
Lower Bounds on van der Waerden Numbers:

Randomized- and Deterministic-Constructive

William Gasarch
Department of Computer Science

University of Maryland at College Park
College Park, MD 20742, USA

gasarch@cs.umd.edu

Bernhard Haeupler
CSAIL

Massachusetts Institute of Technology
Cambridge, MA 02130, USA

haeupler@mit.edu

Submitted: May 19, 2010; Accepted: Mar 8, 2011; Published: Mar 24, 2011

Mathematics Subject Classification: 05D10

Abstract

The van der Waerden number W (k, 2) is the smallest integer n such that every
2-coloring of 1 to n has a monochromatic arithmetic progression of length k. The
existence of such an n for any k is due to van der Waerden but known upper bounds
on W (k, 2) are enormous. Much effort was put into developing lower bounds on
W (k, 2). Most of these lower bound proofs employ the probabilistic method often
in combination with the Lovász Local Lemma. While these proofs show the existence
of a 2-coloring that has no monochromatic arithmetic progression of length k they
provide no efficient algorithm to find such a coloring. These kind of proofs are often
informally called nonconstructive in contrast to constructive proofs that provide an
efficient algorithm.

This paper clarifies these notions and gives definitions for deterministic- and
randomized-constructive proofs as different types of constructive proofs. We then
survey the literature on lower bounds on W (k, 2) in this light. We show how known
nonconstructive lower bound proofs based on the Lovász Local Lemma can be made
randomized-constructive using the recent algorithms of Moser and Tardos. We also
use a derandomization of Chandrasekaran, Goyal and Haeupler to transform these
proofs into deterministic-constructive proofs. We provide greatly simplified and
fully self-contained proofs and descriptions for these algorithms.

1 Introduction

Notation 1.1 Let [n] = {1, . . . , n} and N
+ = {1, 2, . . .}. If k ∈ N

+ then a k-AP means
an arithmetic progression of size k, i.e., k numbers of the form {a, a+d, . . . , a+(k−1)d}
with a, d ∈ N

+.

Recall van der Waerden’s theorem:

the electronic journal of combinatorics 18 (2011), #P64 1

Theorem 1.2 For every k ≥ 1 and c ≥ 1 there exists W such that for every c-coloring
COL : [W] → [c] there exists a monochromatic k-AP, i.e. there are a, d ∈ N

+, such that

COL(a) = COL(a + d) = · · · = COL(a + (k − 1)d).

Definition 1.3 Let k, c, n ∈ N and let COL : [n] → [c]. We say that COL is a (k, c)-
proper coloring of [n] if there is no monochromatic k-AP in [n]. We denote with W (k, c)
the least W such that van der Waerden’s theorem holds with these values of k, c and W ,
i.e., the least W such that there exists no proper coloring of [W].

The first proof of Theorem 1.2 was due to van der Waerden [25]. The bounds on
W (k, c) were (to quote Graham, Rothchild, and Spencer [10]) EEEENORMOUS. Formally
they were not primitive recursive. The proof is purely combinatorial. Shelah [23] gave
primitive recursive bounds with a purely combinatorial proof. The best bound is due to
Gowers [9] who used rather hard mathematics to obtain

W (k, c) ≤ 22c22
k+9

.

In this paper we survey lower bounds for van der Waerden numbers. Some of the
bounds are obtained by probabilistic proofs. Since such proofs do not produce an actual
coloring they are often called, informally, nonconstructive. However, since all of the
objects involved are finite, one could (in principle) enumerate all of the colorings until
one with the correct properties is found. We do not object to the term nonconstructive;
however, we wish to clarify it. To this end we formally define two types of constructive
proofs. We only define these notions for proofs of lower bounds on W (k, c). It would be
easy to define constructive proofs in general; however, we want to keep our presentation
simple and focused.

Definition 1.4 A proof that W (k, c) ≥ f(k, c) is deterministic-constructive if it presents
an algorithm that will, for all k, c, produce a proper c-coloring of [f(k, c)] in time poly-
nomial in f(k, c).

Some of the nonconstructive techniques yield a randomized algorithm that, with high
probability, will produce a proper coloring in polynomial time. These seem to us to be
different from truly nonconstructive techniques. Hence we define a notion of randomized-
constructive.

Definition 1.5 A proof that W (k, c) ≥ f(k, c) is randomized-constructive if it presents
a randomized algorithm that will, for all k, c,

• always produce either a proper c-coloring or the statement I HAVE FAILED!,

• with probability ≥ 2/3 produce a proper c-coloring, and

• terminate in time polynomial in f(k, c).

the electronic journal of combinatorics 18 (2011), #P64 2

Note 1.6

1. The success probability can be increased through standard amplification by repeat-
ing the algorithm (say) f(k, c) times to make the probability of success 1 − 1

3f(k,c)

or even higher. The required explicitly declared one-sided error makes it further-
more possible to transform each randomized-constructive proof into a Las Vegas
algorithm that always outputs a proper c-coloring in expected polynomial time.

2. Similar probabilistic proofs of lower bounds for (off-diagonal) Ramsey Numbers [10,
11] are neither deterministic-constructive nor randomized-constructive. The reason
for this is that no polynomial time algorithm for detecting a failure (i.e., finding
a large clique or independent set) is known. This makes randomized algorithms
such as the ones by Haeupler, Saha, and Srinivasan [11] inherently Monte Carlo
algorithms that cannot be made randomized-constructive.

3. Work of Wigderson et al. [13, 19] on derandomization shows that, under widely
believed but elusive to prove hardness assumptions, randomness does not help al-
gorithmically - or more formally that P = BPP. In this case the above two notions
of randomized-constructive and deterministic-constructive would coincide.

We present the following lower bounds:

1. W (k, 2) ≥
√

k
3
2(k−1)/2 by a randomized-constructive proof. This is an easy and

known application of the probabilistic method of Erdös and Rado [6]. This result is
usually presented as being nonconstructive.

2. W (k, 2) ≥
√

k2(k−1)/2 by a deterministic-constructive proof. This is an easy deran-
domization of the Erdös-Rado lower bound using the method of conditional expec-
tations of Erdös and Selfridge [7]. It is likely known though we have never seen it
stated.

3. If p is prime then W (p + 1, 2) ≥ p(2p − 1) by a deterministic-constructive proof.
Berlekamp [3] proved this; however, our presentation follows that of Graham et
al [10]. Berlekamp actually proved W (p + 1, 2) ≥ p2p. He also has lower bounds
if k is a prime power and c is any number. Using a hard result from number
theory [1] we obtain as a corollary that, for all but a finite number of k, W (k, 2) ≥
(k − k0.525)(2k−k0.525 − 1).

4. W (k, 2) ≥ 2(k−1)

4k
by a randomized-constructive proof. The nonconstructive version of

this bound is implied by the Lovász Local Lemma [5] and by Szabó’s result [24] (ex-
plained below). The randomized-constructive proof is an application of Moser’s [17]
algorithmic proof of the Lovász Local Lemma. Our presentation is based on Moser’s
STOC presentation [16] in which he sketched a Kolmogorov complexity based proof
that differed significantly from the conference paper [17]. Later Moser and Tardos
wrote a sequel making the general Lovász Local Lemma (with the optimal constants)

the electronic journal of combinatorics 18 (2011), #P64 3

constructive [18]. Schweitzer had, independently, used Kolmogorov complexity to
obtain lower bounds on W (k, c) [22].

5. For all ǫ > 0, for all k ∈ N
+, W (k, 2) ≥ 2(k−1)(1−ǫ)

ek
by a deterministic-constructive

proof. More precisely we give a deterministic algorithm that, given k and ǫ, al-
ways outputs a proper coloring of [2

(k−1)(1−ǫ)

ek
] in time 2O(k/ǫ) which is polynomial in

the output size for any constant ǫ > 0. This result is an application of a deran-
domization of the Moser-Tardos algorithm for the Lovász Local Lemma given by
Chandrasekaran, Goyal and B. Haeupler [4]. We present a simplified, short and
completely self-contained proof.

6. The Lovász Local Lemma algorithm by Moser and Tardos [18] can be used to ob-

tain W (k, 2) ≥ 2(k−1)

ek
by a randomized-constructive proof matching the best non-

constructive bound directly achievable via the Lovász Local Lemma (see [10]). We

show W (k, 2) ≥ 2(k−1)

ek
− 1 as a simple corollary of our deterministic-constructive

proof.

Note 1.7

1. The best known (asymptotic) lower bound on W (k, 2) is due to Szabó [24]:

∀ǫ > 0, ∀ large k : W (k, 2) ≥ 2k

kǫ
.

The proof is involved, relies on the Lovász Local Lemma and additionally exploits
the structure of k-APs that almost all k-AP are almost disjoint (i.e., intersect in
at most one number). While the original proof is nonconstructive it can be made
constructive using the methods of some recent papers [4, 11, 18].

2. There is no analog of Szabó’s bound for c ≥ 3 colors known. In contrast to this the
techniques presented here directly extend to give lower bounds on multi-color van
der Waerden numbers of the form W (k, c) ≥ c(k−1)

ek
for any integer c ≥ 2.

3. The techniques used to prove the results mentioned in items 1,2,3,5, and 6 can
be modified to get lower bounds for variants of van der Waerden numbers such as
Gallai-Witt numbers (multi-dimensional van der Warden Numbers) [20, 21] (see also
[8, 10]), and some polynomial van der Waerden numbers [2, 26] (see also [8]).

We use the following easy lemmas throughout the paper.

Lemma 1.8 Let k, n ∈ N
+.

1. Given a k-AP of [n] the number of k-AP’s that intersect it is less than kn.

2. The number of k-AP’s of [n] is less than n2/k.

the electronic journal of combinatorics 18 (2011), #P64 4

Proof:
1.) We first bound how many k-AP’s contain a fixed number x ∈ [n]. Let 1 ≤ i ≤ k. If x
is the ith element of some k-AP then in order for this k-AP to be contained in [n] its step
width d has to obey: 1 ≤ x − (i − 1)d and x + (k − i)d ≤ n.

We assume for simplicity that k is even (the odd case is nearly identical). Once i and
d are fixed, the k-AP is determined. We sum over all possibilities of i while assuming
the second bound on d for all i ≤ k/2 and the first bound for i > k/2. This gives us the
following upper bound on the number of k-APs going through a fixed x:

k/2
∑

i=1

n − x

k − i
+

k
∑

i=k/2+1

x − 1

i − 1
= (n − x)

k/2
∑

i=1

1

k − i
+ (x − 1)

k
∑

i=k/2+1

1

i − 1
=

= (n − x + x − 1)
k

∑

i=k/2+1

1

i − 1
≤ n − 1.

Here the last inequality follows from
∑k

i=k/2
1

i−1
≤ 1 which can be easily shown by

induction. Using this upper bound we get that the number of k-AP’s that intersect a
given k-AP is at most k(n − 1) < kn.

2.) If a k-AP has starting point a then then a + (k − 1)d ≤ n, so d ≤ n−a
k−1

. Hence, for any

a ∈ [n], there are at most n−a
k−1

k-AP’s that start with a. The total number of k-AP’s in
[n] is thus bounded by

n−1
∑

a=1

n − a

k − 1
=

1

k − 1

n−1
∑

a=1

n − a =
n(n − 1)

2(k − 1)
<

n2

k
.

2 A Simple Randomized-Constructive Lower Bound

Theorem 2.1 W (k, 2) ≥
√

k
3
2(k−1)/2 by a randomized-constructive proof.

Proof: We first present the classic nonconstructive proof and then show how to make
it into a randomized-constructive proof.

Let n =
√

k
3
k2(k−1)/2. Color each number x from 1 to n by flipping a fair coin. If the

coin is heads then color x with 0, if the coin is tails then color x with 1. Let p be the
probability that there is a monochromatic k-AP. We will show that p < 1 and hence there
is some choice of coin flips that leads to a proper 2-coloring of [n].

By Lemma 1.8 the number of k-AP’s is bounded by n2/k. Because of the random
choice of colors each k-AP becomes monochromatic with probability exactly 2−(k−1) and
a simple union bound over all k-AP’s gives:

the electronic journal of combinatorics 18 (2011), #P64 5

p ≤ (n2/k)2−(k−1) =
n2

k2(k−1)
.

Looking ahead to making this proof randomized-constructive we want this probability
to be at most 1/3. We show that this is implied by our choice of n.

n2

k2k−1
≤ 1/3

3n2 ≤ k2k−1

√
3n ≤

√
k2(k−1)/2

n ≤
√

k

3
2(k−1)/2.

We now present a randomized algorithm that produces (with high probability) a proper
coloring and admits its failure when it does not.

1. Get input k and let n =
√

k
3
2(k−1)/2.

2. Use n random bits to color [n].

3. Check all k-APs of [n] to see if any are monochromatic. (by Lemma 1.8 there
are at most n2/k different k-APs to check, so this takes O(n2) time). If none are
monochromatic then the coloring is proper and we output it. Else output I HAVE
FAILED!.

By the above calculations the probability of success is ≥ 2/3. By comments made in
the algorithm it runs in polynomial time.

3 A Simple Deterministic-Constructive Proof

Theorem 3.1 W (k, 2) ≥
√

k2(k−1)/2 by a deterministic-constructive proof.

Proof: We derandomize the algorithm from Section 2 using the method of conditional
probabilities [5]. Let n <

√
k2(k−1)/2 and X be the set of all arithmetic progressions of

length k that are contained in [n].
Let f : R

n → R be defined by

f(x1, . . . , xn) =
∑

s∈X

(
∏

i∈s

xi +
∏

i∈s

(1 − xi)).

the electronic journal of combinatorics 18 (2011), #P64 6

We will color [n] with 0’s and 1’s. Assume we have such a coloring and that xi is
the color of i. When xi is set to 1/2 that means that we have not colored it yet. Note
that f(x1, . . . , xn) gives exactly the expected number of monochromatic k-AP’s when
each number i gets colored independently with probability P (i is colored 1) = xi. Thus
a coloring has a monochromatic k-AP iff f(x1, . . . , xn) ≥ 1. We will color [n] such that
f(x1, . . . , xn) < 1.

Note that

f(1/2, . . . , 1/2) =
∑

s∈X(
∏

i∈s 1/2 +
∏

i∈s 1/2) =
∑

s∈X((1/2)k + (1/2)k)
=

∑

s∈X(1/2)k−1

≤ n2/(k2k−1)

We need this to be < 1. We set this < 1 which will derive what n has to be.

n2/(k2k−1) < 1
n2 < k2k−1

n <
√

k2(k−1)/2

We now present a deterministic algorithm:

1. Let x1 = x2 = · · · = xn = 1/2. By Lemma 1.8 the number of k-AP’s is ≤ n2/k. By
the above calculation f(x1, . . . , xn) < 1.

2. For i = 1 to n do the following. When we color i we already have 1, 2, . . . , i − 1
colored. Let the colors be c1, . . . , ci−1. Hence our function now looks like, leaving
the color of i a variable, f(c1, . . . , ci−1, z, 1/2, . . . , 1/2). This is a linear function of
z. We know inductively that if z = 1/2 then the value is < 1. If the coefficient of z
is positive then color i 0. If the coefficient of z is negative then color i 1. In either
case this will ensure that

f(c1, . . . , ci, 1/2, . . . , 1/2) ≤ f(c1, . . . , ci−1, 1/2, . . . , 1/2) < 1.

At the end we have f(x1, . . . , xn) < 1 and hence we have a proper 2-coloring. It is
easy to see that this algorithms runs in time polynomial in n.

4 An Algebraic Lower Bound

We will need the following facts.

Fact 4.1 Let p ∈ N (not necessarily a prime).

1. There is a unique (up to isomorphism) finite field of size 2p. We denote this field by
F2p . F2p can be represented by F2[x]/ < i(x) > where i is an irreducible polynomial
of degree p in F2[x]. F2p can be viewed as a vector space of dimension p over F2.
The basis of this vectors space is (the equivalence classes of) 1, x, x2, . . . , xp−1.

the electronic journal of combinatorics 18 (2011), #P64 7

2. The group F2p −{0} under multiplication is isomorphic to the cyclic group on 2p−1
elements. Hence it has a generator g such that

F2p − {0} = {g, g2, g3, . . . , g2p
−1}.

This generator can be found in time polynomial in 2p.

3. Assume p is prime. Let g be a generator of F2p , and β = gd where 1 ≤ d < 2p − 1.
We do all arithmetic in F2p . Let P be a nonzero polynomial of degree ≤ p− 1, with
coefficients in {0, 1, 2, . . . , 2p − 1}. Then P (g) 6= 0 and P (β) 6= 0.

Proof: The first two facts are well known and hence we omit the proof. To see the
third fact note that F2p can be viewed as a vector space of dimension p over F2. There
can be no field strictly between F2 and F2p : if there was then its dimension as a vector
space over F2 would be a proper divisor of p. For any a ∈ F2p − F2 we get now that
F2(a) is F2p because it would otherwise be a field strictly between F2 and F2p . Hence the
minimal polynomial of a in F2[X], which we denote Q, has degree p. Let P be a nonzero
polynomial in F2[X] of degree at most p − 1. If P (a) = 0 then P has to be a multiple of
Q. Since P has degree ≤ p − 1 and Q has degree p, this is impossible. Hence P (a) 6= 0.
This applies to a = g and to a = gd with 1 ≤ d ≤ 2p − 2. (Note that d = 2p − 1 gives
β = 1.)

Theorem 4.2 If p is prime then W (p + 1, 2) ≥ p(2p − 1) by a deterministic-constructive
proof.

Proof: Let F = F2p , the field on 2p elements. By Fact 1 F is a vector space of
dimension p over F2. Let v1, . . . , vp be a basis. By Fact 2 there exists a generator g such
that

F − {0} = {g, g2, g3, . . . , g2p
−1}.

We express g, g2, . . . , g2p
−1, g2p

, . . . , gp(2p
−1) in terms of the basis. This looks odd since

g = g2p

so this list repeats itself; however, it will be useful.
For 1 ≤ j ≤ p(2p − 1) and for 1 ≤ i ≤ p let aij ∈ {0, 1} be such that

gj =

p
∑

i=1

aijvi.

We now color [p(2p − 1)]. Let j ∈ [p(2p − 1)]. Color j with a1j . That is, express gj in
the basis {v1, . . . , vp} and color it with the coefficient of v1, which will be a 0 or 1. We
need to show that this is indeed a proper coloring. Assume, by way of contradiction that
the coloring is not proper. Hence there is a monochromatic (p + 1)-AP. We denote it

a, a + d, . . . , a + pd.

Since all of the numbers are in [p(2p−1)] we have a+pd ≤ p(2p−1) and thus d ≤ 2p−2.
Therefore we get gd 6= 1.

the electronic journal of combinatorics 18 (2011), #P64 8

If we express any of

I = {ga, ga+d, . . . , ga+pd} = {ga, gagd, gag2d, . . . , gagpd}
in terms of the basis they have the same coefficient for v1. Let α = ga and β = gd 6= 1.

Recall that, by Fact 3, β does not solve any degree p − 1 polynomial with coefficients in
{0, 1}.
Case 1: The coefficient is 0. Then we have that all of the elements of I lie in the p − 1
dim space spanned by {v2, . . . , vp}. There are p + 1 elements of I, so any p of them are
linearly dependent. Hence I ′ = {α, αβ, αβ2, . . . , αβp−1} is linearly dependent. So there
exists b0, . . . , bp−1 ∈ {0, 1}, not all 0, such that

p−1
∑

i=0

biαβi = 0

p−1
∑

i=0

biβ
i = 0.

Therefore β satisfies a polynomial of degree ≤ p− 1 with coefficients in {0, 1}, contra-
dicting Fact 3.

Case 2: The coefficient is 1. Hence all of the elements of I, when expressed in the basis
{v1, . . . , vp} have coefficient 1 for v1. Take all of the elements of I (except α) and subtract
α from them. The set we obtain is

{αβ − α, αβ2 − α, . . . , αβp − α} = {α(β − 1), α(β2 − 1), . . . , α(βp − 1)}.
KEY: All of these elements, when expressed in the basis, have coefficient 0 for v1. Hence
we have p elements in a p − 1-dim vectors space. Therefore they are linearly dependent.
So there exists b0, . . . , bp−1 ∈ {0, 1}, not all 0, such that

p−1
∑

i=0

biα(βi − 1) = 0

p−1
∑

i=0

bi(β
i − 1) = 0.

Therefore β satisfies a polynomial of degree ≤ p− 1 over F2. This contradicts Fact 3.
We now express the above proof in terms of a deterministic construction.

1. Input(p + 1).

2. Find an irreducible polynomial i(x) of degree p over F2[x]. This gives a represen-
tation of F2p , namely F2[x]/ < i(x) >. Note that 1, x, x2, . . . , xp−1 is a basis for F2p

over F2. Let vi = xi+1.

the electronic journal of combinatorics 18 (2011), #P64 9

3. Find g, a generator for F2p viewed as a cyclic group.

4. Express g, g2, . . ., gp(2p
−1) in terms of the basis. For 1 ≤ j ≤ p(2p−1), for 1 ≤ i ≤ p

let aij ∈ {0, 1} be such that gj =
∑p

i=1 aijvi.

5. Let j ∈ [p(2p − 1)]. Color j with a1j .

Steps 2 and 3 can be done in time polynomial in 2p by Fact 4.1. Step 4 can be done in
time polynomial in 2p using simple linear algebra. Hence the entire algorithm takes time
polynomial in 2p.

Baker, Harman, and Pintz [1] (see [12] for a survey) showed that, for all but a finite
number of k, there is a prime between k and k − k0.525. Hence we have the following
corollary.

Corollary 4.3 For all but a finite number of k,

W (k, 2) ≥ (k − k0.525)(2k−k0.525 − 1).

(We do not claim this proof is deterministic-constructive or randomized-constructive.)

Proof: Given k let p be the primes such that k − k0.525 ≤ p ≤ k. By Theorem 4.2
W (p + 1, 2) ≥ p(2p − 1) Hence

W (k, 2) ≥ W (p + 1, 2) ≥ p(2p − 1) ≥ (k − k0.525)(2k−k0.525 − 1).

5 A Bit of Kolmogorov Theory

We will need some Kolmogorov theory for the next section and thus give a short intro-
duction here. For a fuller and more rigorous account of Kolmogorov Theory see the book
by Li and Vitanyi [15].

What makes a string random? Consider the string x = 0n. This string does not seem
that random but how can we pin that down? Note that x is of length n but can be easily
produced by a program of length lg(n) + O(1) like this:

FOR x = 1 to n, PRINT(0)

By contrast consider the following string

x = 0110100101010010101011111100001110010101

which we obtained by flipping a coin 40 times. It can be produced by the following
program.

PRINT(0110100101010010101011111100001110010101)

the electronic journal of combinatorics 18 (2011), #P64 10

Note that this program is of length roughly |x|. There does not seem to be a shorter
program to produce x. The string x seems random in that there is no pattern in x which
would lead to a shorter program to print x than the one above. Informally a string x
looks random, if the shortest program to print out x has length roughly |x|. We formalize
this.

Definition 5.1 Fix a programming language L that is Turing complete. Let x ∈ {0, 1}n

(think of n as large) and y ∈ {0, 1}m (think of m as small). KL(x|y) is the length of the
shortest program P in L such that P (y) has output x.

Fact 5.2 If L1 and L2 are Turing complete programming languages then there is a pro-
gram that translates one to the other. This program is of constant size. Hence there is a
constant α ∈ N such that |KL1(x|y) − KL2(x|y)| ≤ α. Therefore KL(x|y) is independent
of L up to an additive constant factor. Hence we will drop the L and always include an
O(1) or Ω(1) term as is appropriate.

Definition 5.3 A string x is Kolmogorov random relative to y if K(x|y) ≥ |x| + Ω(1).

Fact 5.4 By comparing the number of strings of length n to the number of descriptions
of length smaller than n we conclude that most strings are Kolmogorov random. Hence
if you find that a randomized algorithm works well when you use a Kolmogorov random
string for the random bits, then it works well for most strings. We will assume that at
least 2/3 of all strings of length n are Kolmogorov random; however, there are really far
more.

6 A Randomized-Constructive Lower Bound via the

Lovász Local Lemma

We use the following lemma both in this section and the next section. The bulk of this
lemma is an exercise from Knuth [14]; however, we include the proof for completeness.

Lemma 6.1 Let m ∈ N and T, T1, . . . , Tm be infinite rooted trees with each node having
exactly x ordered children.

1. There are at most
(

xs
s

)

≤ (ex)s subtrees of T that include the root and consist of
exactly s non-root nodes.

2. Let F be the set of all forests F consisting of at most m trees, such that each tree
is a subtree of a different Ti, and such that the total number of nodes in F is s. F
consists of at most 2m(ex)s forests.

the electronic journal of combinatorics 18 (2011), #P64 11

Proof:
1.) Given a subtree of T with s non-root nodes, record an ordered DFS traversal using a
zero to denote that a potential child is not there and a one for every forward step along
an existing child. Stop the traversal at the last non-root node without recording zeros for
its children. There are x (potential) children each for both the root and each but the last
of the s non-root nodes; each of these sx children appears at most once in the traversal.
Therefore a string of length at most sx is recorded. The string has furthermore exactly s
ones, one for each non-root node. Note that any two different subtrees of T correspond
to two different strings. We thus have an injection from the specified subtrees into the
set of zero-one strings of length at most xs with exactly s ones. There are exactly

(

sx
s

)

such strings and therefore also at most this many subtrees of T with s non-root nodes.
The inequality

(

sx
s

)

< (xe)s follows from Stirling’s formula.

2.) Let T ′ be the ordered tree that has a root r of degree m and at the ith child of r
attached Ti (so the ith node on the second level is the root of Ti). There is a straight
forward bijection between forests in F and subtrees of T ′ with s non-root nodes.

We describe such a subtree of T ′ by a subset of [m] to specify the children of r that are
not used and by a zero-one string of length at most xs with exactly s ones corresponding
to a DFS-traversal of the remaining tree in the same manner as above. Each forest in F
can be uniquely described in such a manner (but not all those descriptions correspond to
a valid tree). The total number of those descriptions and therefore also the total number
of forests in F is at most 2m(xe)s.

Theorem 6.2 W (k, 2) ≥ 2(k−1)

4k
by a randomized-constructive proof.

Proof: Let n = 2(k−1)

4k
. We present a randomized algorithm to find a 2-coloring of

[n]. Let E1, . . . , Em be the k-AP’s of [n] listed in lexicographic order. By Lemma 1.8,
m = O(n2/k).

We present a simple algorithm with a parameter s, which we will determine later.
MAIN ALGORITHM

1. Color [n] using n random bits

2. NUMCALLS = 0 (this will be the number of calls to FIX).

3. For i = 1 to m if Ei is monochromatic then FIX(Ei).

4. Output the coloring.

END OF MAIN ALGORITHM
FIX ALGORITHM
FIX(E)

1. NUMCALLS = NUMCALLS + 1.

the electronic journal of combinatorics 18 (2011), #P64 12

2. If NUMCALLS = s then STOP and output I HAVE FAILED.

3. Recolor E randomly (this takes k random bits).

4. While there exists a monochromatic k-AP that intersects E let E ′ be the lexico-
graphic smallest such k-AP and call FIX(E ′).

END OF FIX ALGORITHM

We leave the following easy claims to the reader:
Claim 1: For all calls to FIX that terminate the following holds: all of the k-AP’s that
were not monochromatic before the call are not monochromatic after the call.
Claim 2: If the algorithm outputs a coloring then it is a proper coloring.

We find a value for the parameter s such that s is polynomial in n and k and such that
the probability of the algorithm’s success is at least 2/3. With parameter s the algorithm
uses at most n + sk random bits. We can think of the algorithm as a deterministic one
which takes an additional n+sk bit string as input to use in place of the random bits. Let
z = z0z1 · · · zs denote that string. The first n bits are used for the initial color assignment,
and the remaining bits are used for the reassignments as needed.

Let z = z0z1 · · · zs be a Kolmogorov random string relative to k, n. We will show that
if the algorithm is run with z supplying the random bits then the result will be a proper
coloring of [n]. Since over 2/3 of all strings of length n + sk are Kolmogorov random
relative to k, n this will prove that the algorithm succeeds with probability ≥ 2/3.

Assume, by way of contradiction, that the algorithm goes through s calls to FIX. We
will pick a value of s so that this leads to a contradiction.

Definition 6.3 The FIX-FOREST is the forest of calls to FIX. We take the children
of a node to be ordered in the same order the procedure FIX was called. The nodes are
labeled by what monochromatic k-AP they were called with and what color (a bit) the
k-AP was before the call.

Definition 6.4 For 1 ≤ i ≤ m we define a tree Ti as follows.

• The root is labeled with Ei (the ith k-AP in lexicographic order).

• If a node is labeled with a k-AP E then the children are the k-AP’s that intersect
E in lexicographic order.

Putting all this together we get:

Fact 6.5

1. By Lemma 1.8 every node of Ti has at most kn children.

2. By Claim 1 the FIX-FOREST has less than n2/k trees

the electronic journal of combinatorics 18 (2011), #P64 13

3. All trees in the forest are subtrees of different subtrees Ti.

This makes it possible to apply Lemma 6.1 and obtain that the number of different

FIX-FOREST structures is at most 2
n2

k (kn)s. From this we get that, given n and k, each
FIX-FOREST can be described by n2

k
+ s lg(kn) + O(1) bits for its structure and another

s bits for the color labels. Now let w be the coloring after s calls to FIX are performed.
Note that w can be described with n bits. The next claim shows that taking all these
descriptions it is possible to reconstruct the Kolmogorov random string z.

Claim 3: Given n, k the FIX FOREST and w one can recover z.
Proof of Claim 3

From the FIX FOREST we can obtain:

• a description of the k-AP ai that the ith call was made on.

• the color ci of ai when the ith call to FIX was made.

We recover the z’s in three phases.

Phase I (just use the ai’s but not the ci’s): Simulate the Coloring Algorithm using
the symbols zj

i where (0 ≤ i ≤ s, if i = 1 then 1 ≤ j ≤ n, if i ≥ 2 then 1 ≤ j ≤ k) to
represent the jth bit of zi. Note that we do not know the actual colors so we really do
use (say) z4

3 and not RED (or more formally 0 or 1). Since we have ai we can (and do)
keep track of the coloring of [n] after each call to FIX, in terms of the symbols zj

i . This
creates a table of zj

i ’s.
For example, if n = 15 then the first row will be:

1 z1
0 z2

0 z3
0 z4

0 z5
0 z6

0 z7
0 z8

0 z9
0 z10

0 z11
0 z12

0 z13
0 z14

0 z15
0

If k = 4 a1 = (4, 7, 10, 13), i.e., the first call to FIX was to (4, 7, 10, 13), then the
second row will be

2 z1
0 z2

0 z3
0 z1

1 z5
0 z6

0 z2
1 z8

0 z9
0 z3

1 z11
0 z12

0 z4
1 z14

0 z15
0

Phase II (use the ci’s to determine zj
i ’s): For all 1 ≤ i ≤ s, right before the ith call to

FIX, k-AP ai was monochromatic; all k vertices of ai were colored ci. For 1 ≤ j ≤ i − 1
let Vj be the vertices of ai that were most recently colored by zj (note that Vj could be
empty). By Phase I we know which bits of zj colored which vertices of Vj. We now know
that those bits are ci. For each i we have recovered k bits of z. Since there are s calls to
FIX this phase recovers sk bits.

Phase III (use w): For each x ∈ [n] there is an i, j so that x was colored zj
i and never

recolored. We now know the zj
i = wx. This phase recovers n bits of z.

The phases all together recover n+sk bits of z. Since |z| = n+sk all of z is recovered.
End of Proof of Claim 3

the electronic journal of combinatorics 18 (2011), #P64 14

By Claim 3, z can be described using n, k the FIX FOREST and w. Since w can be
described by n bits and since Fact 6.5.4 tells us that the FIX FOREST can be described
with s+ n2

k
+s lg(kn)+O(1) bits we get a description of z of size s+ n2

k
+s lg(kn)+O(1)+n.

On the other hand we assumed z to be Kolmogorov random relative to k, n which
implies that any description of z has to have length at least n + sk + O(1). Hence

s +
n2

k
+ s lg(kn) + O(1) + n ≥ n + sk

n2

k
+ O(1) ≥ sk − s − s lg(kn)

s ≤
n2

k
+ O(1)

k − 1 − lg(kn)
< n2/k2 + O(1)

Now choosing s ≥ n2

k2 + O(1) leads to the desired contradiction.

7 A Deterministic-Constructive Lower Bound by

Derandomizing the Lovász Local Lemma

Theorem 7.1 Fix ǫ > 0. W (k, 2) ≥ 2(k−1)(1−ǫ)

ek
by a deterministic-constructive proof.

Proof: Let n = 2(k−1)(1−ǫ)

ek
. (We assume n is an integer; the modifications to make

this rigorous are easy but cumbersome.) We will present a deterministic algorithm that
always produces a proper 2-coloring of [n] and runs in time nO(ǫ−1.01) which is polynomial
as long as ǫ is any fixed constant. The algorithm proceeds in stages.

Let t be a parameter to be named later. It will be O(ǫ−1.01).

Stage 1: List out Trees
We create by exhaustive enumeration a list of the following set of trees Y :

For each k-AP E, for each subset S of E, take all possible labeled trees that satisfy the
following properties:

1. the root is labeled with S,

2. each non-root node is labeled with a k-AP of [n],

3. the labels of each child of a node B share a number with the label of B,

4. the labels of nodes on the same level are disjoint,

5. there are between t and 2t non-root nodes.

the electronic journal of combinatorics 18 (2011), #P64 15

EXAMPLE: A few trees in Y for n=7,k=3,t=1.5

23 246 35

| | | \

234 567 123 567

|

23 135

|

357 34 4

| \ |

3 123 456 147

| |

123 14 357

| | \

123 135 246

To bound the running time of this and the next stage we need to check that the number
of trees in Y is always polynomial in n. For this recall that by Lemma 1.8 there are at
most n2/k different k-AP’s which gives us at most 2kn2/k possible roots. If the root is
fixed then by property 3 and again Lemma 1.8 we know that each tree in Y is a subtree
of the infinite tree in which each k-AP has as children the < nk k-APs it intersects with.
Using Lemma 6.1.2 with x = kn and s = t we obtain that there are at most

(nke)2t

such subtrees of size 2t. Therefore the total number of trees |Y | is at most

2kn2

k
(nke)2tt ≤ n3 · (n2)2tn ≤ nO(t) = nO(ǫ−1.01).

Hence this stage of the algorithm runs in polynomial time for any fixed constant ǫ > 0.

Stage 2: Creation of a good table
Similar to the proof of Theorem 6.2 we create a table with a sequence of colors for

every number. A table is a map T : [n] × [t] → {0, 1} in which we view each row as a
sequence of colors for its (column)-number. We will be looking at colorings of the numbers
on the nodes of the tree that is guided by a table T . T (x, t) will tell us how to color the
number x the tth time we look for a color of x when we process the tree level-by-level
from leaf-to-root. More formally we assign each number x in the label of a node v ∈ τ
the color

T (x, 1 + number of nodes below v whose label contain x).

Given a tree τ and a coloring of its numbers guided by table T say τ is consistent with T
iff all labels of τ are colored monochromatically.

the electronic journal of combinatorics 18 (2011), #P64 16

Note that because of property 4 each color in the table T gets used only once during
this process. Thus if all colors in T are chosen independently at random each label of a
node gets monochromatic independently with probability 2−(k−1). The probability for a
tree in Y to be consistent is thus at most 2−(k−1)i where i is the number of non-root nodes.
Having this and computing (n2

k
2k(nke)i) as an upper bound for the number of trees with

i non-root nodes as in Stage 1 we get that the expectation of the number of consistent
trees X is at most

E[X] ≤
2t

∑

i=t

(n22k(nke)i)2−(k−1)i = n22k

2t
∑

i=t

2−(k−1)ǫi < n22kt2−(k−1)ǫt ≤ 2O(k)t2−kǫt.

Thus the expectation is < 1/3 if t = O(ǫ−1.01) is picked large enough. Markov’s
inequality proves that with probability at least 2

3
no tree in Y is consistent with a ran-

domly chosen table. We efficiently construct such a table using the method of conditional
expectations in the following algorithm:

TABLE CREATION ALGORITHM

• For all x = 1 to n, For all y = 0 to 2t

• Set T (x, y) = 1/2

• For all x = 1 to n, For all y = 0 to 2t

• Set T (x, y) = 0
For all τ ∈ Y

• Compute pτ,0 =
∏

v∈τ (
∏

i∈label(v)
color(i) +

∏

i∈label(v)
(1 − color(i)))

• (Here color(i) corresponds to the entry from T that is assigned to this
number i in the label of node v when the coloring of τ is guided by T .
Note that pτ,0 corresponds exactly to the probability that every node-label
in τ becomes monochromatic if colors are filled in from the table T into
τ level-by-level from leaf-to-root while choosing a random color instead of
any 1/2.)

Let E0 =
∑

τ∈Y pτ,0

• set T (x, y) = 1 and compute all pτ,1 and E1 similarly to the last step

• if E0 < E1 than T (x, y) = 0 else T (x, y) = 1 in order to minimize the expecta-
tion.

END OF TABLE CREATION ALGORITHM

For the analysis of the table creation we see that E0 and E1 are exactly the expected
number of consistent trees in Y if we set T (x, y) to 0 or 1 respectively. Because of our
choice of t from above we get that in the beginning this expectation is E = E0+E1

2
< 2/3.

the electronic journal of combinatorics 18 (2011), #P64 17

By always choosing the color that minimizes this expectation the invariant E0+E1

2
< 2/3

is preserved throughout the algorithm. When finally all entries of T are chosen, no
randomness remains and the invariant implies that no tree with properties 1-5 is consistent
with T . This stage of the algorithm takes O(4tk|Y |) time for each of the 2tn iterations
and therefore runs in time polynomial in n.

Stage 3: Run a Recoloring Algorithm using Colors from the Table

1. Initially color [n] using the first column of T .

2. WHILE there is a monochromatic k-AP E
recolor the numbers in E using for each number its next unused color from T

This completes the algorithm. In the rest of this section we show that the algorithm
terminates without requesting more than t colors for one number which will be enough
to argue a quick termination. Note that because of the termination condition of the
algorithm no proof of correctness is needed.

Claim: Each number gets recolored at most t times.
Proof of Claim

Lets look at the sequence of k-APs as picked by the algorithm. For each k-AP E in
this sequence and each subset S of E we construct a tree labeled by subsets of [n] by
starting with a root with label S. Going back in the sequence we iteratively take the next
k-AP B and if there is a node in the tree whose label shares a number with B we create
a new node with label B and attach it to the lowest such node breaking ties arbitrarily.

Let Z be the set of trees that can be constructed from the run of the algorithm using
the table T . We prove the claim in the following two steps:

1. All trees in Z are consistent with the table T .

2. If a number got recolored more than t times then there exists a tree τ ∈ Y ∩ Z
which leads to the desired contradiction.

All trees in Z are consistent with the table T :
We want to argue that the colors that gets filled from T into a k-AP E when consistency

is checked are exactly the same entries in T that the algorithm sees before it recolors this
k-AP E, i.e., both are monochromatic. Focusing on one number x ∈ E we directly see
that the entry from T that is used to recolor x is the entry with the number i from the
column in T that belongs to x, where i is the number of times a color for x was needed
before which is exactly one plus the number of k-APs containing x that got recolored
before. Note that all these k-APs appear in a tree below E which is the reason why
when consistency is checked for also exactly the entry i is filled into x (see definition
of consistency). This proves that any tree that got created from a run with table T is
consistent with T .

If a number got recolored more than t times then a tree τ ∈ Y is constructed:

the electronic journal of combinatorics 18 (2011), #P64 18

For sake of contradiction we assume that a number got recolored more than t times
and argue that in this case a tree τ ∈ Y gets constructed. Note that by construction all
trees fulfill the properties 1-4. Hence it remains that a tree of size between t and 2t is
generated from the trace. For this let τ be the the smallest tree in Z of size s ≥ t. Such
a tree exists because generating a tree from the tth time a number got recolored produces
a tree of size at least t. If the label S of the root of τ consists of just one number then
because of property 3 and 4 it has only one child and the tree generated choosing this
child as a root label has size s − 1. Otherwise take one number x ∈ S and look at the
trees generated with {x} and S − {x} as a root label. One of them has size at least s/2
since each node in the tree generated by S appears in at least one of the new trees. In
either case the minimality of τ – that the remaining tree of size either s− 1 or s/2 has to
be smaller than t – implies s ≤ 2t. This shows that the tree τ that is constructed from
the trace fulfills all 5 properties and is therefore a tree from Y that is consistent with the
table T . This is a contradiction to the way we constructed the table T in stage 2.
End of Proof of Claim

It is easy to see that with the guarantee given by this claim the algorithm runs for at
most O(tn) time in this stage and terminates with a proper coloring. With all previous
stages running in time polynomial in n the entire algorithm does so and thus fulfills the
properties of a deterministic-constructive proof, finishing the proof of Theorem 7.1.

Corollary 7.2 W (k, 2) ≥ 2(k−1)

ek
− 1 by a randomized-constructive proof.

Proof: The algorithm used to achieve this bound is simply stage 3 of the algorithm
above but instead of using the colors from a carefully prepared table T an independent
uniformly random color is chosen each time a new color is needed. If more than t new
colors are requested for any number the algorithm stops and reports its failure. This is
the randomized algorithm of Moser and Tardos [18] which is very similar and actually
encompasses Moser’s algorithm given in Section 6. For its analysis we note that the only
reason why Theorem 7.1 does not give us the bound of this theorem is because we can
not make ǫ smaller with k. The reason for this is that the running time of stage 1 and
2 is nO(ǫ−1.01) time which forces ǫ to be a fixed constant. Since the randomized algorithm
only runs stage 3 we can choose ǫ = Θ(1

n′k
) where n′ = 2(k−1)

ek
such that 2−(k−1)ǫ ≥ e−n′ ≥

(1−1/n′). This still keeps the running time of stage 3 to be polynomial, more specifically
O(tn) = O(nǫ1.01) = O(n(n′k)1.01). The success probability comes directly from the
analysis for stage 2. There is already stated that the probability for random colors to
form a good table is at least 2/3. Thus also the success probability of the described
algorithm to reports a proper 2-coloring is as required by the definition of randomized-
constructive. With such a small ǫ the lower bound implied by this randomized algorithm
now becomes W (k, 2) ≥ 2(k−1)(1−ǫ)

ek
≥ 2(k−1)

ek
(1 − 1/n′) = 2(k−1)

ek
− 1 as desired.

the electronic journal of combinatorics 18 (2011), #P64 19

Acknowledgements

We would like to thank Robin Moser for his brilliant talk at STOC 2009 which inspired this
paper. We would also like to thank Thomas Dubois, Mohammad Hajiaghayi and Larry
Washington for proofreading and helpful comments. Last but not least we would like
to thank the anonymous reviewer(s) for catching several minor mistakes and for helpful
suggestions which greatly improved the presentation of this paper.

References

[1] R. C. Baker, G. Harman, and J. Pintz. The difference between consecutive primes.
II. Proc. London Math. Soc. (3), 83(3):532–562, 2001.

[2] V. Bergelson and A. Leibman. Polynomial extensions of van der Waerden’s and
Szemerédi’s theorems. Journal of the American Mathematical Society, pages 725–
753, 1996.

[3] E. Berlekamp. A construction for partitions which avoids long arithmetic progres-
sions. CMB, 11:409–414, 1968.

[4] K. Chandrasekaran, N. Goyal, and B. Haeupler. Deterministic Algorithms for the
Lovász Local Lemma. In Proceedings of the 21st ACM-SIAM Symposium on Discrete
Algorithms (SODA ’10), 2010.

[5] P. Erdös and L. Lovász. Problems and results on 3-chromatic hypergraphs and some
related questions. Infinite and finite sets, 2:609–627, 1975.

[6] P. Erdös and R. Rado. Combinatorial theorems on classifications of subsets of a given
set. In Proceedings of the London Mathematical Society, 2:417–439, 1952.

[7] P. Erdös and J. Selfridge. On a combinatorial game. Journal of Combinatorial
Theory, Series A, 14(3):298–301, 1973.

[8] W. Gasarch, C. Kruskal, and A. Parrish. Purely combinatorial proofs of van der
Waerden-type theorems. www.gasarch.edu/∼gasarch/∼vdw/vdw.html.

[9] W. Gowers. A new proof of Szemerédi’s theorem. Geometric and Functional Analysis,
11:465–588, 2001.

[10] R. Graham, B. Rothchild, and J. Spencer. Ramsey Theory. Wiley, 1990.

[11] B. Haeupler, B. Saha and A. Srinivasan. New Constructive Aspects of the Lovász Lo-
cal Lemma. In Proceedings of the 51st IEEE Symposium on Foundations of Computer
Science (FOCS ’10), 2010.

[12] D. R. Heath-Brown. Differences between consecutive primes. Jahresber. Deutsch.
Math.-Verein., 90(2):71–89, 1988.

[13] R. Impagliazzo and A. Wigderson. Randomness vs time: derandomization under a
uniform assumption. Journal of Computer and System Sciences, 65:672–694, 2002.

[14] D. Knuth. The Art of Computer Programming, Volume 1: Fundamental Algorithms.
Addison-Wesley, Reading, MA, 1969.

the electronic journal of combinatorics 18 (2011), #P64 20

[15] Li and Vitányi. An introduction to Kolmogorov complexity and its applications (3rd
edition). Springer, New York, 2008.

[16] R. Moser. A constructive proof of the general Lovász Local Lemma, 2009. Slides for
the talk at STOC 2009, which differ from the paper.

[17] R. Moser. A constructive proof of the Lovász Local Lemma. In Proceedings of the
41st ACM Symposium on Theory of Computing (STOC ’09), pages 343–350, 2009.

[18] R. Moser and G. Tardos. A constructive proof of the general Lovász Local Lemma.
Journal of the ACM, 57(2):1–15, 2010.

[19] N. Nisan and A. Wigderson. Hardness vs randomness. Journal of Computer and
System Sciences, 49, 1994.

[20] R. Rado. Studien zur Kombinatorik. Mathematische Zeitschrift, pages 424–480, 1933.

[21] R. Rado. Notes on Combinatorial Analysis. In Proceedings of the London Mathemat-
ical Society, pages 122–160, 1943.

[22] P. Schweitzer. Using the incompressibility method to obtain local lemma results for
Ramsey-type problems. Information Processing Letters, 109, 2009.

[23] S. Shelah. Primitive recursive bounds for van der Waerden numbers. Journal of the
American Mathematical Society, pages 683–697, 1988.

[24] Z. Szabó. An application of Lovász Local Lemma— a new lower bound on the van
der Waerden numbers. Random Structures and Algorithms, 1, 1990.

[25] B. van der Waerden. Beweis einer Baudetschen Vermutung. Nieuw Arch. Wisk.,
15:212–216, 1927.

[26] M. Walters. Combinatorial proofs of the polynomial van der Waerden theorem and
the polynomial Hales-Jewett theorem. Journal of the London Mathematical Society,
61:1–12, 2000.

the electronic journal of combinatorics 18 (2011), #P64 21

