
structure of K∗

r−1.

It is easy to see that K∗

r does not induce Kr. If it is optimal, then the critical edge
density of Kr can be expressed recursively, according to Lemma 2.3.

Conjecture 5.2. The critical edge density d(n) can be determined from the following
equality:
d2

(n)(1 − d(n−1)) + d(n) − 1 = 0, where d(2) = 0.

Note that the construction for n = 3, together with its optimality, was given in [2].
This also follows from the results of Section 4, since K3 = C3.
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6 Final remarks, open questions

We did not give a general description of the extremal structure of the optimal constructions
for an arbitrary graph G. We conjecture that there exists an optimal construction on
|V (G)| + |E(G)| − 1 vertices, as in the case of cycles and in Construction 5.1. In view of
the equalities of Observation 3.5, this would also determine the critical edge density.
From the presented extremal structures for trees and cycles one may conjecture that after
contracting the vertices that have the same neighbors, every optimal construction of a
given graph is the same. However, it seems that this does not hold in general.

The question about good lower bounds on the edge densities of Kr-free k-partite graphs
raised by [2] and [13] is very closely related to our problem. In our paper, we only deal
with the case when r = k (apart from our general setting), while [2] solved it if r = k = 3,
and [13] obtains results on the case when k is large enough in terms of r. Clearly, there
are some open questions here.

Another way to extend the results of [2] is to consider the minimal triangle density
of a tripartite graph with prescribed edge density between the classes. Talbot, Baber
and Johnson solve this problem in [15] but, obviously, this approach makes sense in the
general setting too.
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