
Distinguishing Maps

Thomas W. Tucker
Department of Mathematics

Colgate University
Hamilton, NY, U.S.A.

Submitted: Aug 17, 2009; Accepted: Feb20, 2011; Published: Feb 28, 2011

Mathematics Subject Classification: 05E18, 05C10

In memory of Michael O. Albertson

Abstract

The distinguishing number of a group A acting faithfully on a set X, denoted
D(A,X), is the least number of colors needed to color the elements of X so that
no nonidentity element of A preserves the coloring. Given a map M (an embedding
of a graph in a closed surface) with vertex set V and without loops or multiples
edges, let D(M) = D(Aut(M), V ), where Aut(M) is the automorphism group of
M ; if M is orientable, define D+(M) similarly, using only orientation-preserving
automorphisms. It is immediate that D(M) ≤ 4 and D+(M) ≤ 3. We use Russell
and Sundaram’s Motion Lemma to show that there are only finitely many maps M

with D(M) > 2. We show that if a group A of automorphisms of a graph G fixes
no edges, then D(A,V ) = 2, with five exceptions. That result is used to find the
four maps with D+(M) = 3. We also consider the distinguishing chromatic number
χD(M), where adjacent vertices get different colors. We show χD(M) ≤ χ(M) + 3
with equality in only finitely many cases, where χ(M) is the chromatic number of the
graph underlying M . We also show that χD(M) ≤ 6 for planar maps, answering a
question of Collins and Trenk. Finally, we discuss the implications for general group
actions and give numerous problems for further study.

1 Introduction

A group A acting faithfully on a set X has distinguishing number k, written D(A, X) = k,
if there is a coloring of the elements of X with k colors such that no nonidentity element
of A is color-preserving, and no such coloring exists with fewer than k colors. We also
say that an action of A on X is k-distinguishable if D(A, X) ≤ k. The concept was
introduced by Albertson and Collins [2] in the context of the automorphism group of a
graph acting on the vertex set and extended to general group actions by Tymoczko [25]
(see also [4, 5, 27]). On the other hand, similar ideas are found earlier in permutation
groups; indeed, Bailey and Cameron [3] cite many situations where graph theorists have
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rediscovered and renamed concepts from permutation groups. The graph theoretic origin
of distinguishing number [2] is the Necklace Problem: to destroy any symmetry of a
necklace of n beads, one needs beads of three different colors for n = 3, 4, 5, but only two
colors for n > 5. That is, D(Aut(Cn), V (Cn)) = 2 for n > 5. The Necklace Problem
actually plays a role in some of our proofs.

The generic case for group actions is 2-distinguishability in a variety of contexts; that
is, given a group A acting faithfully on a set X, one should expect to find a set Y such
that the only element of A leaving Y invariant is the identity. For example, this follows
immediately in all cases when A is abelian: since point stabilizers are conjugate in A, just
choose for Y one point in each orbit of A. It is true, but much deeper, in all cases when
A has odd order, by Gluck’s Theorem [10]. Other examples where D(A, X) = 2 in all
but finitely many cases include repeated Cartesian products of a graph [1, 13], primitive
permutation groups [11, 21], automorphism groups of finite vector spaces or groups [7],
transitive actions where the order of A is polynomial in the size of X [7].

A map is an embedding of a graph in a closed surface; throughout, we assume that
maps have no multiple edges or loops. This paper studies the distinguishing numbers
D(M) = D(Aut(M), V ) or D+(M) = D(Aut+(M), V ), where M is a map with vertex set
V and automorphism group Aut(M) and, if M is orientable, orientation-preserving auto-
morphism group Aut+(M). The automorphism group of a map is much more restricted
than the automorphism group of the underlying graph, since vertex stabilizers are cyclic
or dihedral and edge stabilizers have order at most 4. An immediate consequence is that
D(M) ≤ 4 and D+(M) ≤ 3 for all maps M . The theme of this paper is that, just as in
other contexts, the generic situation is D(M) = 2. It should be noted that this paper, in
preprint form, precedes the only other papers on distinguishing maps [9, 15, 16].

Collins and Trenk [6] have introduced the related idea of distinguishing chromatic
number χD(G) of graph G, where now the distinguishing coloring must also be proper,
namely adjacent vertices get different colors. For graphs, χD(G) can be arbitrarily larger
than the chromatic number χ(G). We show for maps, just as the generic case for distin-
guishing number is D(M) ≤ 2, the generic case for distinguishing chromatic number is
χD(M) ≤ χ(M) + 2.

We summarize the major results of this paper:

Theorem 1.1 If M has a vertex of valence 1 or 2, then D(M) = 2 unless the underlying
graph for M is Cn, K1,n, or K2,n for n = 3, 4, 5.

Theorem 1.2 For all but finitely many maps, D(M) = 2.

Theorem 1.3 If A is any group of automorphisms of a graph G such that the only element
of A fixing adjacent vertices is the identity, then D(A, V (G)) = 2 unless G is K4, K5, K7

or the octahedral graphs O6, O8. In particular, the only Frobenius group actions with
D(A, X) > 2 are for |X| = 4, 5, 7.

Theorem 1.4 There are only four maps M with D+(M) > 2: the tetrahedron, the oc-
tahedron, the triangulation of the torus by K7, and the quadrangulation of the torus by
K5.
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Theorem 1.5 For all maps χD(M) ≤ χ(D)+3, with equality in only finitely many cases.

Theorem 1.6 For all planar maps χD(M) ≤ 6, with equality in only finitely many cases.

We note that a sequel to this paper classifies the graphs underlying the finitely many
maps M with D(M) > 2.

This paper is organized as follows. In Section 2, we summarize for maps the structure
of stabilizers for vertices, edges, and “angles” at a vertex. These are the main tools for
the rest of the paper. We also discuss the Russell-Sundaram Motion Lemma and prove
Theorem 1.1. In Section 3, we use the Motion Lemma to prove Theorem 1.2. In Section 4,
we prove Theorem 1.3, which we then use to prove Theorem 1.4. In Section 5, we consider
the distinguishing chromatic number for maps, proving Theorems 1.5 and 1.6. The latter
answers a question of Collins and Trenk [6]. In Section 6, we consider questions about
the distinguishability of graphs, suggested by our work for maps. We also give various
problems for further study.

I wish to thank Karen Collins, Marston Conder, Seiya Negami, Alen Orbanič, Tomo
Pisanski, Jozef Širáň, Ann Trenk, Mark Watkins, and Steve Wilson for helpful comments.
I also wish to thank a referee whose lengthy, careful, and thoughtful review led, I hope,
to a much more readable paper.

But this paper really owes its existence to Mike Albertson, who, in his first week at
Colgate in 2004 as the Neil Grabois Visiting Professor, came into my office and said:
“Let’s talk about what math we are doing. I get to go first.” He proceeded to tell me
about distinguishability. He knew it was a great idea. My immediate response was “Have
you tried it on maps?” His untimely death in March 2009 robbed us of any more of his
ideas. This paper is dedicated to Mike Albertson.

2 Map automorphisms and stabilizers

A map M is an embedding of a graph G, called the underlying graph, in a closed sur-
face S, called the underlying surface, such that each component, or face, of S − G is
homeomorphic to an open disc (that is, the embedding is cellular). In this paper, all
maps are connected and finite, with no multiple edges or loops. A map is orientable or
not depending on whether the underlying surface is orientable or not. We denote the
vertex set of M by V (M). There are a variety of ways of looking at maps as combinato-
rial structures: rotation systems or band decompositions [12], permutation groups acting
on directed edges (monodromy or dart groups)[17], triples of vertex-edge-face incidences
(flags)[24, 23]. Since we are only interested in properties of automorphisms, we will keep
our viewpoint intuitive, rather than technical. For our purposes, it is best to think of a
map as a dissection of a surface into vertices, edges, and faces.

An automorphism of a map is a homeomorphism of the surface taking vertices to
vertices, edges to edges, and faces to faces. We consider two automorphisms to be the
same if they define the same bijections of the vertex set, the edge set, and the face set.
Since these sets are finite, there are only finitely many automorphisms of a map. The
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collection of all automorphisms of M is a finite group, denoted Aut(M). If M is orientable,
the automorphisms that are orientation-preserving form an index two subgroup denoted
Aut+(M).

Suppose that uv is an edge of map M and the faces on either side of uv are f and f ′.
Then if an automorphism fixes u, v and f , it must also fix f ′, as well as all vertices and
edges incident to f , and hence all faces incident to these edges etc. By connectivity, we
must have that the automorphism fixes all faces, vertices and edges. Thus the only non-
identity automorphism of M fixing u and v must interchange f and f ′. If M is orientable,
this automorphism must be orientation-reversing and can be viewed as a reflection across
edge uv.

Suppose instead that v is a vertex of a map M of valence d. Then any automophism
fixing v must take a small disk neighborhood of v to itself. If we view the d edges incident
to v as spokes in a wheel, then the automorphism must act on the spokes like an element
of the dihedral group Dd acting in the usual way on d points on a circle.

To summarize:

• There is at most one nonidentity automorphism fixing adjacent vertices and if the
map is orientable, the automorphism is orientation-reversing.

• If vertex v has valence d, then there is a cyclic order for the neighbors of v such
that any automorphism fixing v acts on the neighbors as an element of the dihedral
group Dd.

We want the action of Aut(M) on the vertex set V (M) to be faithful. This is one
reason we require our maps not to have multiple edges or loops. Even with this restriction,
consider the map M of a cycle Cn lying along the equator of the sphere. Then the reflection
interchanging the northern and southern hemispheres is an automorphism of M leaving
the equator fixed, so the action of Aut(M) on V (M) is not faithful. We claim this is
the only map where the action is not faithful. Indeed, if the map M has any vertex v
of valence d > 2, then any automorphism fixing all vertices would fix all edges incident
to v and hence all faces incident to v, making the automorphism the identity. The only
graphs with all vertices of valence 1 or 2 are paths and cycles. Both have maps only in
the sphere. Since there is only one face in the case of a path, the action of Aut(M) is
faithful, leaving only the cycle on the equator as a map whose automorphism group does
not act faithfully. Since our definition of distinguishing number requires a faithful action,
we will deal with the equatorial map separately.

Our graph theoretic notation and terminology are minimal. The n-cycle is denoted
Cn. The complete graph on n vertices is denoted Kn and the complete bipartite graph
on m and n vertices is denoted Km,n. For even n, we denote by On the octahedral graph
obtained from Kn by removing n/2 disjoint edges. The valence of a vertex in a graph or
map is the number of edges incident to that vertex. A branch vertex is one of valence
greater than 2. The size of a set Y is denoted |Y |.

Suppose that A acts on the set X and Y ⊂ X. The (setwise) stabilizer of Y denoted
Stab(Y ), is the subgroup of all a ∈ A leaving Y invariant. That is,

Stab(Y ) = {a ∈ A| a(y) ∈ Y for all y ∈ Y }.
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The pointwise stabilizer of Y , denoted, Fix(Y ), is the subgroup of all a ∈ A fixing all
elements of Y . That is,

Fix(Y ) = {a ∈ A| a(y) = y for all ∈ Y }.

In contexts where there may be more than one group action, we write StabA(Y ) and
FixA(Y ). Note that if |Y | = 1, then Fix(Y ) = Stab(Y ), and if |Y | = 2, then Fix(Y ) has
index at most 2 in Stab(Y ). We say that Stab(Y ) or Fix(Y ) is trivial if it contains only
the identity.

Remark: Note that D(A, X) = 1 if and only if A is the trivial group. Also, D(A, X) =
2 if and only if A is nontrivial but Stab(Y ) is trivial for some nonempty subset Y of X:
simply color Y white and all other elements of X black. Finally, if Fix(Y ) is trivial and
Y has k elements, then D(A, X) ≤ k + 1: just color each element of Y with the first k
different colors and color the remaining vertices with the last color.

In terms of this notation, our earlier remarks on automorphisms fixing a vertex or
edge can be stated as follows for the action of Aut(M) on V (M):

Proposition 2.1 If uv is an edge of the map M , then Fix(u, v) has at most one non-
identity element, which is orientation-reversing if M is orientable.

Proposition 2.2 If v is a vertex of valence d in the map M , then its neighbors have
cyclic order such that Stab(v) acts as a subgroup of the dihedral group Dd.

Given a map M , define an angle at v to be a triple of vertices uvw where uv and vw
are edges. If u and w correspond to antipodal points in the rotation at v, we call the angle
straight; otherwise, we call the angle bent. If there is also an edge uw we call the angle
uvw closed; otherwise it is open. If uv and vw are consecutive edges in a face boundary
incident to v, then we call the angle uvw a corner of the embedding. From the dihedral
action of Stab(v) on the neighbors of v we have:

Proposition 2.3 Suppose that uvw is a bent angle. Then Fix(u, v, w) is trivial. More-
over, there is at most one automorphism, called an angle reflection, fixing v and inter-
changing u and w and it is an involution; if the map is orientable, such an automorphism
is orientation-reversing. In particular, if uvw is an open bent angle, then Stab(u, v, w) is
trivial for Aut+(M).

We can use the structure of edge and angle stabilizers immediately to get bounds on
D(M) and D+(M). If map M has a vertex v of valence greater than 2, it has a bent
angle uvw. Thus by Proposition 2.3, Fix(u, v, w) is trivial so D(M) ≤ 4. If M is instead
a path or cycle, then clearly D(M) ≤ 3. Also, by Proposition 2.1, for any edge uv, we
have Fix(u, v) is trivial in Aut+(M), so D+(M) ≤ 3. Summarizing,

Corollary 2.1 D(M) ≤ 4 for all maps M and D+(M) ≤ 3 for all orientable maps M .
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It is tempting to try to construct maps with D(M) > 2 by subdividing edges with
extra vertices or by adding pendant vertices in a way that leaves Aut(M) unchanged.
For example, one might try to get around the restriction on multiple edges or loops
by subdividing edges. The following theorem shows that such vertices guarantee that
D(M) = 2, except for a few small maps related to the Necklace Problem. Note that to
allow discussion of the equatorial map, we must extend the definition of distinguishing
number to non-fathful actions: instead of requiring the only color-preserving element to
be the identity, we require it to fix all elements of X.

Theorem 2.1 If M has at least one vertex of valence 1 or 2 and D(M) > 2, then the
graph underlying M is Cn, K1,n or K2,n, for n = 3, 4, 5.

Proof. Throughout the proof, we let M be a map with D(M) > 2, so Stab(Y ) is
nontrivial for any Y ⊂ V (M). If M has no branch vertex, making the underlying graph
G a path or cycle, we get G = Cn for n = 3, 4, 5, by the Necklace Problem.

Therefore we assume M has a branch vertex. Suppose that M has a vertex of valence
2. Then it has one, u, adjacent to a branch vertex v. Since u and v have different valences
and Stab(u, v) is not trivial, there must be a reflection f fixing u and v. Since v is a
branch vertex, there is a vertex w such that uvw is a bent angle. If w has valence 1,
then Stab(u, v, w) is trivial, since u, v, w have different valences. If w is a branch vertex,
a nontrivial element of Stab(u, v, w) must interchange v and w, since u is not a branch
vertex. This forces an edge between u and w. For the same reason, there must be an
edge from u to f(w), but this contradicts u having valence 2 (note that f(w) 6= w since
the angle uvw is bent).

Thus w must have valence 2. Let x be its other neighbor. Then x 6= v since otherwise
M would have multiple edges, and x 6= u, since otherwise w and f(w) are both adjacent
to u. Since u and w have valence 2 and v does not, a nontrivial element of Stab(u, v, w, x)
either interchanges u and w, or interchanges v and x or performs a 3-fold rotation of
u, w, x. In all cases, this forces an edge between u and x, so the other neighbor of u is the
same as the other neighbor of w.

Since uvw was an arbitrary bent angle at v with u having valence 2, we conclude
that all neighbors of v have valence 2 and that they all have the same other neighbor x.
Repeating the same argument with x instead of v, we conclude that the underlying graph
G = K2,n, and by the Necklace Problem, we must have n = 3, 4, 5.

Suppose instead that M has no vertex of valence 2, but does have a vertex of valence
1. If M has more than one branch vertex, there must be a bent angle uvw where u has
valence 1 and v and w are branch vertices. Then Stab(u, v, w) is trivial, so D(M) ≤ 2.
If M has only one branch vertex, then the underlying graph G = K1,n, since all other
vertices have valence 1. By the Necklace Problem, we must have n = 3, 4, 5. 2

We could assume from this point on that there are no vertices of valence 1 or 2 in any
of our maps, but we do not because we are also interested in distinguishing graphs and
chromatically distinguishing maps, where vertices of valence 2 can be important.
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3 Only finitely many maps have D(M) > 2

Before we begin our analysis of maps with D(M) > 2, we use the Russell and Sundaram
Motion Lemma [19] to show that our problem is basically a finite one. Let A act faithfully
on the set X. Define the motion of an element a of A to be m(a) = |{x| a(x) 6= x}|; define
the motion of A on X, denoted m(A), to be the minimum of {m(a)| a 6= 1}. The motion
of a permutation group is also called the minimal degree (see [8]). Then we have:

Lemma 3.1 (The Motion Lemma) Given A acting faithfully on X, if m(A) > 2 log2(|A|),
then D(A, X) = 2

Proof. We sketch the proof since it is so short and elegant. Color X randomly
black and white. Suppose that a ∈ A, as a permutation of X, has a cycle of length
c. The probability that all x in that cycle have the same color is (1/2)c−1. Therefore,
the probability that a preserves the coloring is (1/2)k, where k is the sum of the cycle
lengths minus the number of cycles. It is easy to see that m(a) ≤ 2k. Thus the expected
number of nonidentity elements of A preserving the coloring is at most (|A|−1)(1/2)m(A)/2.
When m(A) > 2 log2(|A|), the expected number is less than one, guaranteeing at least
one coloring that is not preserved by any a 6= 1. 2

The following Lemma gives lower bounds on motion for automorphism groups of maps:

Lemma 3.2 Suppose that M is a map with n vertices, all of valence at least 3. Let
A = Aut(M), acting on V (M).

a) If all vertices have the same valence, then m(A) ≥ n/6.

b) If the maximum valence is d, then m(A) ≥ (2/d2)n.

Proof. Suppose all vertices have valence d. We count the number of vertices moved by
a given nonidentity automorphism. Let uvw be any bent angle. Then at least one vertex
in the angle must be moved. If d is odd, there are d(d − 1)n/2 such angles. If d is even,
there are (d(d− 1)/2− d/2)n such angles. Every vertex v is in at most d(d− 1)/2 angles
as the middle vertex and at most d(d− 1) angles as an end vertex. Thus the motion of a
single vertex v will be counted at most d(d− 1)/2 + d(d− 1) times. The total number of
vertices moved, if d is odd, is then at least:

d(d − 1)/2

d(d − 1)/2 + d(d − 1)
n =

1

1 + 2
n = n/3,

and if d is even, at least:

d(d − 1)/2 − d/2

d(d − 1)/2 + d(d − 1)
n =

d − 2

d − 1
n/3 > n/6.

Suppose instead that the maximum valence is d. There are at least 3n bent angles
(since every vertex has valence at least 3) and the motion of a single vertex is counted at
most d2/2 + d2 times, giving m(A) > (2/d2)n. 2
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The condition on the valences all being the same or bounded is crucial. The double
pyramid in the sphere with Cn along the equator has an automorphism which moves only
the north and south poles, so the motion can be an arbitrarily small fraction of the total
number of vertices (note that the maximum valence is d = n).

Theorem 3.1 There are only finitely many maps M with D(M) > 2. There are only
finitely many orientable maps with D+(M) > 2.

Proof. Let M be a map with n vertices and let A = Aut(M). Since the stabilizer
of an edge has order at most 4 and there are fewer than n2/2 edges, we have |A| < 2n2.
If every vertex has the same valence d > 2, then by Lemma 3.2, m(A) > n/6. Thus,
if n > 12 log2(2n

2), then D(M) ≤ 2 by the Motion Lemma. So if n is sufficiently
large, D(M) ≤ 2. In particular, there are only finitely many vertex-transitive maps with
D(M) > 2.

Suppose that M is not vertex-transitive and D(M) > 2. We will show that the
maximum valence is at most d = 10. Let v be an any vertex and let P be its orbit under
A. Let X consist of all the neighbors of v not in P . Then B = Stab(v) takes X to X,
acting dihedrally. By the Necklace Problem, if |X| ≥ 6, then there is a subset Y ⊂ X
such that StabB(Y ) is trivial. Let Y ′ = Y ∪ {v}. Then StabA(Y ′) ⊂ B, since no element
of Y is in the orbit P of v. Thus StabA(Y ′) is trivial.

Thus each vertex in M is adjacent to at most 5 vertices not in its orbit. It remains
to show that at most 5 neighbors of v are in its orbit P . Clearly, some neighbor w of v is
in a different orbit Q, since otherwise every vertex in P is adjacent only to vertices in P ,
making M vertex-transitive or disconnected. Suppose that uvw is a bent angle with u in
P . Since Stab(u, v, w) is nontrivial and since w is in a different orbit from u and v, there
must be an automorphism fixing w and interchanging u and v. Thus w is also adjacent
to u. Since w can be adjacent to at most 5 vertices not in Q, there can be at most 4 such
bent angles uvw, so at most 5 neighbors of v are in P .

Thus by part (b) of Lemma 3.2, we have m(A) ≥ 2n/100. Since |A| ≤ 4(10n/2), there
are only finitely many possibilities for M by the Motion Lemma.

If M is orientable, Aut+(M) is a subgroup of Aut(M), so D+(M) = 2 whenever
D(M) = 2. 2

For a very different approach to showing all but finitely many planar maps have
D(M) = 2, see [9].

4 The classification of maps with D+(M) > 2

Our goal in this section is to classify all maps M with D+(M) > 2. Recall that for
Aut+(M), we have Fix(u, v) is trivial for every edge uv. We will actually do something
much stronger: we will classify all graphs G having a subgroup A ⊂ Aut(G) that does
not fix adjacent vertices and has D(A, V (G)) > 2. As a consequence, we will be able to
classify the graphs underlying all maps M with D(M) > 2 and having no automorphism
fixing an edge.
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Theorem 4.1 (Classification of graphs with actions fixing no edge) Let G be a connected
graph with vertex set V . Suppose that Aut(G) has a subgroup A fixing no edge such that
D(A, V ) > 2. Then G is C3, C4, C5, K4, K5, K7, O6 or O8.

Proof. Throughout the proof, all automorphisms of G will be assumed to be in the
specified group A. In particular,“stabilizer” means stabilizer under the action of A.
We observe that Stab(u, v) is nontrivial for every edge uv, since D(A, V ) > 2. Thus,
there must be a unique automorphism φuv in A interchanging u and v (it is unique since
|Fix(u, v)| = 1 so |Stab(u, v)| = 2). In particular, the graph G is vertex-transitive under
A and all vertices have the same valence d. Also, D(A, V ) ≤ 3 since Fix(u, v) is trivial.
The case d = 2 leads to the graphs C3, C4, C5, so we assume that d > 2.

We first show that G = Kd+1 or Od+2. Let v be any vertex in G and let L be the link
of vertex v, namely the subgraph of G induced by the neighbors of v. Suppose that u and
w are nonadjacent vertices in L. Since Stab(u, v, w) is nontrivial and u is the only vertex
in u, v, w that is adjacent to the other two vertices, there must be an element f in Stab(v)
interchanging u and w. Moreover, the action of Stab(v) on L has no fixed vertices, since
Fix(u, v) is trivial for all edges uv. Thus, f is the only element of Stab(v) taking u to
w or taking w to u. In particular, for any other vertex x in L, there is no element of
Stab(v) performing a cyclic permutation of u, w, x. Hence, any nontrivial element g of
Stab(u, v, w, x) cannot fix v. Since v has valence 3 in the subgraph induced by u, v, w, x
and since u and w have valence at most 2, g must interchange v and x, forcing edges ux
and wx.

We conclude that u and w are joined to all other vertices in L. Therefore every vertex
in L has valence either d− 1 or d− 2 in L. In particular, L is connected. If all vertices of
G are adjacent to v, then G = Kd+1, since G is vertex-transitive. If not, there is a vertex
x not adjacent to v but adjacent to some u ∈ L. Suppose w ∈ L is also adjacent to u but
not adjacent to x. Then u, v, w, x have valences 3, 2, 2, 1, respectively, in the subgraph
of G induced by Y = {u, v, w, x}, which means any element of Stab(Y ) fixes the edge
ux, a contradiction. We conclude that x is also adjacent to w. By the connectivity of
L, we have that x is adjacent to all vertices of L. Since all vertices of L have valence at
least d − 2 within L together with one edge to v and one to x, the graph G consists of L
together with u and x. The only graph with d + 2 vertices all of valence d is Od+2.

We now restrict the possible values for d. Before we proceed, we note that the Motion
Lemma alone already restricts the possibilities for d. When G = Od+2, since Aut(M) can
fix no edge, every element of A moves at least d vertices; also |Stab(v)| must divide d.
Thus by the Motion Lemma, when d > 2 log2(d(d + 2)), we have D+(M) = 2, so d < 17.
Similarly, for G = Kd+1, the motion is at least d, so again we must have d < 17. Our
arguments will not depend on motion, except in one small case, but it is reassuring to
know that no matter what, d must be small. This also means that the remainder of this
proof could be replaced by a simple computer calculation.

Suppose that G = Od+2. Given v, we denote by v∗ the only vertex in G not adjacent
to v. Given any edge uv, supppose that w 6= u, v, u∗, v∗. Then the nontrivial element φuv

of Stab(u, v) must stabilize {w, w∗}, because any nontrivial element in Stab(u, v, w, w∗)
must interchange u and v, as they are the only vertices of valence 3 in the graph induced
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by u, v, w, w∗ and Fix(u, v) is trivial. Thus for any vertex w, we have that Stab(w, w∗)
includes φuv for all u, v in Ld = Link(w) = Link(w∗) = Od. Let Ad be the subgroup of
A generated by φuv for all edges uv in Ld; note that Ad acts transitively on Ld. Then
|Stab(w, w∗)| ≥ |Ad|. Therefore, since Fix(w, w∗) has index at most 2 in Stab(w, w∗)), we
have:

|Stab(w)| ≥ |Fix(w, w∗)| ≥ |Ad|/2.

Let Ad+2 be the subgroup of A generated by φuv for all edges in Od+2. Since the action
of Ad+2 is transitive on d + 2 vertices,

|Ad+2| ≥ (d + 2)|Stab(w)| ≥ |Ad|/2.

Now we repeat the process inside Ld by choosing x, x∗ in Ld, with link Ld−2 = Od−2 in
Ld and group Ad−2 generated by φuv for all edges uv in Ld−2. Continue the process until
d = 4, at which point L4 = O4 = C4. Then |A4| ≥ 4, so |A6| ≥ 6 · (4/2) = 12 and
|A8| ≥ 8 · (12/2) = 48. Then for d = 8, we have |Stab(w, w∗)| ≥ 48, which is impossible
since for d = 8, |Stab(w, w∗)| ≤ 2 · |Stab(w)| ≤ 16. Since Ad grows faster than 2d, we have
a contradiction for all d ≥ 8. We also note for later use that for d = 6, since |A6| ≥ 12,
then |Stab(v)| ≥ 6. In any case, we have that G = O6 or O8.

Suppose instead that G = Kd+1. This means every element of A fixes at most one
vertex of G. Every triangle must have a nontrivial stabilizer, either a 3-fold rotation or
an involution, which necessarily is an edge stabilizer. Our plan is to show that A does not
have enough elements of order 2 or 3 to stabilize all (d+1)d(d−1)/6 triangles of G, except
if d = 3, 4, 6. First, we consider involutions stabilizing a triangle (note that this requires
that d + 1 be even since an involution can fix at most one vertex). For each edge uv,
there is exactly one nontrivial element of Stab(u, v) and it fixes exactly one vertex w, so
uvw is the only triangle containing edge uv and stabilized by an involution interchanging
u and v. Thus the number of triangles stabilized by an involution is at most the number
of edges, namely (d + 1)d/2. If no triangle is stabilized by an element of order 3, then

(d + 1)d(d − 1)

6
≤

(d + 1)d

2
.

Therefore, d ≤ 4.
Thus if d > 4, there must be some triangles stabilized by elements of order 3. Since

|Stab(v)| must divide d (as it acts without fixed points on the neighbors of v) and |A| =
|Stab(v)|(d + 1), we must have that 3 divides d or d + 1. Suppose first that 3 divides
d + 1. Then any automorphism of order 3 fixes no vertex, since it cannot fix more than
one vertex. Since Stab(u) ∩ Stab(v) = {1}, there are (d + 1)(|Stab(v)| − 1) nontrivial
elements of A that stabilize some vertex. Since |A| = (d+1)|Stab(v)|, that leaves exactly
d elements of A that have no fixed vertices. Thus there are at most d/2 possibilities for
automorphisms of order 3, each stabilizing (d + 1)/3 triangles, giving d(d + 1)/6 such
triangles in all. Since we already know at most d(d + 1)/2 are stabilized by involutions,
we have

(d + 1)d(d − 1)

6
≤

(d + 1)d

2
+

(d + 1)d

6
.
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Therefore, d ≤ 5 and hence d = 5, since 3 divides d + 1.
Finally suppose that 3 divides d. Then each element of order 3 fixes exactly one

vertex. Assume for the moment that Stab(v) is cyclic, which would be the case if A were
Aut+(M) for a map M . Then there is at most one element of order 3 (other than its
inverse) in Stab(v) and it stabilizes d/3 triangles, so there are at most (d+1)d/3 triangles
in all that are stabilized by elements of order 3. It follows that

(d + 1)d(d − 1)

6
≤

(d + 1)d

3
+

(d + 1)d

2
.

Therefore, d ≤ 6 and hence d = 3 or d = 6.
For the remaining cases, where d = 5, or where 3 divides d and Stab(v) is not cyclic, we

need a little group theory. The action of A on the d+1 vertices makes A a Frobenius group,
that is a transitive permutation group with no nonidentity element fixing more than one
symbol. Frobenius groups have highly restricted structure (see [8]), but we only need that
A is a semi-direct product of the Frobenius kernel F of order d+1 and Stab(v), such that
the natural homomorphism of Stab(v) into Aut(F ), given by conjugation, is an injection.
Note that |Stab(v)| divides d since it acts on d points leaving none fixed. By the Motion
Lemma, we have d < 17, so the only cases we need consider are d = 9, 12, 15, 5. The
case d = 9 cannot occur since Aut(F ) has no elements of order 3, for the two possibilities
F = Z10 or F = D5. For d = 12, F is cyclic of order 13 making Stab(v) cyclic, and for
d = 15, Stab(v) is cyclic since its order divides 15. Finally, we note that the case d = 5
cannot occur since Aut(F ) has no elements of order 5, for the two possibilities F = Z6 or
F = D3.

We conclude that d = 3, 4, 6 for the case that G = Kd+1. 2

Corollary 4.1 Any Frobenius group on n symbols, for n 6= 4, 5, 7, has distinguishing
number 2.

We now give the full classification of maps with D+(M) = 3. The classification for
maps with D(M) = 3 is far more complicated and is given in a sequel to this paper. We
need to be able to describe algebraically some fairly complicated maps and the easiest
way is with the terminology and notation of Cayley maps [17]. Given a group A and
generating set W , the Cayley graph C(A, W ) is the directed, labeled graph with a vertex
set A and directed edge labeled w from a to aw for each a in A and w in W (if w is an
involution, the edges from a to aw and from aw to a are identified to a single undirected
edge). We also refer to the undirected, unlabeled graph as a Cayley graph. Note that
each edge incident to a given vertex a can be labeled with an element of w ∈ W or its
inverse, depending on whether the corresponding directed edge labeled w begins or ends
at a.

Given a Cayley graph C(A, W ) and a cyclic ordering ρ of the elements in W ∪ W−1,
the Cayley map CM(A, ρ) is the orientable map whose underlying graph is C(A, W ) and
the rotation of labeled edges at each vertex is given by ρ. We denote ρ simply by a cycle in
parenthesis. Left multiplication by an element of A is clearly a graph automorphism, but it
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is also a map automorphism since it preserves the cyclic order of edges incident to a vertex.
Thus, the map is vertex-transitive. In addition, any group automorphism that permutes
the elements of W∪W−1 and preserves the cyclic order ρ induces an orientation-preserving
automorphism of the Cayley map. In particular, suppose that A is the cyclic group Zn

written additively, r is a root of −1 (mod n), and ρ = (1, r, r2, · · · ,−1,−r,−r2 · · ·).
Then multiplication by ri is a map automorphism of CM(Zn, ρ) for all i.

Theorem 4.2 If D+(M) = 3 and M has no vertex of valence 1 or 2, then M is the
triangular embedding of K4 in the sphere (the tetrahedron as a map), the triangular
embedding of O6 in the sphere (the octahedron as a map), CM(Z5, (1, 2,−1,−2)) or
CM(Z7, (1, 3, 2,−1,−3,−2)). The last two are the quadrangulation and triangulation
of the torus by K5 and K7, respectively.

Proof. We first show that the four maps have D+(M) = 3. For the tetrahedron,
this is easily verified. For the octahedron, we must check that every set of two or three
vertices has a nontrivial stabilizer. This is easily verified for two vertices. Any three
vertices either form a triangle or a path uvw of length 2 joining nonadjacent vertices;
the first is stabilized by a 3-fold rotation and the second by a half-turn about v. For
M = CM(Z5, (1, 2,−1,−2)), we need only check that sets of at most two vertices are
stabilized. Multiplication by 2 preserves the rotation and hence is a map automorphism
performing a 4-fold rotation about vertex 0. Thus, Stab(0) is nontrivial and Aut+(M)
acts transitively on edges, so we need only find a stabilizer for {0, 1}: multiplication by
−1 followed by addition of 1 works. For M = CM(Z7, (1, 3, 2,−1,−3,−2)), we must
check sets of size at most 3. Again, multiplication by 3 preserves the rotation and hence
is a map automorphism, giving a 6-fold rotation about 0. Thus for sets of size 2, we need
only check {0, 1}: multiplication by −1 and addition of 1 works. For sets of size 3, by the
6-fold rotation, we need only check the sets {0, 1, 3}, {0, 1, 2} and {0, 1,−1}. The first is
stabilized by multiplication by 2 followed by addition of 1, the second by multiplication
by −1 followed by addition of 2, and the third by multiplication by −1.

Next we show the given maps are the only possibilities. The action of Aut+(M) fixes
no edges, so the underlying graph of M is K4, K5, K7, O6 or O8. We first eliminate O8.
There are 32 triangles to be stabilized. Suppose that the triangle uvw is stabilized by
an involution in Stab(v). In Aut+(M), the only possibility is that uvw is straight since
there are no reflections for bent angles. On the other hand, all 12 bent angles at v are
closed (again since there are no reflections for bent angles) and there are only 12 edges in
Link(v). Thus all straight angles at v are open, a contradiction of uvw being a triangle.
We conclude that all 32 triangles are stabilized by elements of order 3. Any element of
order three must fix exactly two vertices, which must be nonadjacent, say v and v∗ (since
the Aut+(M) fixes no edges). Since Stab(v) = Stab(v∗) has at most one elment of order
3 and it stabilizes two triangles, we can stabilize only 4 · 2 = 8 triangles this way.

It remains to show the maps with underlying graphs K4, O6 and K7 are triangulations
and the map with underlying graph K5 is a quadrangulation (see [12] for the uniqueness
of these embeddings). Note at the outset that the presence of the half-turn φuv for each
edge uv guarantees that the map is face-transitive, so all faces have the same size. We
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also note that every bent angle, and hence every corner, is closed, since the stabilizer in
Aut+(M) of an open bent angle is trivial. In particular, if uvw is a corner, then uvw is
a triangle in the underlying graph. If both vwu and wuv are bent angles, that triangle
is a face, since any stabilizer f of {u, v, w} cannot fix u, v, or w, so f is 3-fold rotation,
making vwu and wuv also corners.

For K4, O6 and K7, we need a triangular face. There are no straight angles in a map
for K4, so by the preceding remarks about corners, the faces are triangles. For O6, there
are 4 · 6 = 24 map corners, each in a triangle, and 8 triangles; thus all corners of triangles
are face corners, so every face is a triangle.

For K7, label all angles b, c or s, depending on whether the angle is bent but not a
corner, a corner, or straight. If there is no triangle labeled ccc, then any triangle with
one c must be ccs in order to be stabilized by an involution. There are 7 · 6 = 42 angles
labeled c, so there must be 21 triangles labeled ccs. The other 14 triangles must all be
labeled bbb, since there are also 42 angles labeled b. Suppose uxv and vxw are adjacent
corners, and consider all the angles in the K4 subgraph H determined by u, v, w, x. Then
triangles uxv and vxw are both ccs. Thus of the 12 angles in H , at least 4 are c and 2 are
s. On the other hand, at any vertex of H , at least one of the three angles in H around
the vertex is b (since the valence is 6 so they cannot be ccc, sss, css, or ccs). Thus at
least 4 angles of H are labeled b. Since all triangles with an angle labeled b are bbb, the
number of b angles must be divisible by 3. Hence, there must be at least 6 angles labeled
b. Therefore, at some vertex of H , two of the three angles are labeled b, which means the
third angle is also b, since the valence is 6. Each of these angles is in a different triangle
of H , so there must be 9 angles in H labeled b, a contradiction since we already have 4
angles labeled c. We conclude that at least one triangle is labeled ccc, so all faces are
triangles.

For K5, let m be the number of faces. Since all faces have the same size, m divides 20
(twice the number of edges) and m is odd (since the Euler characteristic of an orientable
surface is even). The only possibilities are m = 1 and m = 5. If m = 1, then Aut+(M)
is a subgroup of the cyclic group Z20, since all automorphisms must rotate the single face
around its center. But then there is only one involution which stabilizes at most 2 edges.
We conclude that m = 5, so the face sizes are all 4. 2

The following example shows that the final possibility of Theorem 4.1 is realized by
a map automorphism group, but only by including orientation-reversing automorphisms.
A Cayley map CM(A, ρ) is called balanced if all generators are involutions or w and w−1

are antipodal in the cyclic order ρ for all w ∈ W (see [17]). An important fact about
balanced Cayley maps is that every map automorphism fixing the identity is also a group
automorphism ([23])

Example 4.1 Let M be the Cayley map CM(Q, (i, j, k,−i,−j,−k)), where Q is the
quaternions. The underlying Cayley graph is O8, with multiplication by −1 providing
the antipodal automorphism. The group automorphism f interchanging i with j, −i with
−j, and k with −k, is an orientation-reversing map automorphism since it reverses the
rotation (i, j, k,−i,−j,−k). A similar map automorphism g interchanges j with k, so
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Stab(1) contains the dihedral group D3. On the other hand, there is no group automor-
phim fixing i, so there is no map automorphism fixing the edge 1i (since the Cayley map
is balanced). Thus the action of Aut(M) fixes no edges and Stab(1) = D3. We claim
D(M) = 3. We must show that Stab(Y ) is nontrivial for every vertex subset Y ; we can
assume |Y | ≤ 4 using complements. For |Y | = 2, the automorphism f shows how to
interchange adjacent vertices, and multiplication by −1 interchanges antipodal vertices.
For |Y | = 3, if Y contains antipodal points, it behaves like 1, k,−k which is stabilized by
f , and if all vertices of Y are mutually adjacent, it behaves like 1, i, j, which is stabilized
by f . For |Y | = 4, if Y contains two pairs of antipodal points, it is stabilized by multipli-
cation by −1. If Y contains one pair of antipodal points, it behaves like 1,−1, i, j, which
is stabilized by f . If Y contains no antipodal points, it behaves like 1, i, k,−j, which is
stabilized by gf .

5 Chromatically distinguishing maps

For automorphisms of graphs, it is natural to ask how the distinguishing number is affected
if colorings are required to be proper, that is adjacent vertices get different colors. Collins
and Trenk [6] call this the distinguishing chromatic number of a graph G, denoted χD(G),
that is the smallest number k such that G can be properly colored with k colors so that no
automorphism of G preserves the coloring. In the same way, we define the distinguishing
chromatic number of a map M , denoted χD(M), only now the automorphisms are map
automorphisms; the orientation-preserving distinguishing number, denoted χD+(M), is
defined similarly for an orientable map M . We also denote by χ(G) the usual chromatic
number of a graph G and by χ(M) the chromatic number of the graph underlying the
map M .

By definition, χD ≥ χ, for both graphs and maps. For graphs, χD(G) can be much
bigger than χ(G). For example, for the complete bipartite graph Km,n, we clearly have
χ(Km,n) = 2 and χD(Km,n) = m + n. On the other hand, for maps we have:

Proposition 5.1 For any map M, we have χD(M) ≤ χ(M) + 3. When M is orientable,
χD+(M) ≤ χ(M) + 2.

Proof. Suppose that M has been properly colored with k = χ(M) colors. Choose any
corner uvw in the map and change the colors of vertices u, v, and w to three new extra
colors. Then the map has no color-preserving automorphism. In the orientable case, if
we only wanted to destroy orientation-preserving automorphisms, we would only have to
add two colors, one for u and one for v, since that would fix the edge uv. 2

Example 5.1 For n > 3, let Rn be the double pyramid (or anti-prism) as a map in
the sphere with a cycle Cn at the equator, all vertices joined to vertices at the north
and south pole. Then χ(Rn) = 3 for n even and χ(Rn) = 4 for n odd. It is easy to
check that χD(C4) = χD(C6) = 4 and χD(Cn) = 3 for all other n. Since the north and
south poles must get different colors from each other or else reflection in the equator is
color-preserving, we have:
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• χD(Rn) = χ(Rn) + 3 = 6 for n = 4, 6;

• χD(Rn) = χ(Rn) + 2 = 5 for all even n > 6;

• χD(Rn) = χ(Rn) + 1 = 5 for all odd n.

Thus there are maps with χD(M) = χ(M) + 3. Such maps, however, are few and
highly restricted.

Theorem 5.1 Suppose that χD(M) = χ(M) + 3 = k + 3. Then k must be 2 or 3.
Moreover, there are only finitely many such maps M .

Proof. Color M properly with k colors. Let uv be any edge. Recolor u and v with two
new extra colors. Since χD(M) 6= χ(M) + 2, there must be a color-preserving reflection
across the edge uv. Since the edge uv is arbitrary, the original coloring of the map is color-
preserving face-transitive. Notice this implies that the vertices in the rotation about any
vertex are either all the same color or alternate between two colors.

Color M with k colors so that color 1 is used the least among all proper colorings of
M with k colors. Suppose that k > 3. Since the vertices adjacent to any vertex are all
the same color, or alternate between two colors, any vertex labeled 1 can be recolored a
different color, reducing the number of vertices colored 1 and contradicting the minimal
property of the coloring and the color 1. Thus k is 2 or 3.

Suppose k = 2. We claim that the maximum valence d ≤ 5. Indeed, suppose v has
valence d > 5. Then by the Necklace Problem, we could recolor v with a new color 3
and some neighbors with a new color 4 so that the new coloring has no color-preserving
automorphisms. Since d ≤ 5, by Lemma 3.2 and the Motion Lemma, D(M) = 2 for all but
finitely many M . If D(M) = 2, suppose that Stab(Y ) is trivial. Let Yi be the subset of Y
colored i, for i = 1, 2. Coloring Y1 with new color 3 and Y2 with new color 4, we conclude
that χD(M) = 4. Thus only finitely many M with k = 2 have χD(M) = k + 3 = 5.

Suppose instead that k = 3. Given a proper three-coloring of M such that 1 is the
least used color over all proper three-colorings, let M ′ be the map induced by vertices
colored 2 or 3. We first claim that M ′ is connected. Since 1 is least used over all proper
three-colorings, each vertex colored 1 must have neighbors with alternating colors, else
it could be recolored 2 or 3. Let uvw be an open bent angle with u, v, w colored 2, 1, 3,
respectively. If we recolor v with 4 and u and w with 5, since χD(M) 6= 5, there is a
color-preserving automorphism interchanging u and w, but this is impossible since the
remaining vertices in the rotation at v alternate 2 and 3. We conclude each bent angle
around v is closed, so Link(v) is contains a cycle through all neighbors of v when v is a
branch vertex. If v is colored 1 and has valence 2, there must be a path in M ′ connecting
the two neighbors of v or else one could switch colors 2 and 3 in one component of M ′

so that both neighbors of v have color 2. Then v could be recolored 3, contradicting the
minimality of the color 1. It follows that any path in M between vertices in M ′ can be
modified to avoid vertices of color 1, so M ′ is connected.

By the case k = 2, we know if M ′ has enough vertices, it has a proper four-coloring
with no color-preserving automophisms. When we put back in the vertices of the original

the electronic journal of combinatorics 18 (2011), #P50 15



map M colored 1, we get a proper five-coloring of M such that that any color-preserving
automorphism fixes all vertices in M ′. If some vertex of M ′ is a branch vertex (in M ′),
such an automorphism must fix a bent angle and hence be the identity.

Therefore we assume that the graph underlying M ′ is a cycle or path of length n
properly colored with 2 and 3. Then for n > 6, we can add one color to the coloring of
M ′, so that the any color-preserving automorphism is a reflection f fixing the vertices of
M ′. If v is colored 1 and not fixed by f , color f(v) with a second new color which makes
f not color-preserving. If instead f also fixes all vertices colored 1, then the original map
is a cycle, so χD(M) 6= χ(M) + 3. 2

We have already seen that χD(M) = χ(M) + 3 for M = R4 and M = R6. Even if
these are not the only maps with χD(M) = χ(M) + 3, it should be possible to classify
the finite number of such maps, using ideas in the proof of Theorem 5.1. For example, if
k = 2, we would require D(M) = 3 and by the sequel to this paper the only possibilities
are Km,n for m, n = 3, 4, 5. If k = 3, we would only need to consider graphs obtained by
adding 5 or fewer vertices to such Km,n. Even though χD(M) = χ(M) + 2 for infinitely
many maps (e.g Rn for all even n > 6), we suspect such maps can also be classified.

Collins and Trenk have conjectured that χD(G) ≤ 6 for all 3-connected planar graphs:

Corollary 5.1 Let M be a planar map. Then χD(M) ≤ 6. Thus, χD(G) ≤ 6 for any
3-connected planar graph G. Moreover, if χ(M) = 3 and χD(M) = 6, the only possibilities
are R4 and R6.

Proof. The first statement follows from the Four Color Theorem and Theorem 5.1.
The second follows from the uniqueness of 3-connected planar embeddings [12], which
implies that for any planar embedding of G, every graph automorphism is also a map
automorphism. For the final statement, let M ′ be as in the proof of Theorem 5.1. If M ′

has a branch vertex and if D(M ′) = 2, then as before M has a proper five-coloring with
no color preserving autormophism. If M ′ has no branch vertex, then as before, we have
χ(D(M) 6= χ(M) + 3, unless the map is R4 or R6. Suppose instead that M ′ has a branch
vertex and D(M ′) = 3. By the sequel to this paper, the only such planar bipartite map
with D(M ′) = 3 is the cube. The color 1 is then located at the centers of the faces of the
cube. Since the action of Aut(M ′) on the faces is faithful and equivalent to the action of
Aut(O6) on its vertices, we can replace color 1 by three new colors to get a five-coloring
with no color-preserving automorphism. 2

Sakurai has also shown that χD(G) ≤ 6 for 3-connected planar graphs [20].
Recall that χD(Rn) = χ(Rn) + 2 for all even n > 6. Are there other planar maps

with χD(M) = χ(M) + 2? For example, if n is even and alternate spokes to the north
and south pole are deleted, the resulting map has χ = 2 and χD = 4. One can also get
examples by deleting equator edges of Rn (an extra color is needed along the equator to
eliminate a reflection fixing the poles). With finitely many exceptions, these are the only
examples:

Theorem 5.2 There are only finitely many planar maps M such that χD(M) = χ(M)+2
and such that M is not obtained from Rn for some n by deleting some edges.
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Proof. Let M be a planar map with χD(M) = χ(M) + 2 = k + 2. Given a proper
coloring of M with k colors, let A be the subgroup of Aut(M) that preserves the coloring.
Suppose that 1 is the most frequently used color and let X be the vertices colored 1. By
[7], we have that D(A, X) = 2 whenever |X| > 6. Thus if the action of A on X is faithful,
we can find a subset Y ⊂ X such that the stabilizer of Y in A is trivial. Color the vertices
of Y be a new color and we have χD(M) = χ(M) + 1.

Suppose instead the action of A is not faithful on X and that f ∈ A fixes all vertices
in X. The finite groups acting on the sphere are well-known [12] and the only nonidentity
automorphism fixing more than two points is a reflection. Thus, f is reflection in a circle
C containing X. Let v be a vertex not on C and let Y be the vertices in X not adjacent
to v. If |Y | > 5, then by the Necklace Problem we can introduce an extra color for some
of the vertices in Y so that the only color-preserving element of A must be the reflection
f fixing C and which therefore must move v. Since v is not adjacent to any vertex in
Y , we can change its color also to the extra color and eliminate f as a color-preserving
automorphism. Thus χD(M) = χ(M) + 1. If |X| > 12, it follows that any two vertices
in the same component of S − C are adjacent to at least three common vertices in X,
forming a copy of K2,3 in one component of S −C. Using the reflection f , we get a copy
of K4,3 embedded in the sphere, a contradiction.

We conclude that there is only one vertex v in each component of S − C, as long as
|X| is sufficiently large. Suppose there is an edge between v and f(v). Then v and f(v)
already have different colors, so χD(M) = χ(M) + 1, since we only need to add one extra
color to distinguish any automorphism fixing X, for sufficiently large |X|. If there are no
edges between v and f(v), we have Rn with some edges deleted. 2

Corollary 5.2 There are only finitely many planar maps with χD(M) = 6.

Proof. Theorems 5.1 and 5.2, together with the Four Color Theorem, imply that
we need only consider maps obtained by deleting edges from Rn. As we have already
observed, χD(Cn) = 3 for n 6= 4, 6, so we can always use 3 colors along the equator to
distinguish any automorphism other than the reflection interchanging the poles. Thus
χD(M) ≤ 5 for all such maps, if n 6= 4, 6. 2

We conjecture that, in fact, the only planar maps with χD(M) = 6 are R4 and R6.
By Corollary 5.1, we need only consider maps with χ(M) = 4. S. Sakurai has shown this
is true if the planar map is a triangulation [20].

We observe that the argument of Theorem 5.2 can be applied to maps in higher genus
surfaces:

Theorem 5.3 There are only finitely many 3-connected maps in the surface of genus g
such that χD(M) = χ(M) + 2 and such that the underlying graph for M is not Rn for n
even, or Rn − e with n odd and e an edge on the equator.

Proof. We sketch a proof. Let A and X be as in the proof of Theorem 5.2. Note that
χ(M) ≤ H(g), the Heawood number for S [12], so if |X| is bounded above, so is the
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number of vertices of M . For the part where D(A, X) = 2, we need |X| > n(g) where
n(g) is a number depending on the genus g [7]. We need 3-connectedness, since a reflection
can have more than one fixed circle when g > 0; this also eliminates all the subgraphs
of Rn except Rn − e. For the non-faithful case of the proof, it can be shown that if |X|
is sufficiently large (again depending on g), then the only automorphism fixing X is a
reflection (see [7]). 2

We note that for g > 1, this result might be expected since the Riemann-Hurwitz
equation [12] gives |A| ≤ 168(g−1), so there are only finitely many possible automorphism
groups. Note that since n(g) increases with g, as well as the number of points needed to
guarantee a reflection, we do not have that there are only finitely many maps M with
χD(M) = χ(M) + 2.

The same ideas give a similar result for χD+ :

Theorem 5.4 There are only finitely many maps M in the surface of genus g such that
χD+(M) = χ(M) + 2.

Proof. Again, let A and X be as in the proof of Theorem 5.2, except now all automor-
phisms in A preserve orientation. As before, if |X| is sufficiently large, then D(A, X) = 2,
but in this case there is no reflection fixing the vertices of X. Thus the action of A on X
is faithful, so we simply introduce an extra color for the vertices of X so that no element
of A preservers the coloring. 2

6 Distinguishing graphs and other problems

Distinguishing graphs, as opposed to maps, has much more flexibility, since vertex and
edge stabilizers have few restrictions under graph automorphisms. Nevertheless, the situ-
ation for maps suggests some approaches for graphs. Since distinguishability is sensitive
to local structure (e.g attaching a complete graph at a vertex), it is best to concentrate on
vertex-transitive graphs. An agenda for graphs would be the following general problem:

Problem. Find interesting classes of vertex-transitive graphs such that all but finitely
many graphs G in the class have D(G) ≤ 2.

The following example illustrates some of the issues.

Example 6.1 The wreath graph Wn is the lexicographic product of Cn with the interval
K2; that is, Wn has two n-cycles u1, · · · , un and v1, · · · vn with additional edges from ui

to vi−1 and to vi+1 for all i, where subscripts are treated modulo n. Then for every i
there is an automorphism fi of Wn that interchanges the vertices ui and vi and leaves all
other vertices fixed. In particular the motion of the automorphism of group of Wn is 2
for all n. Although Wn could still be 2-distinguishable for n > 5, it is not. Indeed, any
2-coloring of Wn that is not 2-distinguishable must assign different colors to ui and vi, for
each i. Rotate the graph one notch (adding one modulo n to the subscript of each vertex);
then whenever ui+1 is colored differently from ui, apply the automorphism fi. Although
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each of these automorphisms may not preserve colors, their composition is a nontrivial
color-preserving automorphism.

We observe that all the graphs of this example embed in the torus, but almost none
of the automorphisms of the graph extend to the torus. This shows how any application
of map-distinguishability to graph-distinguishability is likely to be restricted.

One way to use our map results for graphs is to impose conditions such that the graph
is the underlying graph of a map whose automorphism group is the same as that of the
graph. Negami calls such a graph embedding faithful [15]. This happens for 3-connected
planar graphs, or for 3-connected graphs having large face-width [18] or large edge-width
embeddings [14].

Another idea motivated by maps is to impose restrictions on set stabilizers, especially
vertex or edge stabilizers, to obtain all-but-finitely-many results. For example, [22] char-
acterizes graphs underlying vertex-transitive maps solely in terms of stabilizers of vertices
and edges. We observe that Theorem 3.1 classifies graphs, not maps, with actions fixing
no edge and having distinguishing number 3. We also note that Theorem 3.1 can be
applied to any group A acting faithfully on a set X. For example, given (A, X), let G
be the graph with vertex set X and with edges xy whenever Fix(x, y) is trivial. Then by
Theorem 3.1, if G is connected and spans X, then D(A, X) = 2, if |X| > 8.

Finally, we observe that simply limiting the size of the group A, compared to the size
of the set X it acts upon, can be enough, when the action is transitive. In [7], it is shown
that if (A, X) is transitive and |A| < 2

√
n, where n = |X|, then D(A, X) = 2. Since

|Aut(M)| ≤ 2n2 for any map M , where n = |V |, this can be viewed as a generalization
of our result that all but finitely many transitive maps have D(M) ≤ 2.

We conclude with some problems for future study.
A basis for a faithful action (A, X) is a subset B ⊂ X such that Fix(B) is trivial [3].

Thus, if two elements of A agree on the set B, they agree everywhere. A Frobenius action
is a transitive action with a 2-basis and every edge of an orientable map M is a basis for
Aut+(M) acting on V (M). Since no map automorphism fixes a bent angle, maps with a
branch vertex always have a 3-basis.

Problem: Classify faithful transitive actions (A, X) having a 3-basis and D(A, X) > 2.
The number of such transitive actions is known to be finite [7].
Problem: Classify transitive faithful actions (A, X) having cyclic point stabilizers and

D(A, X) > 2.
Theorem 3.1 does this in the case where the action is a Frobenius group. From the

Motion Lemma [7], we also know that |X| ≤ 43.
Problem: Study the distinguishability of other combinatorial geometric structures, such

as polytopes or triangulated n-manifolds.
There are a number of problems coming from distinguishing chromatic number for

maps.
Problem: Classify all maps M with χD(M) = χ(M) + 3.
Problem: Classify all planar maps M with χD(M) = χ(M) + 2.
Problem: For small genus g, classify all maps M with χD(M) = χ(M) + 2.
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Problem: Prove that the only planar maps M with χD(M) = 6 are the double pyramids
R4 and R6.

Problem: Classify the maps M such that χD+(M) = χ(M) + 2.
Finally, we close with a conjecture about infinite graphs, which we have asked in

various talks, but never in print.
Conjecture: Let G be a locally finite, infinite graph. If A = Aut(G) acting on V (G)

has infinite motion, then D(A, V (G)) = 2.
The conjecture is true for trees [26]. It is also true, without the requirement of infinite

motion, when A is countably infinite (unpublished). Note that this means D(M) = 2 for
any locally finite map, since Aut(M) is countable (there are countably many edges and
each edge has finite stabilizer).
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