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Abstract

We introduce a family of polynomials that generalizes the Bell polynomials, in

connection with the combinatorics of the central moments of the Poisson distri-

bution. We show that these polynomials are dual of the Charlier polynomials by

the Stirling transform, and we study the resulting combinatorial identities for the

number of partitions of a set into subsets of size at least 2.

1 Introduction

The moments of the Poisson distribution are well-known to be connected to the combina-
torics of the Stirling and Bell numbers. In particular the Bell polynomials Bn(λ) satisfy
the relation

Bn(λ) = Eλ[Z
n], n ∈ N, (1.1)

where Z is a Poisson random variable with parameter λ > 0, and

Bn(1) =

n
∑

c=0

S(n, c) (1.2)

is the Bell number of order n, i.e. the number of partitions of a set of n elements. In this
paper we study the central moments of the Poisson distribution, and we show that they
can be expressed using the number of partitions of a set into subsets of size at least 2, in
connection with an extension of the Bell polynomials.
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Consider the above mentioned Bell (or Touchard) polynomials Bn(λ) defined by the
exponential generating function

eλ(et−1) =

∞
∑

n=0

tn

n!
Bn(λ), (1.3)

λ, t ∈ R, cf. e.g. §11.7 of [4], and given by the Stirling transform

Bn(λ) =
n

∑

c=0

λcS(n, c), (1.4)

where

S(n, c) =
1

c!

c
∑

l=0

(−1)c−l

(

c

l

)

ln (1.5)

denotes the Stirling number of the second kind, i.e. the number of ways to partition a set
of n objects into c non-empty subsets, cf. § 1.8 of [7], Proposition 3.1 of [3] or § 3.1 of [6],
and Relation (1.2) above.

In this note we define a two-parameter generalization of the Bell polynomials, which
is dual to the Charlier polynomials by the Stirling transform. We study the links of these
polynomials with the combinatorics of Poisson central moments, cf. Lemma 3.1, and as
a byproduct we obtain the binomial identity

S2(m, n) =
n

∑

k=0

(−1)k

(

m

k

)

S(m − k, n − k), (1.6)

where S2(n, a) denotes the number of partitions of a set of size n into a subsets of size at
least 2, cf. Corollary 3.2 below, which is the binomial dual of the relation

S(m, n) =

n
∑

k=0

(

m

k

)

S2(m − k, n − k),

cf. Proposition 3.3 below.

We proceed as follows. Section 2 contains the definition of our extension of the Bell
polynomials. In Section 3 we study the properties of the polynomials using the Poisson
central moments, and we derive Relation (1.6) as a corollary. Finally in Section 4 we state
the connection between these polynomials and the Charlier polynomials via the Stirling
transform.

2 An extension of the Bell polynomials

We let (Bn(x, λ))n∈N denote the family of polynomials defined by the exponential gener-
ating function

ety−λ(et−t−1) =
∞

∑

n=0

tn

n!
Bn(y, λ), λ, y, t ∈ R.. (2.1)
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Clearly from (1.3) and (2.1), the definition of Bn(x, λ) generalizes that of the Bell poly-
nomials Bn(λ), in that

Bn(λ) = Bn(λ,−λ), λ ∈ R. (2.2)

When λ > 0, Relation (2.1) can be written as

etyEλ[e
t(Z−λ)] =

∞
∑

n=0

tn

n!
Bn(y,−λ), y, t ∈ R,

which yields the relation

Bn(y,−λ) = Eλ[(Z + y − λ)n], λ, y ∈ R, n ∈ N, (2.3)

which is analog to (1.1), and shows the following proposition.

Proposition 2.1 For all n ∈ N we have

Bn(y, λ) =

n
∑

k=0

(

n

k

)

(y − λ)n−k

k
∑

i=0

λiS(k, i), y, λ ∈ R, n ∈ N. (2.4)

Proof. Indeed, by (2.3) we have

Bn(y,−λ) = Eλ[(Z + y − λ)n],

=

n
∑

k=0

(

n

k

)

(y − λ)n−kEλ[Z
k]

=

n
∑

k=0

(

n

k

)

(y − λ)n−kBk(λ)

=

n
∑

k=0

(

n

k

)

(y − λ)n−k

k
∑

i=0

λiS(k, i), y, λ ∈ R.

�

3 Combinatorics of the Poisson central moments

As noted in (1.1) above, the connection between Poisson moments and polynomials is well
understood, however the Poisson central moments seem to have received less attention.

In the sequel we will need the following lemma, which expresses the central moments
of a Poisson random variable using the number S2(n, b) of partitions of a set of size n into
b subsets with no singletons.

Lemma 3.1 Let Z be a Poisson random variable with intensity λ > 0. We have

Bn(0,−λ) = Eλ[(Z − λ)n] =
n

∑

a=0

λaS2(n, a), n ∈ N. (3.1)
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Proof. We start by showing the recurrence relation

Eλ[(Z − λ)n+1] = λ

n−1
∑

i=0

(

n

i

)

Eλ

[

(Z − λ)i
]

, n ∈ N, (3.2)

for Z a Poisson random variable with intensity λ. We have

Eλ[(Z − λ)n+1] = e−λ

∞
∑

k=0

λk

k!
(k − λ)n+1

= e−λ

∞
∑

k=1

λk

(k − 1)!
(k − λ)n − λe−λ

∞
∑

k=0

λk

k!
(k − λ)n

= λe−λ

∞
∑

k=0

λk

k!
((k + 1 − λ)n − (k − λ)n)

= λe−λ

∞
∑

k=0

λk

k!

n−1
∑

i=0

(

n

i

)

(k − λ)i

= λe−λ

n−1
∑

i=0

(

n

i

) ∞
∑

k=0

λk

k!
(k − λ)i

= λ
n−1
∑

i=0

(

n

i

)

Eλ[(Z − λ)i]..

Next, we show that the identity

Eλ[(Z − λ)n] =
n−1
∑

a=1

λa
∑

0=k1≪···≪ka+1=n

a
∏

l=1

(

kl+1 − 1

kl

)

(3.3)

holds for all n ≥ 1, where a ≪ b means a < b − 1. Note that the degree of (3.3) in λ is
the largest integer d such that 2d ≤ n, hence it equals n/2 or (n − 1)/2 according to the
parity of n.

Clearly, the identity (3.3) is valid when n = 1 and when n = 2. Assuming that it
holds up to the rank n ≥ 2, from (3.2) we have

Eλ[(Z − λ)n+1] = λ
n−1
∑

k=0

(

n

k

)

Eλ

[

(Z − λ)k
]

= λ + λ
n−1
∑

k=1

(

n

k

)

Eλ

[

(Z − λ)k
]

= λ + λ

n−1
∑

k=1

(

n

k

) k−1
∑

b=1

λb
∑

0=k1≪···≪kb+1=k

b
∏

l=1

(

kl+1 − 1

kl

)
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= λ + λ

n−1
∑

k=1

(

n

k

) k
∑

b=2

λb−1
∑

0=k1≪···≪kb=k

b−1
∏

l=1

(

kl+1 − 1

kl

)

= λ + λ

n−1
∑

kb=1

(

n

kb

) kb
∑

b=2

λb−1
∑

0=k1≪···≪kb

b−1
∏

l=1

(

kl+1 − 1

kl

)

= λ + λ
n−1
∑

kb=1

kb
∑

b=2

λb−1
∑

0=k1≪···≪kb≪kb+1=n

b
∏

l=1

(

kl+1 − 1

kl

)

= λ + λ
n

∑

kb=1

kb
∑

b=2

λb−1
∑

0=k1≪···≪kb≪kb+1=n

b
∏

l=1

(

kl+1 − 1

kl

)

= λ +
n

∑

b=2

λb
∑

0=k1≪···≪kb+1=n+1

b
∏

l=1

(

kl+1 − 1

kl

)

=
n

∑

b=1

λb
∑

0=k1≪···≪kb+1=n+1

b
∏

l=1

(

kl+1 − 1

kl

)

,

and it remains to note that

∑

0=k1≪···≪kb+1=n

b
∏

l=1

(

kl+1 − 1

kl

)

= S2(n, b) (3.4)

equals the number S2(n, b) of partitions of a set of size n into b subsets of size at least
2. Indeed, any contiguous such partition is determined by a sequence of b − 1 integers
k2, . . . , kb with 2b ≤ n and 0 ≪ k2 ≪ · · · ≪ kb ≪ n so that subset no i has size
ki+1 − ki ≥ 2, i = 1, . . . , b, with kb+1 = n, and the number of not necessarily contiguous
partitions of that size can be computed inductively on i = 1, . . . , b as

(

n − 1

n − 1 − kb

)(

kb − 1

kb − 1 − kb−1

)

· · ·

(

k2 − 1

k2 − 1 − k1

)

=
b

∏

l=1

(

kl+1 − 1

kl

)

..

For this, at each step we pick an element which acts as a boundary point in the subset
no i, and we do not count it in the possible arrangements of the remaining ki+1 − 1 − ki

elements among ki+1 − 1 places. �

Lemma 3.1 and (3.4) can also be recovered by use of the cumulants (κn)n≥1 of Z − λ,
defined from the cumulant generating function

log Eλ[e
t(Z−λ)] = λ(et − 1) =

∞
∑

n=1

κn

tn

n!
,

i.e. κ1 = 0 and κn = λ, n ≥ 2, which shows that

Eλ[(Z − λ)n] =
n

∑

a=1

∑

B1,...,Ba

κ|B1| · · ·κ|Ba|,
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where the sum runs over the partitions B1, . . . , Ba of {1, . . . , n} with cardinal |Bi| by the
Faà di Bruno formula, cf. § 2.4 of [5]. Since κ1 = 0 the sum runs over the partitions with
cardinal |Bi| at least equal to 2, which recovers

Eλ[(Z − λ)n] =
n

∑

a=1

λaS2(n, a), (3.5)

and provides another proof of (3.4). In addition, (3.2) can be seen as a consequence of a
general recurrence relation between moments and cumulants, cf. Relation (5) of [8].

In particular when λ = 1, (3.1) shows that the central moment

Bn(0,−1) = E1[(Z − 1)n] =
n

∑

a=0

S2(n, a) (3.6)

is the number of partitions of a set of size n into subsets of size at least 2, as a counterpart
to (1.2).

By (2.3) we have

Bn(y, λ) =

n
∑

k=0

(

n

k

)

yn−kEλ[(Z − λ)k] =

n
∑

k=0

(

n

k

)

yn−kBk(0,−λ),

y ∈ R, λ > 0, n ∈ N, hence Lemma 3.1 shows that we have

Bn(y, λ) =
n

∑

l=0

(

n

l

)

yn−l

l
∑

c=0

λcS2(l, c), λ, y ∈ R, n ∈ N.. (3.7)

As a consequence of Relations (2.4) and (3.7) we obtain the following binomial identity.

Corollary 3.2 We have

S2(n, c) =
c

∑

k=0

(−1)k

(

n

k

)

S(n − k, c − k), 0 ≤ c ≤ n. (3.8)

Proof. By Relation (2.4) we have

Bn(y, λ) =

n
∑

k=0

(

n

k

)

(y − λ)k

n−k
∑

i=0

λiS(n − k, i)

=

n
∑

k=0

(

n

k

) k
∑

l=0

(

k

l

)

yl(−λ)k−l

n−k
∑

i=0

λiS(n − k, i)

=
n

∑

k=0

k
∑

l=0

(

n

l

)(

n − l

n − k

)

yl(−λ)k−l

n−k
∑

i=0

λiS(n − k, i)
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=

n
∑

l=0

n
∑

k=l

(

n

l

)(

n − l

n − k

)

yl(−λ)k−l

n−k
∑

i=0

λiS(n − k, i)

=

n
∑

l=0

n−l
∑

b=0

(

n

l

)(

n − l

b

)

yl(−λ)n−b−l

b
∑

i=0

λiS(b, i)

=
n

∑

l=0

l
∑

b=0

(

n

l

)(

l

b

)

yn−l(−λ)b

l−b
∑

i=0

λiS(l − b, i)

=

n
∑

l=0

l
∑

b=0

(

n

l

)(

l

b

)

yn−l(−λ)b

l
∑

c=b

λc−bS(l − b, c − b)

=

n
∑

l=0

(

n

l

)

yn−l

l
∑

c=0

λc

c
∑

b=0

(−1)b

(

l

b

)

S(l − b, c − b), y, λ ∈ R,

and we conclude by Relation (3.7). �

As a consequence of (3.7) and (3.8) we have the identity

Bn(0,−λ) = Eλ [(Z − λ)n] =

n
∑

c=0

λc

c
∑

a=0

(−1)a

(

n

a

)

S(n − a, c − a),

for the central moments of a Poisson random variable Z with intensity λ > 0.

The following proposition, which is the inversion formula of (3.8) has a natural in-
terpretation by recalling that S2(m, b) is the number of partitions of a set of m elements
made of b sets of cardinal greater or equal to 2, as will be seen in Proposition 3.4 below.

Proposition 3.3 We have the combinatorial identity

S(n, b) =
b

∑

l=0

(

n

l

)

S2(n − l, b − l), b, n ∈ N. (3.9)

Proof. By Relation (3.7) we have

Bn(λ) = Bn(λ,−λ)

=

n
∑

l=0

(

n

l

)

λn−l

l
∑

b=0

λbS2(l, b)

=

n
∑

b=0

λb

b
∑

l=0

(

n

l

)

S2(n − l, b − l),

and we conclude from (1.4). �

Relation (3.9) is in fact a particular case for a = 0 of the identity proved in the next
proposition, since S(l − c, 0) = 1{l=c}.
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Proposition 3.4 For all a, b, n ∈ N we have

(

a + b

a

)

S(n, a + b) =

b
∑

c=0

n
∑

l=c

(

n

l

)(

l

c

)

S(l − c, a)S2(n − l, b − c)..

Proof. The partitions of {1, . . . , n} made of a + b subsets are labeled using all possibles
values of l ∈ {0, 1, . . . , n} and c ∈ {0, 1, . . . , l}, as follows. For every l ∈ {0, 1, . . . , n} and
c ∈ {0, 1, . . . , l} we decompose {1, . . . , n} into

• a subset (k1, . . . , kl) of {1, . . . , n} with
(

n

l

)

possibilities,

• c singletons within (k1, . . . , kl), i.e.
(

l

c

)

possibilities,

• a remaining subset of (k1, . . . , kl) of size l − c, which is partitioned into a ∈ N

(non-empty) subsets, i.e. S(l − c, a) possibilities, and

• a remaining set {1, . . . , n} \ (k1, . . . , kl) of size n − l which is partitioned into b − c
subsets of size at least 2, i.e. S2(n − l, b − c) possibilities.

In this process the b subsets mentioned above were counted with their combinations within

a + b sets, which explains the binomial coefficient

(

a + b

a

)

on the right-hand side. �

4 Stirling transform

In this section we consider the Charlier polynomials Cn(x, λ) of degree n ∈ N, with
exponential generating function

e−λt(1 + t)x =

∞
∑

n=0

tn

n!
Cn(x, λ), x, t, λ ∈ R,

and

Cn(x, λ) =

n
∑

k=0

xk

k
∑

l=0

(

n

l

)

(−λ)n−ls(k, l), x, λ ∈ R, (4.1)

cf. § 3.3 of [7], where

s(k, l) =
1

l!

l
∑

i=0

(−1)i

(

l

i

)

(l − i)k

is the Stirling number of the first kind, cf. page 824 of [1], i.e. (−1)k−ls(k, l) is the number
of permutations of k elements which contain exactly l permutation cycles, n ∈ N.

In the next proposition we show that the Charlier polynomials Cn(x, λ) are dual to the
generalized Bell polynomials Bn(x − λ, λ) defined in (2.1) under the Stirling transform.

the electronic journal of combinatorics 18 (2011), #P54 8



Proposition 4.1 We have the relations

Cn(y, λ) =

n
∑

k=0

s(n, k)Bk(y − λ, λ) and Bn(y, λ) =

n
∑

k=0

S(n, k)Ck(y + λ, λ),

y, λ ∈ R, n ∈ N.

Proof. For the first relation, for all fixed y, λ ∈ R we let

A(t) = e−λt(1 + t)y+λ =

∞
∑

n=0

tn

n!
Cn(y + λ, λ), t ∈ R,

with

A(et − 1) = et(y+λ)−λ(et−1) =

∞
∑

n=0

tn

n!
Bn(y, λ), t ∈ R,

and we conclude from Lemma 4.2 below. The second part can be proved by inversion
using Stirling numbers of the first kind, as

n
∑

k=0

S(n, k)Ck(y + λ, λ) =

n
∑

k=0

k
∑

l=0

S(n, k)s(k, l)Bl(y, λ)

=

n
∑

l=0

Bl(y, λ)

n
∑

k=l

S(n, k)s(k, l)

= Bn(y, λ),

from the inversion formula
n

∑

k=l

S(n, k)s(k, l) = 1{n=l}, n, l ∈ N, (4.2)

for Stirling numbers, cf. e.g. page 825 of [1]. �

Next we recall the following lemma, cf. e.g. Relation (3) page 2 of [2], which has been used
in Proposition 4.1 to show that the polynomials Bn(y, λ) are connected to the Charlier
polynomials.

Lemma 4.2 Assume that the function A(t) has the series expansion

A(t) =
∞

∑

k=0

tk

k!
ak, t ∈ R.

Then we have

A(et − 1) =

n
∑

k=0

tk

k!
bk, t ∈ R,

with

bn =

n
∑

k=0

akS(n, k), n ∈ N.
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Finally we note that from (2.4) we have the relation

Bn(y, y + λ) =

n
∑

k=0

(y + λ)k

n
∑

l=k

(

n

l

)

(−λ)n−lS(l, k), y, λ ∈ R, n ∈ N,

which parallels (4.1).
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