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Abstract

Given bipartite graphs H; and Hs, the bipartite Ramsey number b(Hy; Hs) is
the smallest integer b such that any subgraph G of the complete bipartite graph
Ky, either G contains a copy of H; or its complement relative to K3 contains a
copy of Hy. It is known that b(K272; K272) =5, b(K273; K273) =9, b(K274; K274) =14
and b(K33;K33) = 17. In this paper we study the case H; being even cycles and
Hj being K> 9, prove that b(Cs; K22) = 5 and b(Cop; Ko 2) = m + 1 for m > 4.
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1 Introduction

We consider only finite undirected graphs without loops or multiple edges. For a graph
G with vertex-set V(G) and edge-set E(G), we denote the order and the size of G by
p(G) = |V(G)| and ¢(G) = |E(G)|. 6(G) and A(G) are the minimum degree and the
maximum degree of G respectively.

Let K, be a complete m by n bipartite graph, that is, K,, ,, consists of m+n vertices,
partitioned into sets of size m and n, and the mn edges between them. P is a path on k
vertices, and C} is a cycle of length k. Let H; and Hy be bipartite graphs, the bipartite
Ramsey number b( Hy; Hy) is the smallest integer b such that given any subgraph G of the
complete bipartite graph K3, either G contains a copy of H; or there exists a copy of Hs
in the complement of G relative to K. Obviously, we have b(Hy; Hy) = b(Hay; Hy).

Beineke and Schwenk [1] showed that

b(Ks2; Ko2) =5, b(Kaa; Kau) =13, b(Ks3; Ks3) =17.

*This research was supported by NSFC(60973011, 60803034) and SRFDF(20090009120007,
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In particular, they proved that b(Ks,,; Ks,) = 4n — 3 for n odd and less than 100 except
possibly n = 59 or n = 95. Carnielli and Carmelo [2] proved that b(Ks,,; Ks,) = 4n —3 if
4n—3 is a prime power. They also showed that b( Kz 2; K1,) = n+q for ¢*—q+1 <n < ¢*,
where ¢ is a prime power. Irving [6] showed that b(K 4 4; K4 4) < 48. Hattingh and Henning
[4] proved that

b(Ka2; K33) =9, b(Kz2; Kyy) =14

They also determined the values of b(P,,; K1) in [5]. Faudree and Schelp [3] proved the
values of b(Hy; Hy) when both H; and H, are two paths.

Let G; be the subgraph of G whose edges are in the i-th color in an r-coloring of
the edges of G. If there exists an r-coloring of the edges of G such that H; € G; for all
1 <i <r, then G is said to be r-colorable to (Hi, Ha, ..., H,). The neighborhood of a
vertex v € V(@) are denoted by N(v) = {u € V(G)|uv € E(G)}, and let d(v) = |N(v)].
G° denotes the complement of G relative to Kpp. G(W) denotes the subgraph of G
induced by W C V(G).

In this paper we study the case that [ being even cycles and Hy being Kj o, prove
that b(Ce; Ko9) = 5 and b(Cap; Ka2) = m + 1 for m > 4. For the sake of convenience,
let V(Kpn) = X UY, where X = {2;]1 < i < m} and Y = {y;|/1 < j < n}, and
E(Kpy) ={zy;]l <i<m,1<j<n}.

2 The lower bounds of b(Cy,,; Ko9)

Theorem 1. b(Cy,; Coy) > m+n — 1.

Proof. Let GG; and G2 be the subgraphs of K1 p—2 m+n—2, Where G is a complete m — 1
by m + n — 2 bipartite graph, and G5 is a complete n — 1 by m + n — 2 bipartite graph.
And let

V(Gy) =X1UY, where X ={z;]1<i<m—1}, Y ={y|1 <i <m+n—2};
V(Gy) = XoUY, where Xo ={x;im <i<m+n—-2}, Y ={y[l <i<m+n-—2}

Then we have E(Gy) N E(Gs) = 0 and E(G1) U E(G2) = E(Kpin—2min—2). Note
that Cy,, € Gy and Cy, € Go. S0 Kppyn—2.min—2 is 2-colorable to (Cayy,, Cay), that is,
b(CQm; CQn) >m-+n— 1. O

Setting n = 2 in Theorem 1, we have
Corollary 1. b(Cyy,; Ko2) > m + 1.

3 The upper bounds of b(Cy,,; Ko2)(m > 3)

Lemma 1. b(CG;ngg) S 5.

Proof. We may assume that b(Cs; Ky2) > 5, that is, K55 is 2-colorable to (Cg, Ka2).
Since Kso ¢ G° and b(K9; Ka) = 5, we have K55 C G. Without loss of generality, we
may assume {z1y1, Y122, T2y, Y21} C E(G).
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Since Koo € G°, there is at least one edge between {3, x4} and {ys,ys}, say z3ys €
E(G). Similarly, there is at least one edge between {x4, 5} and {y4, ys}, say z4y4 € E(G).
And there is at least one edge between {z1,x2} and {ys,ys}, say x1ys € E(G). Since
Cs Q G, x4 is nonadjacent to any vertex of {yi,ys}. Therefore since Ks o SZ G°, x5 has to
be adjacent to one vertex of {yi,ys}, say x3ys € E(G). x4 is nonadjacent to any vertex
if {y1,y2,y3}, since otherwise we have Cs C G. And since Ko ¢ G¢, x5 is adjacent to at
least two vertices of {y1, y2, ys}. If 25 is adjacent to both y; and ys3, then we have Cg C G,
a contradiction. Hence we have x5y;, x5y2 € E(G) or x5y2, x5y3 € E(G).

Case 1. Suppose that z5y1, x5y2 € E(G), see Fig. 1(a). Since Cs € G, x5 is nonadjacent
to ys3 or ys. Therefore since Ko Q G°, x5 has to be adjacent to at least one vertex of
{ys,y4}. In any case, we have Cs C G, a contradiction.

Case 2. Suppose that z5ys, 25y3 € E(G), see Fig. 1(b). Since Cs € G, x5 is nonadjacent
to y; or ys. Therefore since Ky ,@ G, x5 has to be adjacent to at least one vertex of
{y1,y4}. In any case, we have Cs C G, a contradiction too.

Ys T4
Zs3 Y4
Y2 X1
€2 Y1

(a)
Fig. 1. The two cases of N(z5)

By Case 1 and 2, the assumption that b(Cg; K23) > 5 does not hold. Then we have
the lemma follows. O

Lemma 2. Let G be a spanning subgraph of K55 and Cs € G. If Ky5 ¢ G¢, then there
exists at most one vertex of X (or Y) whose degrees is at most 2.

Proof. For 1 <i,j <5, if |[N(x;) UN(x;)| < 3(i # j), then there are at least two vertices
of Y are nonadjacent to x; or z;, we have K35 C G°. Hence we have

Claim 1. |N(z;) UN(z;)| > 4.

By way of contradiction, we assume that there exists at least two vertices of X whose
degrees are at most 2, say z; and z5. By Claim 1, we have |N(z1) U N(z2)| = 4. We
may assume N (z1) = {y1,y2} and N(z3) = {ys3,y4}. There are two subcases depending
on N(ys).

Case 1. Suppose that there is at least one vertex of {x3, x4, x5}, say x3 which is nonadja-
cent to y5. By Claim 1, we have |N(x;) U N(x3)| > 4, z3 has to be adjacent to both ys
and y4. Similarly we have |N(z2) U N(x3)| > 4, x3 has to be adjacent to both y; and ys.
By Claim 1, we have |N(z1) U N(z4)| > 4, x4 has to be adjacent to at lease one vertex of
{ys,ya}, say zays € E(G) as shown in Fig. 2(a). Since Cs € G, x4 is nonadjacent to y;
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or yo. Hence we have |N(z5) U N(z4)| < 3, a contradiction to Claim 1.

Fig. 2. The two cases of N(ys)

Case 2. Suppose that each vertex of {x3,x4, 25} is adjacent to ys. By Claim 1, we
have |N(z1) U N(x3)| > 4, z3 has to be adjacent to at lease one vertex of {ys,ys}, say
x3ys € E(G). Similarly, we have | N(z2) UN (x3)| > 4, z3 has to be adjacent to at lease one
vertex of {y1,y2}, say zsy1 € E(G). Since Kyo ¢ G°, there is at least one edge between
{z4, 25} and {y2, ys}, say z4y2 € E(G). Since Cs € G, x4 is nonadjacent to y4. By Claim
1, we have |N(x1) U N(x4)| > 4, x4 has to be adjacent to y; as shown in Fig. 2(b). Since
Cs € G, x5 is nonadjacent to y; or yo. Hence we have | N(z2)UN (z5)| < 3, a contradiction
to Claim 1.

By Case 1 and 2, the assumption does not hold. Then we have the lemma follows. O

Lemma 3. b(Cg, K272) S 9.

Proof. We may assume that b(Cs; K32) > 5, that is, K55 is 2-colorable to (Cs, Ka9), say
Cs € G and Ky5 ¢ G°. Since Ko5 € G° and b(Cp; K22) < 5, we have Cg C G. Without
loss of generality, we may assume {z1y1, Y122, T2Y2, Y23, T3ys, Y31} C E(G).

Fig. 3. No edge between {4, ys} and V(Cs)

Since Koo € G°, there is at least one edge between {4, x5} and {ys,ys}, say zays €
E(G). Assume that x, is nonadjacent to any vertex of {1, y2,y3} and y,4 is nonadjacent to
any vertex of {z1, s, x3}. Then we have d(z4) < 2 and d(y,4) < 2. Since Ky € G, ;5 has
to be adjacent to at least two vertices of {y1,¥y2,ys}, say z5y1, r5y2 € E(G). Similarly, ys
has to be adjacent to at least two vertices of {x1, zo, z3}. By symmetry, we may assume
that ysz1,ys12 € E(G) or yszy,ysz3 € E(G). If yszq,ys20 € E(G), then Cy C G, a
contradiction. Hence we have ysz1, yszs € E(G), as shown in Fig. 3. Since Cs € G, x5 is
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nonadjacent to y3 or ys. So we have d(x3) = 2, a contradiction to Lemma 2. Hence x4
is adjacent to at least one vertex of {y1,ys,y3} or y, is adjacent to at least one vertex of
{x1, 22, x5}, say x4y3 € E(G).

Since Cy Q G, y4 is nonadjacent to x; or x3. Therefore since Kj o Q G°, y5 has to be
adjacent to at least one vertex of {x,x3}, say ys1 € E(G). Now we consider the vertex
of x5, there are three subcases.

Fig. 4. x5 being nonadjacent to y4 or ys

Case 1. Suppose that z; is nonadjacent to any vertex of {ys,ys}. Since Cs € G, y4 is
nonadjacent to any vertex of {z;,x3}. Hence we have d(y,) < 2. By Lemma 2, we have
d(ys) > 3. Therefore since Cy ,@ G, ys has to be adjacent to both x5 and x3 as shown
in Fig. 4. Since Cs € G, x4 is nonadjacent to any vertex of {y1,ys,y5}. Hence we have
d(z4) = 2. By Lemma 2, we have d(x;) > 3. Hence z; has to be adjacent to each vertex
of {y1,y2,ys}, we have Cs C G, a contradiction.

Case 2. Suppose that 5 is adjacent to just one vertex of {y4,ys}, that is, xsyy € E(G)
or x5y; € E(G). Suppose z5ys € E(G), then zsys ¢ E(G). Since Cs € G, we have
z4ys € E(G). Since Ky o € G, yy is adjacent to at least one vertex of {x4, z5}. Therefore
since Cs € G, y; has to be adjacent to x4. Similarly, y» and y3 have to be adjacent to x4,
see Fig. 5(a). Since Cs € G, ys is nonadjacent to any vertex of {xs,z3}. Hence we have
d(ys) = 1. By Lemma 2, we have d(y4) > 3. Hence y, has to be adjacent to at least one
vertex of {x1, o, x3}. In any case, we have Cg C G, a contradiction.

Suppose that z5y5 € E(G). Since Cs € G, x5 is nonadjacent to any vertex of {y1,ys}.

Hence we have d(z;) < 2. By Lemma 2, we have d(z3) > 3. Since Cs € G, w3 is
nonadjacent to y,. 3 has to be adjacent to yy, since otherwise Ko C G°({x3, 5, Y1, Ysa}),
see Fig. 5(b). By Lemma 2, we have d(z4) > 3. Hence z, is adjacent to at least one vertex
of {y1,y2}. In any case, since Cs € G, ys is nonadjacent to xo or x3. Hence we have
d(ys) = 2, a contradiction to Lemma 2.
Case 3. Suppose that x5 is adjacent to each vertex of {y4, ys}, as shown in Fig. 6. Since
Cs € G, y4 is nonadjacent to any vertex of {z1, 2, z3}. Hence d(ys) = 2. By Lemma 2,
we have d(y2) > 3. So ys is adjacent to at least one vertex of {xy, x4, x5}. In any case, we
have Cs C (G, a contradiction.

By Case 1-3, the assumption does not hold. Then we have the lemma follows. O
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Ts5 Ya

Ys T4
x1 Y3

Y1 xs3
€2 Y2

(b)

Fig. 5. x5 being adjacent to just one of {y4, ys}

&5 Ya
Ys L4
x1 Ys
Y1 x3
T2 Y2

Fig. 6. z5 being adjacent to y, and ys

Lemma 4. Let G be a spanning subgraph of Kj1 ;41 such that Cop € G and xy11, Yrt1 €
V(Car). If 2,1 and ygiq are adjacent to at least k — 1 vertices of V(Cyy) respectively,
then we have Cy;11) C G.

Proof. Without loss of generality, let E(Cor) = {z1y1, V122, - - -, ToYk, YeZ1 }- Then xp g is

adjacent to at least k — 1 vertices of {y1,yo, ..., Yr}, say {Trr1Y1, Ths1Yo, - - Tha1Yr—1} C
E(G). And since yg,1 is adjacent to at least & — 1 vertices of {1, xo,..., 2k}, Yrt1
is nonadjacent to at most one vertex of {xy,xx}, say zpyr1 € E(G). Hence we have
Cotir1) € G(1Ypt 1021 Thg1Y2T3Y3, - - - Tryp1) as shown in Fig. 7. O

Lemma 5. If m > 4, then b(Cy,,,; Ka2) < m+ 1.
Proof. We will prove it by way of induction.
(1) For m = 4, by Lemma 3, we have the lemma holds.
(2) Suppose that b(Coy; Ka2) < k41 for k > 4. We will show that b(Cory1y; Kop2) < k+2
as follows. The proof is similar to Lemma 3, however, arbitrary k£ makes Lemma 2 not
applicable, which makes the proof more difficult.

By contradiction, we may assume that b(Cyy1); Ka22) > k + 2, that is, Kjiopyo is
2-colorable to (Cogi1y, Ka2), say Cogy1y € G and Ko ¢ G°. By the induction hy-
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Fig. 7. The graph with a cycle of length 2(k + 1)

pothesis, we have b(Cyy; Ka2) < k + 1. Therefore since Koo ¢ G¢, we have Co, C G,
let E(Cao) = {z1y1, Y122, TaYa, - - -, Tk, Y1 }. Firstly, we consider the four vertices not
belong to V(Cyy), that is, i1, Trr2, Yrr1 and Yeio.

Since Ky ¢ G°, there is at least one edge between {zji1, 2512} and {yxi1, yrt2},
say Tryer1 € E(G). Assume that there is no edge between {wpi1,yr11} and V(Co).
Since Ky o ,@ G°, Tg42 is adjacent to at least k — 1 vertices of {y1,v2,...,yr}, and yrio is
adjacent to at least k — 1 vertices of {x1,25,...,2;}. By Lemma 4, we have Co441) C G,
a contradiction. So there is at least one edge between {xp.1,yrsr1} and V(Cyy), say
Trye € E(G). Since Cypyr) SZ G, yrs1 is nonadjacent to x; or xp. Therefore since
Ky Q G°, Y42 has to be adjacent to at least one vertex of {z1,x.}, say Yoz € E(G)
as shown in Fig. 8. Now we consider the edge number between {xj 2} and {yxr1, Ypr2},
there are three subcases as follows.

Tk42 Yk+1
+‘ +

Yk+42 Th41

T

X2

Fig. 8. The subgraph of G

Case 1. Suppose that there is no edge between {zy42} and {yx11, yp+2}. Since Koo € G,
xy, is adjacent to at least one vertex of {yri1,yr+2}. Therefore since Cyy1) SZ G, xp has
to be adjacent to ygio. Then both xy and x;_; are nonadjacent to yx.1, since otherwise
Cok+1) € G. If ypyo is nonadjacent to at least one vertex of {xs, x4—1}, say xo, then w,,
Tp+2, Ye+1 and yryo would construct a Ko in G°, a contradiction. Hence both x5 and
xp_1 have to be adjacent to yjyo. ki1 is nonadjacent to any vertex of {y1, Yr—_1, Yrr2},
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Tk4-2

Fig. 9. z;,2 being nonadjacent to yxi1 or yrio

since otherwise Cyx41) € G. If 2449 is nonadjacent to at least one vertex of {yi,yp—1},
say Y1, then zy41, o, y1 and yi4o would construct a Ky in G¢, a contradiction. Hence
Tp42 has to be adjacent to both y; and yx_; as shown in Fig. 9. Now we have Cy41) C
G (1T 1Yk Tk Yk 12T2Y2, - - -, Tp—1Yk—1Tk42Y1), @ contradiction too.

Case 2. Suppose that there is just one edge between {xpio} and {yri1, Yr+o}, namely
Tpr2Urt1 € E(G) or Tpqoyir2 € E(G).

Case 2.1. Suppose that 2y oyrr1 € E(G), then xpoypio & E(G). Since Coppry € G, we
have Tgi1Ykro, Trrolr—1 & E(G). Then yi_; has to be adjacent to x,1, since otherwise
Tkt1, Tht2, Yo—1 and yryo would construct a Kso in G°. Note that x4 together with
V (Cai) — x1, construct a new cycle of length 2k as shown in Fig. 10(a). Since Cy(i41) Q G,
Y12 is nonadjacent to xp or zj 9. So, the proof is same as Case 1.

HOTEE)) Yk+1

Yk+2

T

X2

T3~ 7 Yk—2

Fig. 10. xj,o being adjacent to just one of {yxi1, Yrro}

Case 2.2. Suppose that zyioysio € E(G). Then zpioyp+1 & E(G). Since Copy1y € G, we
have Zxyri1, Tra2tn € E(G). Then z has to adjacent to yi, since otherwise xy, T2, Y1
and yx41 would construct a Ks 5 in G°. Note that there exists a path of length 2(k+1) be-

tween Tk+2 and yk_l(l’k+2yk+21’1ykl'kyll’gygl’gyg c. l'k_gyk_gl’k_lyk_l). Hence we have Tk+2
is nonadjacent to yx_;. By symmetry, y;+1 is nonadjacent to as. Therefore since Ky ¢
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G°, x9 has to adjacent to y,_1. Similarly, there exists a path of length 2(k+1) between xy,o
and Yo (Tr12Ur+2T1 Yk TEY1T2Yk—1Tk—1Yk—2Tk—2 - - - Y3T3Y2). Hence we have zy,o is nonadja-
cent to yo. By symmetry, yx41 is nonadjacent to z;_;. Therefore since Ky o ,@ G°, 12 has
to adjacent to xx_;. So for even k, we can have z3yy_2 € E(G),ysxr_o € E(GQ), z4y_3 €
E(G),ysxx_3 € E(G),... VTE_1Ykiy € E(G),yg_lsc’%Jr2 S E(G),xgngrl € E(G) se-
quentially. And for odd k, we can have zsyp_o € E(G),ysrr_o € E(G),T4yr—3 €
E(G),ysxi—3 € E(G),... LYk € E(G),y%z% € E(G) sequentially. That is,
we will add k& — 2 chords on the cycle Cy as shown in Fig. 10(b).

Since Co(r+1) ,@ G, xpio is nonadjacent to any vertex of {yi,¥s,...,yr}. Therefore
since K9 51 G°, xj41 has to be adjacent to at least k — 1 vertices of {y1,¥y2,...,yx}. By
symmetry, we have yi,o has to be adjacent to at least k — 1 vertices of {xq,xs,...,zx}.

By Lemma 4, we have Cy,41) € G, a contradiction.

Case 3. Suppose that there are two edges between {zy 2} and {yri1,yri2}, namely,
Tpt2Yk+1, ThpaYir2 € E(G). Since Copy1y € G, we have xp_1yp, Trio1, ThyoUe € E(G).
Then x;_; has to be adjacent to ¥, since otherwise x;_1, Tr12,y1 and y; would construct
a Kj9 in G°. By symmetry, y, has to be adjacent to x; as shown in Fig. 12. Now we have
Cokr1) € G(Urt1Tk41YTkY2T3 - - - Yh—2Tk—1Y1 21 Yk+2Tk42Yk+1), & contradiction.

Th+2 Yk+1

Yk+2

z

T2

Fig. 12. xp.o being adjacent to yxy1 and yiio

By Case 1-3, we have the assumption that b(Cogi1); K2,2) > k + 2 does not hold. So,
we have b(Cy(ri1); Ko2) < k4 2. This completes the induction step, and the proof is
finished. O

4 Main results

Setting m = 3 in Corollary 1, we have b(Cg; Ka2) > 4. Furthermore, we can find that a
K4 4 is a disjoint sum of two subgraphs isomorphic to Cys. Hence, we have b(Cq; Ka2) > 5.
By results in [1], Corollary 1, Lemma 1, Lemma 3 and Lemma 5, we obtain the values of
b(Com; K 2) as follows.
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Theorem 2.

b(sz; K2,2) = {

5, m = 2 or 3,
m+1, m>4.
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