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Abstract

Given bipartite graphs H1 and H2, the bipartite Ramsey number b(H1;H2) is
the smallest integer b such that any subgraph G of the complete bipartite graph
Kb,b, either G contains a copy of H1 or its complement relative to Kb,b contains a
copy of H2. It is known that b(K2,2;K2,2) = 5, b(K2,3;K2,3) = 9, b(K2,4;K2,4) = 14
and b(K3,3;K3,3) = 17. In this paper we study the case H1 being even cycles and
H2 being K2,2, prove that b(C6;K2,2) = 5 and b(C2m;K2,2) = m + 1 for m ≥ 4.
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1 Introduction

We consider only finite undirected graphs without loops or multiple edges. For a graph
G with vertex-set V (G) and edge-set E(G), we denote the order and the size of G by
p(G) = |V (G)| and q(G) = |E(G)|. δ(G) and ∆(G) are the minimum degree and the
maximum degree of G respectively.

Let Km,n be a complete m by n bipartite graph, that is, Km,n consists of m+n vertices,
partitioned into sets of size m and n, and the mn edges between them. Pk is a path on k

vertices, and Ck is a cycle of length k. Let H1 and H2 be bipartite graphs, the bipartite
Ramsey number b(H1; H2) is the smallest integer b such that given any subgraph G of the
complete bipartite graph Kb,b, either G contains a copy of H1 or there exists a copy of H2

in the complement of G relative to Kb,b. Obviously, we have b(H1; H2) = b(H2; H1).
Beineke and Schwenk [1] showed that

b(K2,2; K2,2) = 5, b(K2,4; K2,4) = 13, b(K3,3; K3,3) = 17.
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In particular, they proved that b(K2,n; K2,n) = 4n− 3 for n odd and less than 100 except
possibly n = 59 or n = 95. Carnielli and Carmelo [2] proved that b(K2,n; K2,n) = 4n−3 if
4n−3 is a prime power. They also showed that b(K2,2; K1,n) = n+q for q2−q+1 ≤ n ≤ q2 ,
where q is a prime power. Irving [6] showed that b(K4,4; K4,4) ≤ 48. Hattingh and Henning
[4] proved that

b(K2,2; K3,3) = 9, b(K2,2; K4,4) = 14.

They also determined the values of b(Pm; K1,n) in [5]. Faudree and Schelp [3] proved the
values of b(H1; H2) when both H1 and H2 are two paths.

Let Gi be the subgraph of G whose edges are in the i-th color in an r-coloring of
the edges of G. If there exists an r-coloring of the edges of G such that Hi 6⊆ Gi for all
1 ≤ i ≤ r, then G is said to be r-colorable to (H1, H2, . . . , Hr). The neighborhood of a
vertex v ∈ V (G) are denoted by N(v) = {u ∈ V (G)|uv ∈ E(G)}, and let d(v) = |N(v)|.
Gc denotes the complement of G relative to Kb,b. G〈W 〉 denotes the subgraph of G

induced by W ⊆ V (G).
In this paper we study the case that H1 being even cycles and H2 being K2,2, prove

that b(C6; K2,2) = 5 and b(C2m; K2,2) = m + 1 for m ≥ 4. For the sake of convenience,
let V (Km,n) = X ∪ Y , where X = {xi|1 ≤ i ≤ m} and Y = {yj|1 ≤ j ≤ n}, and
E(Km,n) = {xiyj|1 ≤ i ≤ m, 1 ≤ j ≤ n}.

2 The lower bounds of b(C2m; K2,2)

Theorem 1. b(C2m; C2n) ≥ m + n − 1.
Proof. Let G1 and G2 be the subgraphs of Km+n−2,m+n−2, where G1 is a complete m− 1
by m + n − 2 bipartite graph, and G2 is a complete n − 1 by m + n − 2 bipartite graph.
And let

V (G1) = X1 ∪ Y, where X1 = {xi|1 ≤ i ≤ m − 1}, Y = {yi|1 ≤ i ≤ m + n − 2};

V (G2) = X2 ∪ Y, where X2 = {xi|m ≤ i ≤ m + n − 2}, Y = {yi|1 ≤ i ≤ m + n − 2}.

Then we have E(G1) ∩ E(G2) = ∅ and E(G1) ∪ E(G2) = E(Km+n−2,m+n−2). Note
that C2m 6⊆ G1 and C2n 6⊆ G2. So Km+n−2,m+n−2 is 2-colorable to (C2m, C2n), that is,
b(C2m; C2n) ≥ m + n − 1. 2

Setting n = 2 in Theorem 1, we have
Corollary 1. b(C2m; K2,2) ≥ m + 1.

3 The upper bounds of b(C2m; K2,2)(m ≥ 3)

Lemma 1. b(C6; K2,2) ≤ 5.
Proof. We may assume that b(C6; K2,2) > 5, that is, K5,5 is 2-colorable to (C6, K2,2).
Since K2,2 * Gc and b(K2,2; K2,2) = 5, we have K2,2 ⊆ G. Without loss of generality, we
may assume {x1y1, y1x2, x2y2, y2x1} ⊆ E(G).
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Since K2,2 * Gc, there is at least one edge between {x3, x4} and {y3, y4}, say x3y3 ∈
E(G). Similarly, there is at least one edge between {x4, x5} and {y4, y5}, say x4y4 ∈ E(G).
And there is at least one edge between {x1, x2} and {y3, y4}, say x1y4 ∈ E(G). Since
C6 * G, x4 is nonadjacent to any vertex of {y1, y2}. Therefore since K2,2 * Gc, x3 has to
be adjacent to one vertex of {y1, y2}, say x3y2 ∈ E(G). x4 is nonadjacent to any vertex
if {y1, y2, y3}, since otherwise we have C6 ⊆ G. And since K2,2 * Gc, x5 is adjacent to at
least two vertices of {y1, y2, y3}. If x5 is adjacent to both y1 and y3, then we have C6 ⊆ G,
a contradiction. Hence we have x5y1, x5y2 ∈ E(G) or x5y2, x5y3 ∈ E(G).
Case 1. Suppose that x5y1, x5y2 ∈ E(G), see Fig. 1(a). Since C6 * G, x5 is nonadjacent
to y3 or y4. Therefore since K2,2 * Gc, x2 has to be adjacent to at least one vertex of
{y3, y4}. In any case, we have C6 ⊆ G, a contradiction.
Case 2. Suppose that x5y2, x5y3 ∈ E(G), see Fig. 1(b). Since C6 * G, x5 is nonadjacent
to y1 or y4. Therefore since K2,2 * Gc, x3 has to be adjacent to at least one vertex of
{y1, y4}. In any case, we have C6 ⊆ G, a contradiction too.

x1
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x3

x4

x5

y1

y2

y3

y4

x1x2

x3

x4

x5

y1

y2

y3

y4

(a) (b)

Fig. 1. The two cases of N(x5)

By Case 1 and 2, the assumption that b(C6; K2,2) > 5 does not hold. Then we have
the lemma follows. 2

Lemma 2. Let G be a spanning subgraph of K5,5 and C8 * G. If K2,2 * Gc, then there
exists at most one vertex of X(or Y ) whose degrees is at most 2.
Proof. For 1 ≤ i, j ≤ 5, if |N(xi)∪N(xj)| ≤ 3(i 6= j), then there are at least two vertices
of Y are nonadjacent to xi or xj , we have K2,2 ⊆ Gc. Hence we have
Claim 1. |N(xi) ∪ N(xj)| ≥ 4.

By way of contradiction, we assume that there exists at least two vertices of X whose
degrees are at most 2, say x1 and x2. By Claim 1, we have |N(x1) ∪ N(x2)| = 4. We
may assume N(x1) = {y1, y2} and N(x2) = {y3, y4}. There are two subcases depending
on N(y5).
Case 1. Suppose that there is at least one vertex of {x3, x4, x5}, say x3 which is nonadja-
cent to y5. By Claim 1, we have |N(x1) ∪ N(x3)| ≥ 4, x3 has to be adjacent to both y3

and y4. Similarly we have |N(x2) ∪ N(x3)| ≥ 4, x3 has to be adjacent to both y1 and y2.
By Claim 1, we have |N(x1)∪N(x4)| ≥ 4, x4 has to be adjacent to at lease one vertex of
{y3, y4}, say x4y3 ∈ E(G) as shown in Fig. 2(a). Since C8 * G, x4 is nonadjacent to y1
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or y2. Hence we have |N(x2) ∪ N(x4)| ≤ 3, a contradiction to Claim 1.

x1
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x3

x2

y2

y1

y5
y3 y4

(a) (b)

Fig. 2. The two cases of N(y5)

Case 2. Suppose that each vertex of {x3, x4, x5} is adjacent to y5. By Claim 1, we
have |N(x1) ∪ N(x3)| ≥ 4, x3 has to be adjacent to at lease one vertex of {y3, y4}, say
x3y3 ∈ E(G). Similarly, we have |N(x2)∪N(x3)| ≥ 4, x3 has to be adjacent to at lease one
vertex of {y1, y2}, say x3y1 ∈ E(G). Since K2,2 * Gc, there is at least one edge between
{x4, x5} and {y2, y4}, say x4y2 ∈ E(G). Since C8 * G, x4 is nonadjacent to y4. By Claim
1, we have |N(x1) ∪ N(x4)| ≥ 4, x4 has to be adjacent to y3 as shown in Fig. 2(b). Since
C8 * G, x5 is nonadjacent to y1 or y2. Hence we have |N(x2)∪N(x5)| ≤ 3, a contradiction
to Claim 1.

By Case 1 and 2, the assumption does not hold. Then we have the lemma follows. 2

Lemma 3. b(C8; K2,2) ≤ 5.
Proof. We may assume that b(C8; K2,2) > 5, that is, K5,5 is 2-colorable to (C8, K2,2), say
C8 * G and K2,2 * Gc. Since K2,2 * Gc and b(C6; K2,2) ≤ 5, we have C6 ⊆ G. Without
loss of generality, we may assume {x1y1, y1x2, x2y2, y2x3, x3y3, y3x1} ⊆ E(G).

x4 y4

x5 y5

x1

x2

x3

y1

y2

y3

Fig. 3. No edge between {x4, y4} and V (C6)

Since K2,2 * Gc, there is at least one edge between {x4, x5} and {y4, y5}, say x4y4 ∈
E(G). Assume that x4 is nonadjacent to any vertex of {y1, y2, y3} and y4 is nonadjacent to
any vertex of {x1, x2, x3}. Then we have d(x4) ≤ 2 and d(y4) ≤ 2. Since K2,2 * Gc, x5 has
to be adjacent to at least two vertices of {y1, y2, y3}, say x5y1, x5y2 ∈ E(G). Similarly, y5

has to be adjacent to at least two vertices of {x1, x2, x3}. By symmetry, we may assume
that y5x1, y5x2 ∈ E(G) or y5x1, y5x3 ∈ E(G). If y5x1, y5x2 ∈ E(G), then C8 ⊆ G, a
contradiction. Hence we have y5x1, y5x3 ∈ E(G), as shown in Fig. 3. Since C8 * G, x2 is
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nonadjacent to y3 or y5. So we have d(x2) = 2, a contradiction to Lemma 2. Hence x4

is adjacent to at least one vertex of {y1, y2, y3} or y4 is adjacent to at least one vertex of
{x1, x2, x3}, say x4y3 ∈ E(G).

Since C8 * G, y4 is nonadjacent to x1 or x3. Therefore since K2,2 * Gc, y5 has to be
adjacent to at least one vertex of {x1, x3}, say y5x1 ∈ E(G). Now we consider the vertex
of x5, there are three subcases.

x4

y4

x5
x1

x2

x3

y1 y2

y3

y5

Fig. 4. x5 being nonadjacent to y4 or y5

Case 1. Suppose that x5 is nonadjacent to any vertex of {y4, y5}. Since C8 * G, y4 is
nonadjacent to any vertex of {x1, x3}. Hence we have d(y4) ≤ 2. By Lemma 2, we have
d(y5) ≥ 3. Therefore since C8 * G, y5 has to be adjacent to both x2 and x3 as shown
in Fig. 4. Since C8 * G, x4 is nonadjacent to any vertex of {y1, y2, y5}. Hence we have
d(x4) = 2. By Lemma 2, we have d(x5) ≥ 3. Hence x5 has to be adjacent to each vertex
of {y1, y2, y3}, we have C8 ⊆ G, a contradiction.
Case 2. Suppose that x5 is adjacent to just one vertex of {y4, y5}, that is, x5y4 ∈ E(G)
or x5y5 ∈ E(G). Suppose x5y4 ∈ E(G), then x5y5 6∈ E(G). Since C8 * G, we have
x4y5 6∈ E(G). Since K2,2 * Gc, y1 is adjacent to at least one vertex of {x4, x5}. Therefore
since C8 * G, y1 has to be adjacent to x4. Similarly, y2 and y3 have to be adjacent to x4,
see Fig. 5(a). Since C8 * G, y5 is nonadjacent to any vertex of {x2, x3}. Hence we have
d(y5) = 1. By Lemma 2, we have d(y4) ≥ 3. Hence y4 has to be adjacent to at least one
vertex of {x1, x2, x3}. In any case, we have C8 ⊆ G, a contradiction.

Suppose that x5y5 ∈ E(G). Since C8 * G, x5 is nonadjacent to any vertex of {y1, y3}.
Hence we have d(x5) ≤ 2. By Lemma 2, we have d(x3) ≥ 3. Since C8 * G, x3 is
nonadjacent to y4. x3 has to be adjacent to y1, since otherwise K2,2 ⊆ Gc〈{x3, x5, y1, y4}〉,
see Fig. 5(b). By Lemma 2, we have d(x4) ≥ 3. Hence x4 is adjacent to at least one vertex
of {y1, y2}. In any case, since C8 * G, y5 is nonadjacent to x2 or x3. Hence we have
d(y5) = 2, a contradiction to Lemma 2.
Case 3. Suppose that x5 is adjacent to each vertex of {y4, y5}, as shown in Fig. 6. Since
C8 * G, y4 is nonadjacent to any vertex of {x1, x2, x3}. Hence d(y4) = 2. By Lemma 2,
we have d(y2) ≥ 3. So y2 is adjacent to at least one vertex of {x1, x4, x5}. In any case, we
have C8 ⊆ G, a contradiction.

By Case 1-3, the assumption does not hold. Then we have the lemma follows. 2
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Fig. 5. x5 being adjacent to just one of {y4, y5}
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x4

y4
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Fig. 6. x5 being adjacent to y4 and y5

Lemma 4. Let G be a spanning subgraph of Kk+1,k+1 such that C2k ⊆ G and xk+1, yk+1 6∈
V (C2k). If xk+1 and yk+1 are adjacent to at least k − 1 vertices of V (C2k) respectively,
then we have C2(k+1) ⊆ G.
Proof. Without loss of generality, let E(C2k) = {x1y1, y1x2, . . . , xxyk, ykx1}. Then xk+1 is
adjacent to at least k− 1 vertices of {y1, y2, . . . , yk}, say {xk+1y1, xk+1y2, . . . , xk+1yk−1} ⊆
E(G). And since yk+1 is adjacent to at least k − 1 vertices of {x1, x2, . . . , xk}, yk+1

is nonadjacent to at most one vertex of {x1, xk}, say xkyk+1 * E(G). Hence we have
C2(k+1) ⊆ G(x1yk+1x2y1xk+1y2x3y3, . . . , xkykx1) as shown in Fig. 7. 2

Lemma 5. If m ≥ 4, then b(C2m; K2,2) ≤ m + 1.
Proof. We will prove it by way of induction.
(1) For m = 4, by Lemma 3, we have the lemma holds.
(2) Suppose that b(C2k; K2,2) ≤ k+1 for k ≥ 4. We will show that b(C2(k+1); K2,2) ≤ k+2
as follows. The proof is similar to Lemma 3, however, arbitrary k makes Lemma 2 not
applicable, which makes the proof more difficult.

By contradiction, we may assume that b(C2(k+1); K2,2) > k + 2, that is, Kk+2,k+2 is
2-colorable to (C2(k+1), K2,2), say C2(k+1) * G and K2,2 * Gc. By the induction hy-
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x1

x2

x3 xk−2

xk−1

xk

y1

y2 yk−2

yk−1

yk
yk+1

xk+1

y3 yk−3

Fig. 7. The graph with a cycle of length 2(k + 1)

pothesis, we have b(C2k; K2,2) ≤ k + 1. Therefore since K2,2 * Gc, we have C2k ⊆ G,
let E(C2k) = {x1y1, y1x2, x2y2, . . . , xkyk, ykx1}. Firstly, we consider the four vertices not
belong to V (C2k), that is, xk+1, xk+2, yk+1 and yk+2.

Since K2,2 * Gc, there is at least one edge between {xk+1, xk+2} and {yk+1, yk+2},
say xk+1yk+1 ∈ E(G). Assume that there is no edge between {xk+1, yk+1} and V (C2k).
Since K2,2 * Gc, xk+2 is adjacent to at least k − 1 vertices of {y1, y2, . . . , yk}, and yk+2 is
adjacent to at least k − 1 vertices of {x1, x2, . . . , xk}. By Lemma 4, we have C2(k+1) ⊆ G,
a contradiction. So there is at least one edge between {xk+1, yk+1} and V (C2k), say
xk+1yk ∈ E(G). Since C2(k+1) * G, yk+1 is nonadjacent to x1 or xk. Therefore since
K2,2 * Gc, yk+2 has to be adjacent to at least one vertex of {x1, xk}, say yk+2x1 ∈ E(G)
as shown in Fig. 8. Now we consider the edge number between {xk+2} and {yk+1, yk+2},
there are three subcases as follows.

yk+2

xk+2

xk+1

yk+1

x1

x2

x3

xk−1

xky1

y2

yk−2

yk−1

yk

Fig. 8. The subgraph of G

Case 1. Suppose that there is no edge between {xk+2} and {yk+1, yk+2}. Since K2,2 * Gc,
xk is adjacent to at least one vertex of {yk+1, yk+2}. Therefore since C2(k+1) * G, xk has
to be adjacent to yk+2. Then both x2 and xk−1 are nonadjacent to yk+1, since otherwise
C2(k+1) ⊆ G. If yk+2 is nonadjacent to at least one vertex of {x2, xk−1}, say x2, then x2,
xk+2, yk+1 and yk+2 would construct a K2,2 in Gc, a contradiction. Hence both x2 and
xk−1 have to be adjacent to yk+2. xk+1 is nonadjacent to any vertex of {y1, yk−1, yk+2},
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x1

x2

x3 xk−2

xk−1

xk

y1

y2 yk−2

yk−1

yk

xk+1

xk+2

yk+1

yk+2

Fig. 9. xk+2 being nonadjacent to yk+1 or yk+2

since otherwise C2(k+1) ⊆ G. If xk+2 is nonadjacent to at least one vertex of {y1, yk−1},
say y1, then xk+1, xk+2, y1 and yk+2 would construct a K2,2 in Gc, a contradiction. Hence
xk+2 has to be adjacent to both y1 and yk−1 as shown in Fig. 9. Now we have C2(k+1) ⊆
G(y1x1ykxkyk+2x2y2, . . . , xk−1yk−1xk+2y1), a contradiction too.
Case 2. Suppose that there is just one edge between {xk+2} and {yk+1, yk+2}, namely
xk+2yk+1 ∈ E(G) or xk+2yk+2 ∈ E(G).
Case 2.1. Suppose that xk+2yk+1 ∈ E(G), then xk+2yk+2 6∈ E(G). Since C2(k+1) * G, we
have xk+1yk+2, xk+2yk−1 6∈ E(G). Then yk−1 has to be adjacent to xk+1, since otherwise
xk+1, xk+2, yk−1 and yk+2 would construct a K2,2 in Gc. Note that xk+1 together with
V (C2k)−xk construct a new cycle of length 2k as shown in Fig. 10(a). Since C2(k+1) * G,
yk+2 is nonadjacent to xk or xk+2. So, the proof is same as Case 1.

yk

y1

y2

yk−2

yk−1x1

x2

xk−2

xk−1

xk+1

xk

yk+2

yk+1

xk+2

yk+2

xk+2

xk+1

yk+1

x1

x2

x3

xk−1

xky1

y2

yk−2

yk−1

yk

(a) (b)

Fig. 10. xk+2 being adjacent to just one of {yk+1, yk+2}

Case 2.2. Suppose that xk+2yk+2 ∈ E(G). Then xk+2yk+1 6∈ E(G). Since C2(k+1) * G, we
have xkyk+1, xk+2y1 6∈ E(G). Then xk has to adjacent to y1, since otherwise xk, xk+2, y1

and yk+1 would construct a K2,2 in Gc. Note that there exists a path of length 2(k+1) be-
tween xk+2 and yk−1(xk+2yk+2x1ykxky1x2y2x3y3 . . . xk−2yk−2xk−1yk−1). Hence we have xk+2

is nonadjacent to yk−1. By symmetry, yk+1 is nonadjacent to x2. Therefore since K2,2 *
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Gc, x2 has to adjacent to yk−1. Similarly, there exists a path of length 2(k+1) between xk+2

and y2(xk+2yk+2x1ykxky1x2yk−1xk−1yk−2xk−2 . . . y3x3y2). Hence we have xk+2 is nonadja-
cent to y2. By symmetry, yk+1 is nonadjacent to xk−1. Therefore since K2,2 * Gc, y2 has
to adjacent to xk−1. So for even k, we can have x3yk−2 ∈ E(G), y3xk−2 ∈ E(G), x4yk−3 ∈
E(G), y4xk−3 ∈ E(G), . . . , xk

2
−1y k

2
+2 ∈ E(G), y k

2
−1xk

2
+2 ∈ E(G), xk

2

y k

2
+1 ∈ E(G) se-

quentially. And for odd k, we can have x3yk−2 ∈ E(G), y3xk−2 ∈ E(G), x4yk−3 ∈
E(G), y4xk−3 ∈ E(G), . . . , xk−1

2

y k+3

2

∈ E(G), y k−1

2

xk+3

2

∈ E(G) sequentially. That is,

we will add k − 2 chords on the cycle C2k as shown in Fig. 10(b).
Since C2(k+1) * G, xk+2 is nonadjacent to any vertex of {y1, y2, . . . , yk}. Therefore

since K2,2 * Gc, xk+1 has to be adjacent to at least k − 1 vertices of {y1, y2, . . . , yk}. By
symmetry, we have yk+2 has to be adjacent to at least k − 1 vertices of {x1, x2, . . . , xk}.
By Lemma 4, we have C2(k+1) ⊆ G, a contradiction.
Case 3. Suppose that there are two edges between {xk+2} and {yk+1, yk+2}, namely,
xk+2yk+1, xk+2yk+2 ∈ E(G). Since C2(k+1) * G, we have xk−1yk, xk+2y1, xk+2yk 6∈ E(G).
Then xk−1 has to be adjacent to y1, since otherwise xk−1, xk+2, y1 and yk would construct
a K2,2 in Gc. By symmetry, y2 has to be adjacent to xk as shown in Fig. 12. Now we have
C2(k+1) ⊆ G(yk+1xk+1ykxky2x3 . . . yk−2xk−1y1x1yk+2xk+2yk+1), a contradiction.

yk+2

xk+2

xk+1

yk+1

x1

x2

x3

xk−1

xky1

y2

yk−2

yk−1

yk

Fig. 12. xk+2 being adjacent to yk+1 and yk+2

By Case 1-3, we have the assumption that b(C2(k+1); K2,2) > k + 2 does not hold. So,
we have b(C2(k+1); K2,2) ≤ k + 2. This completes the induction step, and the proof is
finished. 2

4 Main results

Setting m = 3 in Corollary 1, we have b(C6; K2,2) ≥ 4. Furthermore, we can find that a
K4,4 is a disjoint sum of two subgraphs isomorphic to C8. Hence, we have b(C6; K2,2) ≥ 5.
By results in [1], Corollary 1, Lemma 1, Lemma 3 and Lemma 5, we obtain the values of
b(C2m; K2,2) as follows.
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Theorem 2.

b(C2m; K2,2) =

{

5, m = 2 or 3,
m + 1, m ≥ 4.
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