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Abstract

There are many nonisomorphic orthogonal arrays with parameters OA(s3, s2 +
s+1,s,2) although the existence of the arrays yields many restrictions. We denote
this by OA(3,s) for simplicity. V.D. Tonchev showed that for even the case of
s = 3, there are at least 68 nonisomorphic orthogonal arrays. The arrays that
are constructed by the n—dimensional finite spaces have parameters OA(s", (s —
1)/(s —1),s,2). They are called Rao-Hamming type. In this paper we characterize
the OA(3,s) of 3-dimensional Rao-Hamming type. We prove several results for a
special type of OA(3,s) that satisfies the following condition:
For any three rows in the orthogonal array, there exists at least one column, in
which the entries of the three rows equal to each other.

We call this property a-type.

We prove the following.

(1) An OA(3, s) of a-type exists if and only if s is a prime power.

(2) OA(3, s)s of a-type are isomorphic to each other as orthogonal arrays.
(3) An OA(3,s) of a-type yields PG(3, s).

(4) The 3-dimensional Rao-Hamming is an OA(3, s) of a-type.

(5) A linear OA(3,s) is of a-type.

Keywords: orthogonal array; projective space; projective geometry

1 Introduction

An N x k array A with entries from a set S that contains s symbols is said to be an
orthogonal array with s levels, strength t and index X if every N x t subarray of A contains
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each t—tuple based on S exactly A times as a row. We denote the array A by OA(N, k, s,t).
Orthogonal arrays with parameters OA(s™, (s" —1)/(s—1), s,2) are known for any prime
power s and any integer n > 2. For example, orthogonal arrays of Rao-Hamming type have
such parameters. We are interested in whether orthogonal arrays with above parameters
exist or not when s is not a prime power, but do not know the existence of arrays with
such parameters. In this paper we prove that s is prime power when n = 3, under an
additional assumption. Throughout this paper, let s be a positive integer with s > 2.

Notation 1.1 Let S be a set of s symbols, A an orthogonal array OA(s3, s> +s+1,s,2).
Then we use the following notations.

(1) OA(s3,5* + s+ 1,s,2) is denoted by OA(3, s) for simplicity.

2) Q(A) is the set of rows of A.

) I'(A) is the set of columns of A.

gu (u(C))cera) for u € Q(A).
S

(
(3
(4
(5) Set k(s) = s? +s+1

>

Definition 1.2 Let A be an OA(3,s) and set Q@ = Q(A), I' =T'(A4), k = k(s).
(1) For u,v € Q and C €T, let

K(1,0,0) = {1 if u(C)=0(C),

0 otherwise.

(2) Let [u1,ug,...,u] = [{C € Tui(C) = ue(C) = -+ - = u,.(C)}].
Especially, we have [uy, us] = > K(uq,us, C).
cer

Lemma 1.3 Let A be an OA(3,s) and set Q = Q(A), ' =T'(A), k= k(s).

Then the following statements hold.

(1) K(u,u,C) =1 and (K(u,v,C))* = K(u,v,C) foru,v € Q and C €T.

(2) [u,ul =k for ue.

3) 3 K(u,v,C) =s* and . K(u,v,C)=s*—1 forue€Q and C €T, and so

veEQ vEQ, VAU
S o] = (2 s+ 1)(s2— 1),
vEQ,VFU
(4) Z K(U,U,Cl)K(U,U,Cg) =s and Z K(U,’U,Cl)K(U,U,CQ) =s—1
vEQ vEQ, VAU

foruw € Q and distinct C1,Cy € T'.

PROOF. The lemma is clear from the definition of an orthogonal array. U

Lemma 1.4 Let A be an OA(3,s) and set Q = Q(A), I’ = T'(A). Then [u,v] =s+1
for distinct u,v € Q.
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PROOF. Let u € Q.

Z ([u,v])2 = Z {Z(K(U,U,C))2 + Z( Z K(u,v,Cl)K(u,v,Cg))}

vEQvFU veQu#u Cel Crel’ Cqel’,Ca#Cy

=D (Y (Kuwo,O))+ > (> (> Kuv,C)K(u,v,C)))
Cel’ veQu#u Chel Coel’,Ca2#C1 veEQU#u

=D =D+ (>, (-1
cer Chel’ Crel’,Ca#Ch

= (s’ +s+1)(s* =1+ (s> +s5+1)(s* +5)(s—1)
=(s*+s5+1)(s+1)3*(s—1).

Hence,
Z ([U,U] -5 1>2 = Z ([uvv])z _2(8_'_1) Z [U,’U] + Z (S+1)2
vEQ,vFU vEQ,vFU vEQ,vFU vEQ,vFU

=(P+s+1)(s+ 1) (s—1)=2(s+1)(s*+s+1)(s* = 1)+ (s +1)*(s* = 1) = 0.

Therefore [u,v] = s+ 1 for v € Q with v # u. Since w is arbitrary, this completes the
proof. O

We remark that orthogonal arrays with parameters OA(3, s) have good connections
with two bounds in coding theory. Actually, Lemma 1.4 shows that the code whose words
are the rows of the O A (length s+ s+1, number of codewords s%) has constant distance s2.
This is a code which satisfies the Plotkin bound (Theorem 9.3 of [4]) with equality. Also,
the OA itself satisfies the Bose-Bush bound(Theorem 9.6 of [4]) with equality. Thus the
existence of orthogonal arrays OA(3, s) yields many restrictions. So at first we expected
that any OA(3, s) is isomorphic to Rao-Hamming type. But we knew by Tonchev [3] that
there are many nonisomorphic OA(3,s) arrays. Next, we discovered a condition for an

OA(3, s) to be Rao-Hamming type, that is the condition « (see Definition 1.8).

Definition 1.5 Let s be a prime power and A an OA(3, s) with entries from GF(s).
A is called to be linear if A satisfies

A A pv = (Au(C) + pv(C))cercay € QA) for A€ GF(s) and u,v € QA).

Definition 1.6 Let P and @) are orthogonal arrays with the same parameters. P and @)
are isomorphic if () can be obtained from P by permutation of the columns, the rows,
and the symbols in each column.

Remark 1.7 Let A = (aij)1<i<s3, 1<j<k(s) be a linear OA(3, s) with entries from GF(s).
Let ¢ be a permutation on {1,2,---,k(s)} and \; € GF(s)" for 1 < j < k(s). Let
B = (bij)1<i<s3, 1<j<k(s), Where bjj = Aja; o) for 1 <i < s*and 1 < j < k(s). Then B
is a linear O A(3, s) which is isomorphic to A.
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Definition 1.8 Let A be an OA(3,s). A is called to be of a-type if
[u,v,w] > 1 for u,v,w e QA).

We show later that this condition corresponds to a condition in affine space order s
that “for any distinct three points there exists at least one plane containing them”.

Proposition 1.9 If A is a linear OA(3, s) with entries from GF(s), then A is of a-type.
PROOF. Set Q = Q(A) and k& = k(s). From the linearity of A, o = (0,0,---,0) € €.
For distinct uy,ug,us € Q, we have [uj,us, us] = [o,uy — uy,us — uy]. Therefore, it
is enough to show that [o,u,v] > 1 for distinct u,v € Q — {0}. Since [u,0] = s+ 1

by Lemma 1.4, u has exactly s + 1 zeroes as entries. From Remark 1.7, we can as-
sume that v = (1,1,--- ,1,0,0,--- ,0;) € Q(A). Then \u = (\)\,)\,--- A, 0,0, ,Q)

;g sjl—rl ;g sjl—rl
is an element of Q for A € GF(s). Let v = (v(1),v(2),---,v(k)). Then there ex-
ists at least one zero in v(s? + 1),v(s* + 2),--- ,v(k). Suppose not. Since s + 1 =
[Au,v] = [(A, )\ 0, A,0,0,---,0), (v(1),0(2), -+ ,v(k))], there are exactly s +1 A’s in
s‘-‘,fl
v(1),v(2),- ( 3. We have s? =| {v(1),v(2),---,v(s*)} |> (s + 1)s, since A is arbi-
trary and | GF(s) |= s, This is a contradiction. This yields [0, u,v] > 1. O

Proposition 1.10 The orthogonal array OA(3,s) of 3-dimensional Rao-Hamming type
18 of a—type .

PROOF. We consider the OA(3,s) of 3-dimensional Rao-Hamming type stated in Con-
struction 1 of Theorem 3.20 in [1] when n = 3. Let 7 be a fixed plane of the projective
geometry PG(3,s). Let Q be the set of points of PG(3,s) excluding all points in 7. Let
I' be the set of lines contained in w. Then the OA(3,s) A = (auw)ueaer is defined as
follows. For each line [ € I, we label planes through [ except 7 in some arbitrary way

by 1,2,---,s. Then a,; is the plane containing u and [. Let uy,us, and ug be distinct
elements in 2. Let 7 be the plane containing wuy,us and us and set [ = 7 N7 € I'. Then
Qyy | = Quy | = Qyy, and therefore A is of a—type. O

Throughout the rest of this paper, we assume the following.
Hypothesis 1.11 A is an OA(3,s) of a-type. Set Q = Q(A),I' =T'(A), and k = k(s).
Lemma 1.12 [u,v,w|=1o0or s+ 1 for distinct u,v,w € €.

PROOF. Let u, v be distinct fixed elements of 2. We may assume u = (0,0, ---,0). From
Lemma 1.4, v has s + 1 zeroes in entries. Set I'y = {C' | v(C) = 0}. Then | I'y |= s+ 1.
We note t,, =| {C' | w(C) = 0,C € Ty} | for any w € Q. Then Y t, = s*(s+ 1).
weS)

This is the total number of zeroes in I';. Moreover since the array A has strength 2,
S tw(ty — 1) = s(s + 1)s = s*(s + 1). This is the total number of (0,0) tuples in any
we

two columns in I'y. It follows that > (¢, — 1)(s + 1 —t,,) = 0. By assumption, we have

wes)
tw > 1, therefore (t, — 1)(s+ 1 —t,) > 0. Hence t,, = [u,v,w] € {1,s+ 1}. O
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Corollary 1.13 For distinct u,v € €0, there exist distinct uz, ug, -+ ,us €  andl'y, CT
satisfying the following conditions:

(1) [ur, ug, us, ugy - -+ yus) = s+ 1, where uy =u and us = v.

(2) If C € T'yy then uy (C) = ug(C) = - - - = ug(C).

(3) If C € I' = I'yy then w;(C) # u;(C) for distinct i,j € {1,2,---,s}.
(4) [ur, ug, us, g, -+ yug,x] =1 forx € Q—{uy,---ush.

PROOF. We use the notations used in the proof of Lemma 1.12. Set I'y = {C € I |
u(C) =v(C)}, uy =u, and uy = v. From the proof of Lemma 1.12 , we have [u,z]p, =1
or s+ 1 forx € Q—{u}. Setr =| {v € Q| z # u,[u,z|]r, = s+ 1} |. Then
| {z € Q|,[u,z]r, =1} |= s* =1 —r. Therefore, r(s+ 1)+ (s> —1—7)= > [u,z]r, =

zEQ,xFu
(s —1)(s+1). Sors = (s> —1)(s+ 1) — (s> — 1) = s(s — 1). This yields r = s — 1.
Hence there exist us, w4, - - - , us such that [u, u;)r, = s+1 fori € {3,4,---,s}. Therefore
w (C) =uy(C) = -+ = uy(C) for C € I'y. If there exists C' € I'y such that u;(C) = u;(C)
for some distinct 4,5 € {1,2,---, s}, we have [u;, u;] > s+ 2, because [u;, uj]p, = s+ 1.

This is contrary to Lemma 1.4. Hence u;(C), ua(C), - -+, us(C) are distinct if C' ¢ I'y. If
we set [y, = I'1, this completes the proof of (1), (2), and (3). From Lemma 1.12, for any
x € Q —{uy,---us} there exists only one C' € Q such that u;(C) = uy(C) = z(C). By
(2) and (3), C'is in I'y(= I'y,). Therefore 2(C) = uy(C) = ua(C) = - -+ = us(C). Since

x & {uy,us, -+ ,us}, we have [uy, us, ug, ug, - -+, ug, ] = 1. U

2 A geometry

Under Hypothesis 1.11, we define the following.

Definition 2.1 (1) Elements of Q are called affine points.

(2) Let @ = {uy,ug, - ,us}(CN), Iy CI',and | I'; |= s+ 1. Then Oy U {I';} is called
an ordinary line if [uy, ug, - -+ ,us) = s+ 1 and vy (C) = ua(C) = - - - = us(C) for C € I'y.
Then €y and I'; are called an affine line and an infinite point respectively.

(3) We denote the set of affine points by Pz (= ), the set of infinite points by P, and
the set of ordinary lines by Lo.

(4) The elements of P = Pz U P, are called points .

Lemma 2.2 For any distinct u,v € Pg, there exists only onel € Lo such that u € | and
v el

PROOF. The lemma is clear from Corollary 1.13 and Definition 2.1. U

Lemma 2.3 Let Cy and Cs are fized distinct elements of T'.

(1) Set Q(a,b) ={u e Q| u(Cy) =a, u(Cy) =0b} fora,be S. Then Q(a,b) is an affine
line.

(2) If Q(a,b) U{T'1} and Q(c,d) U{T's} are ordinary lines, then I'y = Ts.
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PROOF. (1) From the definition of OA(3,s), we have | Q(a,b) |= s. Let Q(a,b) =

{uy,ug, -+ ,us}. Let u,v,w € Qa,b) be distinct elements. By Lemma 1.4, [u,v] =
[v,w] = [w,u] = s+ 1. From Lemma 1.12 and [u,v,w]| > 2, we have [u,v,w] = s+ 1.
Therefore [uy, ug, - - - ,us] = s+ 1. This means that Q(a, b) is an affine line.

(2) From (1), ©(0,0) and ©(0,b) (b # 0) are affine lines. Let £2(0,0) = {uy, ug, -, us}
and Q(0,b0) = {vy,va,- -+ ,vs}. Then [ug,us, -+ ,us) =s+1 and [vy,ve, - ,v5] = s+ 1.
Let I's and I'y be infinite points which correspond to €2(0,0) and £2(0,b) respectively.
Let I's = {C},Cy, -+ ,Csyq1} and set a = u1(C3) = ua(C3) = -+ = us(C3). We prove
C3 € T'y. Suppose that some value of v1(C3),v2(C3),- -+, vs(C5) is equal to a. We may
assume that vy(C3) = a. Then u(C5) = ua(Cs) = v1(C3) = a. From these equations
and u(C1) = ua(Ch) = v1(C1) = 0, we have [uy,ug,v1] > 2. Therefore [uy,uq,v1] =
s + 1 by Lemma 1.12. Hence v; € €©(0,0). This is a contradiction. Thus any value
of v1(C3),v2(C3), -+ ,v5(C3) is not equal to a. By the pigeonhole principle, there exist

distinct Vs, Uy such that ’UZ‘(C3) = Uj(Cg). Therefore ’01(03) = ’02(03) = = ’US(Cg),
because [v1, vy, -+ ,vs] = s+ 1, by Lemmas 1.12 and 1.4. Thus C3 € T'y. Similarly we
can show that Cy,C5,---,Csyq € T'y. Moreover since Cp,Cy € I'y, we have I's = T'y.

Similarly, it is shown that the infinite points corresponding to 2(0,b) and Q(a,b) are
equal. Therefore the infinite points corresponding to ©(0,0) and (a,b) are equal. This
completes the proof. O

Lemma 2.4 (1) For any C1,Cy € T there exists an infinite point I'1 (€ Pu) uniquely such
that 01,02 ely.
(2) For any u € 2 and any infinite point I'y, there exists only one subset 1 C 0 such
that v € Qq and Q; U{T'1} is an ordinary line.
(3) |IyNTy |=1 for any distinct infinite points I'y and T's.
(4) Set lo(C) =4Iy | 'y is an infinite point such that I'y > C'} for C € T'. Then

(@) | loo(C) |[= s+ 1,

() T = Up, . T1 ~ (O ULCY,

(c) Ty —{CHNT2—{C}) =0 for distinct I'1,T5 € lo(C).

PROOF. (1) Let C,Cy € I'. From (1) of Lemma 2.3, Q) = {u € Q | u(Cy) = 0,u(Cy) =
0} is an affine line. Let I'; be the infinite point corresponding to €;. Then I'y 5 Cy, Cs.
From (2) of Lemma 2.3, the infinite point containing C4, C5 is unique.

(2) Let w € Q and I} € Py. Let C1,Cy € Ty and Q; = {v € Q | v(C)) =
u(Ch),v(C2) = u(Cs)}. From (1) of Lemma 2.3, €; is an affine line. Let I'y be the
infinite point corresponding to ;. Then I'y NIy D {C1, Cy}. From (1) we have I'; = T's.
Therefore Q) = {v € Q| v(C) = u(C),C € I'y}. Hence Q; U{I';} is a unique ordinary
line containing u and I';.

(3) Let I'y and I'y be distinct infinite points. For any v € Q and for i € {1,2}, from
(2), there exists only one ordinary line containing v and I';. We denote it by vI'; for
i € {1,2}. Let u and w be affine points such that v € vI'y — {v} and w € v['y — {v}.
Since I'y # I'y, by Lemma 1.12, [u,v,w] = 1. Therefore there exists C' € I' uniquely such
that u(C) = v(C) = w(C). Hence I'y NI’y = {C} and so | 'y NIy |=1.
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(4) Let C be a fixed element of I'. For any Cy € I'={C'}, from (1), there exists Iy € Px
uniquely such that C,Cy € I'y. Since C € Ty, we have 'y € [(C) and therefore Cy €
L'y € Is(C). Thus we have I' = Up, () I'1- Therefore I' = Up, ¢, ) (I' = {C}) U{C}.
For distinct I'1, Ty € I(C), by (3), (T1—{C}H)N(T2—{C}) = 0. Let | Ioo(C) |=r. Then
we have r{(s+1) —1}+1=s*+s+1. Hence r = s+ 1 and | [,(C) |= s+ 1. O

Definition 2.5 (1) For any C' € I, [(C') = {I'; | I'; an infinite point, I'; 3 C'} is called
an infinite line. [ is called a line if [ is an ordinary or an infinite line.

(2) For any a € S and any C € I', 7(a,C) = {u € Q | u(C) = a}, 7(a,C) Ulx(C), and
Too = Ucer loo(C) are called an affine plane, an ordinary plane, and an infinite plane
respectively. w is called a plane if 7 is an ordinary or an infinite plane.

(3) The set of infinite lines and ordinary planes are denoted by L., and M, respectively.
Moreover we set L = L, ULy, and M = M, U{m}.

Example 2.6 The case of s = 2.
[Ci| GG [Ci[C[C[Cr] |

o1 0|00 0] 0] 0|uw
10| 0] 1| 1] 0] 1| wue
o1 0] 1| 0] 1] 1| wus
A=l 01 0| 1] 0] 1] 1|1 |u
1111010 1] 1] 0|us
110111 0] 1] 0| us
0| 111|100 |u
11|10\ 0] 0] 1| wus

is an OA(3,2) = OA(23,22+2+1,2) (s=2) of a-type.

The affine points(the elements of Pr) are uy, us, ug, g, Us, Ug, Uz, Us.

The infinite points(the elements of Py ) are I'y = {Cy,C3,Cs}, Ty = {C1,C3,C5},
Iy = {C1,Cy,Ch}, Ty = {C5,Cy,Cr}, I's = {Cy,C5,Cr}, T = {C1,Cs,Cr}, T7 =
{Cy4, Cs, Cs}.

The ordinary lines (the elements of Lo ) are

{ur, gt U{T1}, {wr,ust U2}, {ur,ua} U{Ts}, {ur,ush U {4},

{ur,uet U{Ts}, {ur,ur} U{Te}, {ur,us}U{l'7}, {ug,us} U{T4},

{ug, ua} U{Ts}, {ug,us} U{Ta}, {ug,uet U{ls}, {uz,ur} U{l'7},

{ug, us} U{ls}, {us,ua} U{ls}, {us,us}U{I1}, {us,ue} U{l'7},

{Ug, U7} U {Fg}, {Ug, Ug} U {F5}, {U4, U5} U {F7}, {U4, UG} U {Fl},

{U4, U7} U {Fg}, {U4, Ug} U {F4}, {U5, UG} U {FG}, {U5, U7} U {F5},

{U5, Ug} U {Fg}, {UG, U7} U {F4}, {U(;, Ug} U {FQ}, {U7, Ug} U {Fl}

The infinite lines (the elements of L) are

loo<Cl) - {FQ, Fg, FG}; loo<02) - {Fl, F3, F5}, 100(03) — {Fl, FQ, F4}, ZOO(C4) —
The ordinary planes (the elements of Mo ) are
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7T(O, Cl) U loo(Cl) = {Ul,U3, Uy, U7} U {FQ, Fg, Fﬁ},
7T(O, 02) U ZOO(CQ) = {Ul,UQ, Uy, UG} U {Fl, Fg, F5},
7T(O, 03) U loo(Cg) = {Ul,UQ, us, U5} U {Fl, FQ, F4},
7T(0, 04) U loo(C4> = {ul, Uy, Uy, u8} U {Fg, F4, F7},
7T(0, 05) U loo(C5> = {ul,u?,, Ug, us} U {Fg, F5, F7},
7T(0, Cﬁ) U loo(CG) = {Ul,UQ, Ur, Ug} U {Fl, Fﬁ, F7},
7T(0, 07) U ZOO(C7) = {Ul,U5, Ug, U7} U {F4, F5, Fﬁ},
7T(1, 01) U loo(Cl) = {Ug,’d5, Ug, Ug} U {FQ, Fg, Fﬁ},
7T(1, Cg) U loo(C2> == {U3,U5, Ur, us} U {Fl, Fg, F5},
7T(1, Cg) U ZOO(C3> == {U4,U6, Ur, us} U {Fl, Fg, F4},
7T(1, 04) U ZOO(C4> == {UQ,Ug, Ug, U7} U {Fg, F4, F7},
7T(1, 05) U loo(CE)) = {Ug,’d4, Us, U7} U {FQ, F5, F7},
7T(1, Oﬁ) U loo(CG) = {Ug,’d4, Us, UG} U {Fl, FG, F7},
7T(1, 07) U ZOO(C7> = {UQ,Ug, Uy, us} U {F4, F5, FG}

The infinite plane is o, = {I'1,T'2, '3, T4, T'5,T's, ['7 }.

Lemma 2.7 (Lemma A)
Forle L, we have |l |> 3.

PROOF. From (2) of Definition 2.1 and (4) of Lemma 2.4, | [ |= s+ 1 for [ € £. Since
s > 2, we have the assertion. O

Lemma 2.8 (Lemma B)
For distinct points o, B € P, there exists a unique line l € L such that o € | and 8 € .
We denote the line | by af3.

PROOF. Let a and (8 be distinct points. Then three cases (a) o, 5 € Pr, (b) a € Pg,
B € Pw, and (c) a, f € Py occur. For (a) or (b), the lemma holds by Lemma 2.2 and
(2) of Lemma 2.4. We consider the case (c). Let « = I'; and § = I'y be distinct infinite
points. From (3) of Lemma 2.4, | I’y NIy |= 1. Let I'y Ny = {C}. Then [(C) > 'y, I's.
From the uniqueness of C', [, (C) is the unique line containing I'; and I's. O

Lemma 2.9 (1) Let a, f € P be distinct points and 7 a plane containing o and (3. Then
every point on the line a3 is a point on the plane 7.

(2) Let o, B,y € P be noncollinear points. Then there exists a unique plane © containing
a, 3, and 7.

PROOF. (1) Let «v is an affine point u. From Definition 2.5, any plane containing u is
m(u(C), C)Uls(C) for some C' € I' and any line containing u is {v € Q | v(C) = u(C),C €
'y} U {1} for some infinite point I';. First, moreover let § be also an affine point v. Let
I’y be the infinite point corresponding to the line wv, then I'y = {C € T' | u(C) = v(C)},
and uv = {w € Q | w(C) =u(C),C e I }U{T'1}. Let 7 = w(u(C), C)Ulx(C) be a plane
containing v and v. Then C € I';. Hence aff = uv C w. Second, when 3 be an infinite
point I'y, from Lemma 2.8, by a similar argument as stated above, we have the assertion
in this case.
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Next case, let o and 3 be both infinite points I'y and I's respectively. From (3) of
Lemma 2.4, there exists C' € I' such that I'y N 'y = {C'}. Hence the line containing I'y
and I'y is [ (C'). A plane containing I'; and I'y is 74, or m(a, C) Ul (C) for some a € S.
Therefore every point on l,(C) is a point on a plane containing I'y and I's.

(2) Let I'y, I'y be distinct infinite points. Let I'' NI’y = {C'}. Then for any affine point
u, m = m(u(C),C) Uly(C) is a unique plane containing u, 'y, and I'y. Next, let u and
v be affine points, I'y the infinite point corresponding to the line uv, and I's an infinite
point. Then a plane containing u,I';, and I'y is the above plane 7. Actually, from (1),
the plane containing w, v, and I's is . Hence we have the assertion in this case. Let u, v,
and w be non collinear affine points. Then we can show that there exists exactly one
plane containing u,v, and w by a similar argument. Finally, we can show that a plane
containing any three infinite points is m,,. Thus we have the assertion. O

Lemma 2.10 Let 1 € M be a plane and I,m € L distinct lines. If [,m C 7w then
| lNnm|=1.

PROOF. Let [ and m be distinct lines. Since there exists only one line through distinct
two points, we have | [ N'm |< 1. Therefore it is enough to show [ Nm # (. Then three
cases (a) [ and m are both ordinary lines, (b) [ is an ordinary line and m is an infinite
line, and (c) [ and m are infinite lines, occur.

(a): Let I'; and I'y be the infinite points corresponding to lines [ and m respectively. If
[’y = Ty, then INm = {T'1}. Hence we may assume that I'y # I'y. Let I'1NT'y = {C'}. Then
the plane containing [ and m is 7(a, C) Ul (C) for some a € S. Let [ = Q U{I'1}, m =
Q UL}, Cy e Ty —{C}, O = {uy, - ,us}, and Qy = {v1,---,vs}. Then since

ur(Ch) = -+ = us(Ch), vi(Ch),v2(Ch),- -+ ,vs(Cy) are not equal to each other. This
means {v(C}),v2(Ch), - ,vs(C1)} = S. Since S 3 wuy(C}), there exists t such that
v (C1) = w1 (Cy)(= -+ = us(Cy)). From this equation and v,(C) = ui(C) = us(C),
we have [v, uq,us] > 2, and therefore [vy,u;,us] = s+ 1 by Lemma 1.12. Thus v, €

{uy,--- ,us} and therefore [ Nm = {v;}.

(b): Let m = [(C). The plane containing [ and [, (C') is an ordinary plane 7(a, C') U
loo(C) for some a € S. Let | = {uy,ug, -+ ,us} U{l'1}. Then uy(C) =+ = us(C) = a.
Therefore C' € I'y and so I'1 € 1,o(C'). Hence I NI (C) = {I'1}.

(c): Let I = 15o(Cy) and m = lo(C2). From (1) of Lemma 2.4, there exists an infinite
point I'; such that Cy,Cy € T'y. It follows that [ (C1) Nl (Cy) = {1} O

Lemma 2.11 (Lemma C) Let P,Q, R € P be non collinear three points. Let | € L be a
line such that P,Q,R& 1, INPQ #0 and IN PR+ 0. Then, LN QR # 0.

PROOF. From (2) of Lemma 2.9, there exists a unique plane 7 containing P, @), and R.
From Lemma 2.8, | [N PQ |< 1. Hence since [ N PQ # (), we have | [N PQ |= 1. Let
INPQ = {X}. Similarly there exists a point Y such that [N PR = {Y}. From (1) of
Lemma 2.9, all points on the line XY (= [) are on the plane 7. Similarly all points of the
line QR are on the plane 7 . Hence by Lemma 2.10, [N QR # 0. O

Theorem 2.12 Let A be an OA(3,s) of a-type . Then
(1) s is a prime power and
(2) (P, L, M) is isomorphic to PG(3,s).
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PROOF. From Lemmas A, B,C and the theorem of Veblen and Young, we have the
assertion. ]

3 The uniqueness

We denote the symmetric group of degree m by Sym(m), and the identity element
of Sym(m) by 1,,. Let s and k be positive integers and GOA(s, k) = {f | f =
(a1,ag, -+ ,ax, ) a; € Sym(s) (i = 1,2,---,k), a € Sym(k)}. We define a product
on GOA(s, k) as follows. For f = (ay,a9, -+ ,ag, ), g = (b1,ba, -+ ,bg, 3) € GOA(s, k),
.fg = (ala Az, -+, g, Oé)(bl, b2> e 7bka /6) = (a'lboc(l)a a’2boc(2)> o 7a'kboc(k)a /604)

Lemma 3.1 GOA(s, k) is a group.

PROOF. Let f = (alaa'Qa"' 7ak>a)a g = (blab27”' abka/@)a h = (Cla027”' 7Cka7) €
GOA(s, k). Then,

(fg)h = (ai1baqry, a2bac2), - - - 5 arbag), Ba)(cr, ¢, -+ cky )
= (a1ba(1)CBa(1)s * * > Wkba(k)Caa(k), VO)
= (a17a27"' y Ak, O )(blcﬁ )s 7bkc,3(k 776) :f(gh)
Set e = (15, -, 15, 1). Then we can easily show that fe =ef = f.
Let f = (a1,a9, -+ ,ar, ) € GOA(s, k) and set g = ((aa—11)) "+, (@Ga—rr)) ", a7h).
Then,
fg = (G1,0ag," -, ag, a)((aoﬁl(l))_la T (aa 1(k))_1> a_l)
= a'l(acrla(l))_la"'a'k(a'ofla(k)) ! , & 10()

g.f = (a'ocfl(l))_la e 7(aafl(k))_laa_l)(a'laa%' T aa'kaa)
= (a,afl(l)) a,afl(l), ,((a,afl(k)) Qg (k) o 1)
= (137 7137 1k> =e€

Therefore GOA(s, k) is a group. O

Let S ={1,2,---,s}and S* = § x § x --- x S. We define an operation of GOA(s, k)

on S* as follows. For u = (u(1),u(2),-- : ( ) € S* and f = (a1, a, - ,ax, ) €
GOA(s, k), we define fu = (a (u(a(l))), ap(u(a(k)))). Let g = (b1, ba,--- by, 3) €
GOA(s, k). Then,
g(fu) = (br, ba, -+, br, B)(aa (u(a(1))), - -, ar(u(e(k))))

= (bi(agayu(a(5(1)))), - bk(aﬁ(k u(a(B(k)))) )

((blaﬁ Dulaf(1))), - (bragw))u(@B(k)) )

(b1 - brag k)7a6>( u(l),u(2),- -+, u(k))

= (gf )
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We can state the definition of isomorphism of orthogonal arrays using the group

GOA(s, k).

Lemma 3.2 Let A, B be two OA(N, k,s,t)s with entries from the set S = {1,2,---,s}
and Q(A), Q(B) the sets of all rows of A, B respectively. Let f(2(A)) = {fu | u €
Q(A), f € GOA(s,k)} for f € GOA(s, k). Then A and B are isomorphic if and only if
there ezists f € GOA(s, k) such that f(Q(A)) = Q(B).

Theorem 3.3 The OA(3,s)s of a-type are isomorphic to each other.

PROOF. Let AW A® be OA(3,s)s of a-type. Let V@ be the PG(3,s) defined by
AW and 7 the infinite plane of V(i (1 =1,2). Then there exists an isomorphism
f: V) — vV such that f(mg(l) ) = 72, Let TO = {C’ |j=1,2,--+ 8% +s5+1, C’]@ is
a column of AW} for i =1,2.

First, we prove that f induces a bijection from I'™) to I'(? Smce f ( ) = mg), for

any infinite line loo(Ci(l)) of V(U | there exists an infinite line loo(Cj ") of V® such that

MYy — (2) : .
flss(C;7)) = 1s(C}”). Hence f yields a permutation ¢ € Sym(s®> 4 s + 1) such that

1 2
FU(C50)) = 1(C).
Second, we prove that for j€{1,2,---,5>+s+1}, f induces bijection from the entries
of O W) ) to the entries of C . For any infinite line ZOO(C]@), a plane containing this line can

be denote by 7(x, C;Z )UZOO(C’](-i)) for some x € S, where 7(z, Cj(i)) = {u | u(Cj(i)) =x,uis
an affine point}. (i=1,2) Fixj € {1,2,---,s*+s+1}. From f(lOO(C((Tl(;))) = ZOO(CJ(?)),
for any ordinary plane 7V = 7(x, CS&)) U ZOO(CS(;)) on V) there exists an ordinary plane
7@ = n(y, C’](?))UZOO(C']@)) on V® for some y € S such that f(7(") = 73, Hence f yields
a permutation 7; € Sym(s) such that f(7(z, C(% YUloo (CJ(]))) = m(7;(x), C](-z))uloo(Cj(»Z)).
Therefore f(r(z,Ci))) = m(rj(x), CF7) -+ - [1].

We prove that f induces an element of GOA(s,s* + s+ 1). Let u and v be affine

points of VW and V) respectively satisfy f(u) = v. Let u = (u(1),u(2),---,u(s® +
s+1)), v =(0(1),0(2), -, v(s* + 5+ 1)). From u € 7(u(c(j)), CL(,) and [1], we have
v = f(u) € 7(r;(u(o(j)), 05.2’) for j € S. Therefore v(j) = v(C\”) = 7;(u(0(j)). Hence

)

v=(7(u (0(1 ) 2(w(0(2)), -+ Tezpsra(u(o(s® + 5+ 1)). Let o = (11,72, , T2 541,0) €
GOA(s,s* + s+ 1). Then pu = v. ¢ is independent of a choice of . From Lemma 3.2,
A®M and A® are isomorphic as OA(3, s)s. This completes the proof. O
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