Orthogonal arrays with parameters $O A\left(s^{3}, s^{2}+s+1, s, 2\right)$ and 3-dimensional projective geometries

Kazuaki Ishii *
Submitted: Feb 26, 2010; Accepted: Mar 22, 2011; Published: Mar 31, 2011
Mathematics Subject Classification: 05B15

Abstract

There are many nonisomorphic orthogonal arrays with parameters $O A\left(s^{3}, s^{2}+\right.$ $s+1, s, 2)$ although the existence of the arrays yields many restrictions. We denote this by $O A(3, s)$ for simplicity. V.D. Tonchev showed that for even the case of $s=3$, there are at least 68 nonisomorphic orthogonal arrays. The arrays that are constructed by the n-dimensional finite spaces have parameters $O A\left(s^{n},\left(s^{n}-\right.\right.$ 1)/($s-1$) , $s, 2$). They are called Rao-Hamming type. In this paper we characterize the $O A(3, s)$ of 3 -dimensional Rao-Hamming type. We prove several results for a special type of $O A(3, s)$ that satisfies the following condition: For any three rows in the orthogonal array, there exists at least one column, in which the entries of the three rows equal to each other.

We call this property α-type. We prove the following. (1) An $O A(3, s)$ of α-type exists if and only if s is a prime power. (2) $O A(3, s)$ s of α-type are isomorphic to each other as orthogonal arrays. (3) An $O A(3, s)$ of α-type yields $P G(3, s)$. (4) The 3 -dimensional Rao-Hamming is an $O A(3, s)$ of α-type. (5) A linear $O A(3, s)$ is of α-type.

Keywords: orthogonal array; projective space; projective geometry

1 Introduction

An $N \times k$ array A with entries from a set S that contains s symbols is said to be an orthogonal array with s levels, strength t and index λ if every $N \times t$ subarray of A contains

[^0]each t-tuple based on S exactly λ times as a row. We denote the array A by $O A(N, k, s, t)$. Orthogonal arrays with parameters $O A\left(s^{n},\left(s^{n}-1\right) /(s-1), s, 2\right)$ are known for any prime power s and any integer $n \geq 2$. For example, orthogonal arrays of Rao-Hamming type have such parameters. We are interested in whether orthogonal arrays with above parameters exist or not when s is not a prime power, but do not know the existence of arrays with such parameters. In this paper we prove that s is prime power when $n=3$, under an additional assumption. Throughout this paper, let s be a positive integer with $s \geq 2$.

Notation 1.1 Let S be a set of s symbols, A an orthogonal array $O A\left(s^{3}, s^{2}+s+1, s, 2\right)$. Then we use the following notations.
(1) $O A\left(s^{3}, s^{2}+s+1, s, 2\right)$ is denoted by $O A(3, s)$ for simplicity.
(2) $\Omega(A)$ is the set of rows of A.
(3) $\Gamma(A)$ is the set of columns of A.
(4) $u=(u(C))_{C \in \Gamma(A)}$ for $u \in \Omega(A)$.
(5) Set $k(s)=s^{2}+s+1$.

Definition 1.2 Let A be an $O A(3, s)$ and set $\Omega=\Omega(A), \Gamma=\Gamma(A), k=k(s)$.
(1) For $u, v \in \Omega$ and $C \in \Gamma$, let

$$
K(u, v, C)= \begin{cases}1 & \text { if } u(C)=v(C) \\ 0 & \text { otherwise }\end{cases}
$$

(2) Let $\left[u_{1}, u_{2}, \ldots, u_{r}\right]=\left|\left\{C \in \Gamma \mid u_{1}(C)=u_{2}(C)=\cdots=u_{r}(C)\right\}\right|$.

Especially, we have $\left[u_{1}, u_{2}\right]=\sum_{C \in \Gamma} K\left(u_{1}, u_{2}, C\right)$.
Lemma 1.3 Let A be an $O A(3, s)$ and set $\Omega=\Omega(A), \Gamma=\Gamma(A), k=k(s)$.
Then the following statements hold.
(1) $K(u, u, C)=1$ and $(K(u, v, C))^{2}=K(u, v, C) \quad$ for $u, v \in \Omega$ and $C \in \Gamma$.
(2) $[u, u]=k$ for $u \in \Omega$.
(3) $\sum_{v \in \Omega} K(u, v, C)=s^{2} \quad$ and $\sum_{v \in \Omega, v \neq u} K(u, v, C)=s^{2}-1 \quad$ for $u \in \Omega$ and $C \in \Gamma$, and so $\sum_{v \in \Omega, v \neq u}[u, v]=\left(s^{2}+s+1\right)\left(s^{2}-1\right)$.
(4) $\sum_{v \in \Omega} K\left(u, v, C_{1}\right) K\left(u, v, C_{2}\right)=s$ and $\sum_{v \in \Omega, v \neq u} K\left(u, v, C_{1}\right) K\left(u, v, C_{2}\right)=s-1$
for $u \in \Omega$ and distinct $C_{1}, C_{2} \in \Gamma$.
PROOF. The lemma is clear from the definition of an orthogonal array.
Lemma 1.4 Let A be an $O A(3, s)$ and set $\Omega=\Omega(A), \Gamma=\Gamma(A)$. Then $[u, v]=s+1$ for distinct $u, v \in \Omega$.

Proof. Let $u \in \Omega$.

$$
\begin{aligned}
& \sum_{v \in \Omega, v \neq u}([u, v])^{2}=\sum_{v \in \Omega, v \neq u}\left\{\sum_{C \in \Gamma}(K(u, v, C))^{2}+\sum_{C_{1} \in \Gamma}\left(\sum_{C_{2} \in \Gamma, C_{2} \neq C_{1}} K\left(u, v, C_{1}\right) K\left(u, v, C_{2}\right)\right)\right\} \\
= & \sum_{C \in \Gamma}\left(\sum_{v \in \Omega, v \neq u}(K(u, v, C))^{2}\right)+\sum_{C_{1} \in \Gamma}\left(\sum_{C_{2} \in \Gamma, C_{2} \neq C_{1}}\left(\sum_{v \in \Omega, v \neq u} K\left(u, v, C_{1}\right) K\left(u, v, C_{2}\right)\right)\right) \\
= & \sum_{C \in \Gamma}\left(s^{2}-1\right)+\sum_{C_{1} \in \Gamma}\left(\sum_{C_{2} \in \Gamma, C_{2} \neq C_{1}}(s-1)\right) \\
= & \left(s^{2}+s+1\right)\left(s^{2}-1\right)+\left(s^{2}+s+1\right)\left(s^{2}+s\right)(s-1) \\
= & \left(s^{2}+s+1\right)(s+1)^{2}(s-1) .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \sum_{v \in \Omega, v \neq u}([u, v]-s-1)^{2}=\sum_{v \in \Omega, v \neq u}([u, v])^{2}-2(s+1) \sum_{v \in \Omega, v \neq u}[u, v]+\sum_{v \in \Omega, v \neq u}(s+1)^{2} \\
& =\left(s^{2}+s+1\right)(s+1)^{2}(s-1)-2(s+1)\left(s^{2}+s+1\right)\left(s^{2}-1\right)+(s+1)^{2}\left(s^{3}-1\right)=0 .
\end{aligned}
$$

Therefore $[u, v]=s+1$ for $v \in \Omega$ with $v \neq u$. Since u is arbitrary, this completes the proof.

We remark that orthogonal arrays with parameters $O A(3, s)$ have good connections with two bounds in coding theory. Actually, Lemma 1.4 shows that the code whose words are the rows of the $O A$ (length $s^{2}+s+1$, number of codewords s^{3}) has constant distance s^{2}. This is a code which satisfies the Plotkin bound (Theorem 9.3 of [4]) with equality. Also, the $O A$ itself satisfies the Bose-Bush bound(Theorem 9.6 of [4]) with equality. Thus the existence of orthogonal arrays $O A(3, s)$ yields many restrictions. So at first we expected that any $O A(3, s)$ is isomorphic to Rao-Hamming type. But we knew by Tonchev [3] that there are many nonisomorphic $O A(3, s)$ arrays. Next, we discovered a condition for an $O A(3, s)$ to be Rao-Hamming type, that is the condition α (see Definition 1.8).

Definition 1.5 Let s be a prime power and A an $O A(3, s)$ with entries from $G F(s)$. A is called to be linear if A satisfies

$$
\lambda u+\mu v=(\lambda u(C)+\mu v(C))_{C \in \Gamma(A)} \in \Omega(A) \text { for } \lambda, \mu \in G F(s) \text { and } u, v \in \Omega(A) .
$$

Definition 1.6 Let P and Q are orthogonal arrays with the same parameters. P and Q are isomorphic if Q can be obtained from P by permutation of the columns, the rows, and the symbols in each column.

Remark 1.7 Let $A=\left(a_{i j}\right)_{1 \leq i \leq s^{3}, 1 \leq j \leq k(s)}$ be a linear $O A(3, s)$ with entries from $G F(s)$. Let φ be a permutation on $\{1,2, \cdots, k(s)\}$ and $\lambda_{j} \in G F(s)^{*}$ for $1 \leq j \leq k(s)$. Let $B=\left(b_{i j}\right)_{1 \leq i \leq s^{3}, 1 \leq j \leq k(s)}$, where $b_{i j}=\lambda_{j} a_{i, \varphi(j)}$ for $1 \leq i \leq s^{3}$ and $1 \leq j \leq k(s)$. Then B is a linear $O A(3, s)$ which is isomorphic to A.

Definition 1.8 Let A be an $O A(3, s)$. A is called to be of α-type if

$$
[u, v, w] \geq 1 \text { for } u, v, w \in \Omega(A)
$$

We show later that this condition corresponds to a condition in affine space order s that "for any distinct three points there exists at least one plane containing them".

Proposition 1.9 If A is a linear $O A(3, s)$ with entries from $G F(s)$, then A is of α-type.
Proof. Set $\Omega=\Omega(A)$ and $k=k(s)$. From the linearity of $A, o=(0,0, \cdots, 0) \in \Omega$. For distinct $u_{1}, u_{2}, u_{3} \in \Omega$, we have $\left[u_{1}, u_{2}, u_{3}\right]=\left[o, u_{2}-u_{1}, u_{3}-u_{1}\right]$. Therefore, it is enough to show that $[o, u, v] \geq 1$ for distinct $u, v \in \Omega-\{0\}$. Since $[u, o]=s+1$ by Lemma 1.4, u has exactly $s+1$ zeroes as entries. From Remark 1.7, we can assume that $u=(\underbrace{1,1, \cdots, 1}_{s^{2}}, \underbrace{0,0, \cdots, 0}_{s+1}) \in \Omega(A)$. Then $\lambda u=(\underbrace{\lambda, \lambda, \cdots, \lambda}_{s^{2}}, \underbrace{0,0, \cdots, 0}_{s+1})$ is an element of Ω for $\lambda \in G F(s)$. Let $v=(v(1), v(2), \cdots, v(k))$. Then there exists at least one zero in $v\left(s^{2}+1\right), v\left(s^{2}+2\right), \cdots, v(k)$. Suppose not. Since $s+1=$ $[\lambda u, v]=[(\underbrace{\lambda, \lambda, \cdots, \lambda}_{s^{2}}, \underbrace{0,0, \cdots, 0}_{s+1}),(v(1), v(2), \cdots, v(k))]$, there are exactly $s+1 \lambda^{\prime}$'s in $v(1), v(2), \cdots, v\left(s^{2}\right)$. We have $s^{2}=\left|\left\{v(1), v(2), \cdots, v\left(s^{2}\right)\right\}\right| \geq(s+1) s$, since λ is arbitrary and $|G F(s)|=s$, This is a contradiction. This yields $[o, u, v] \geq 1$.
Proposition 1.10 The orthogonal array $O A(3, s)$ of 3-dimensional Rao-Hamming type is of α-type .

Proof. We consider the $O A(3, s)$ of 3-dimensional Rao-Hamming type stated in Construction 1 of Theorem 3.20 in [1] when $n=3$. Let π be a fixed plane of the projective geometry $\operatorname{PG}(3, s)$. Let Ω be the set of points of $P G(3, s)$ excluding all points in π. Let Γ be the set of lines contained in π. Then the $O A(3, s) A=\left(a_{u l}\right)_{u \in \Omega, l \in \Gamma}$ is defined as follows. For each line $l \in \Gamma$, we label planes through l except π in some arbitrary way by $1,2, \cdots, s$. Then $a_{u l}$ is the plane containing u and l. Let u_{1}, u_{2}, and u_{3} be distinct elements in Ω. Let τ be the plane containing u_{1}, u_{2} and u_{3} and set $l=\tau \cap \pi \in \Gamma$. Then $a_{u_{1}, l}=a_{u_{2}, l}=a_{u_{3}, l}$ and therefore A is of α-type.

Throughout the rest of this paper, we assume the following.
Hypothesis $1.11 A$ is an $\mathrm{OA}(3, \mathrm{~s})$ of α-type. Set $\Omega=\Omega(A), \Gamma=\Gamma(A)$, and $k=k(s)$.
Lemma $1.12[u, v, w]=1$ or $s+1$ for distinct $u, v, w \in \Omega$.
Proof. Let u, v be distinct fixed elements of Ω. We may assume $u=(0,0, \cdots, 0)$. From Lemma 1.4, v has $s+1$ zeroes in entries. Set $\Gamma_{1}=\{C \mid v(C)=0\}$. Then $\left|\Gamma_{1}\right|=s+1$. We note $t_{w}=\left|\left\{C \mid w(C)=0, C \in \Gamma_{1}\right\}\right|$ for any $w \in \Omega$. Then $\sum_{w \in \Omega} t_{w}=s^{2}(s+1)$. This is the total number of zeroes in Γ_{1}. Moreover since the array A has strength 2, $\sum_{w \in \Omega} t_{w}\left(t_{w}-1\right)=s(s+1) s=s^{2}(s+1)$. This is the total number of $(0,0)$ tuples in any two columns in Γ_{1}. It follows that $\sum_{w \in \Omega}\left(t_{w}-1\right)\left(s+1-t_{w}\right)=0$. By assumption, we have $t_{w} \geq 1$, therefore $\left(t_{w}-1\right)\left(s+1-t_{w}\right) \geq 0$. Hence $t_{w}=[u, v, w] \in\{1, s+1\}$.

Corollary 1.13 For distinct $u, v \in \Omega$, there exist distinct $u_{3}, u_{4}, \cdots, u_{s} \in \Omega$ and $\Gamma_{u v} \subset \Gamma$ satisfying the following conditions:
(1) $\left[u_{1}, u_{2}, u_{3}, u_{4}, \cdots, u_{s}\right]=s+1$, where $u_{1}=u$ and $u_{2}=v$.
(2) If $C \in \Gamma_{u v}$ then $u_{1}(C)=u_{2}(C)=\cdots=u_{s}(C)$.
(3) If $C \in \Gamma-\Gamma_{u v}$ then $u_{i}(C) \neq u_{j}(C)$ for distinct $i, j \in\{1,2, \cdots, s\}$.
(4) $\left[u_{1}, u_{2}, u_{3}, u_{4}, \cdots, u_{s}, x\right]=1$ for $x \in \Omega-\left\{u_{1}, \cdots u_{s}\right\}$.

Proof. We use the notations used in the proof of Lemma 1.12. Set $\Gamma_{1}=\{C \in \Gamma \mid$ $u(C)=v(C)\}, u_{1}=u$, and $u_{2}=v$. From the proof of Lemma 1.12, we have $[u, x]_{\Gamma_{1}}=1$ or $s+1$ for $x \in \Omega-\{u\}$. Set $r=\left|\left\{x \in \Omega \mid x \neq u,[u, x]_{\Gamma_{1}}=s+1\right\}\right|$. Then $\left|\left\{x \in \Omega \mid,[u, x]_{\Gamma_{1}}=1\right\}\right|=s^{3}-1-r$. Therefore, $r(s+1)+\left(s^{3}-1-r\right)=\sum_{x \in \Omega, x \neq u}[u, x]_{\Gamma_{1}}=$ $\left(s^{2}-1\right)(s+1)$. So $r s=\left(s^{2}-1\right)(s+1)-\left(s^{3}-1\right)=s(s-1)$. This yields $r=s-1$. Hence there exist $u_{3}, u_{4}, \cdots, u_{s}$ such that $\left[u, u_{i}\right]_{\Gamma_{1}}=s+1$ for $i \in\{3,4, \cdots, s\}$. Therefore $u_{1}(C)=u_{2}(C)=\cdots=u_{s}(C)$ for $C \in \Gamma_{1}$. If there exists $C \notin \Gamma_{1}$ such that $u_{i}(C)=u_{j}(C)$ for some distinct $i, j \in\{1,2, \cdots, s\}$, we have $\left[u_{i}, u_{j}\right] \geq s+2$, because $\left[u_{i}, u_{j}\right]_{\Gamma_{1}}=s+1$. This is contrary to Lemma 1.4. Hence $u_{1}(C), u_{2}(C), \cdots, u_{s}(C)$ are distinct if $C \notin \Gamma_{1}$. If we set $\Gamma_{u v}=\Gamma_{1}$, this completes the proof of (1), (2), and (3). From Lemma 1.12, for any $x \in \Omega-\left\{u_{1}, \cdots u_{s}\right\}$ there exists only one $C \in \Omega$ such that $u_{1}(C)=u_{2}(C)=x(C)$. By (2) and (3), C is in $\Gamma_{1}\left(=\Gamma_{u v}\right)$. Therefore $x(C)=u_{1}(C)=u_{2}(C)=\cdots=u_{s}(C)$. Since $x \notin\left\{u_{1}, u_{2}, \cdots, u_{s}\right\}$, we have $\left[u_{1}, u_{2}, u_{3}, u_{4}, \cdots, u_{s}, x\right]=1$.

2 A geometry

Under Hypothesis 1.11, we define the following.
Definition 2.1 (1) Elements of Ω are called affine points.
(2) Let $\Omega_{1}=\left\{u_{1}, u_{2}, \cdots, u_{s}\right\}(\subseteq \Omega), \Gamma_{1} \subseteq \Gamma$, and $\left|\Gamma_{1}\right|=s+1$. Then $\Omega_{1} \cup\left\{\Gamma_{1}\right\}$ is called an ordinary line if $\left[u_{1}, u_{2}, \cdots, u_{s}\right]=s+1$ and $u_{1}(C)=u_{2}(C)=\cdots=u_{s}(C)$ for $C \in \Gamma_{1}$. Then Ω_{1} and Γ_{1} are called an affine line and an infinite point respectively.
(3) We denote the set of affine points by $\mathcal{P}_{\mathcal{F}}(=\Omega)$, the set of infinite points by \mathcal{P}_{∞}, and the set of ordinary lines by $\mathcal{L}_{\mathcal{O}}$.
(4) The elements of $\mathcal{P}=\mathcal{P}_{\mathcal{F}} \cup \mathcal{P}_{\infty}$ are called points .

Lemma 2.2 For any distinct $u, v \in \mathcal{P}_{\mathcal{F}}$, there exists only one $l \in \mathcal{L}_{\mathcal{O}}$ such that $u \in l$ and $v \in l$.

Proof. The lemma is clear from Corollary 1.13 and Definition 2.1.
Lemma 2.3 Let C_{1} and C_{2} are fixed distinct elements of Γ.
(1) Set $\Omega(a, b)=\left\{u \in \Omega \mid u\left(C_{1}\right)=a, u\left(C_{2}\right)=b\right\}$ for $a, b \in S$. Then $\Omega(a, b)$ is an affine line.
(2) If $\Omega(a, b) \cup\left\{\Gamma_{1}\right\}$ and $\Omega(c, d) \cup\left\{\Gamma_{2}\right\}$ are ordinary lines, then $\Gamma_{1}=\Gamma_{2}$.

Proof. (1) From the definition of $O A(3, s)$, we have $|\Omega(a, b)|=s$. Let $\Omega(a, b)=$ $\left\{u_{1}, u_{2}, \cdots, u_{s}\right\}$. Let $u, v, w \in \Omega(a, b)$ be distinct elements. By Lemma 1.4, $[u, v]=$ $[v, w]=[w, u]=s+1$. From Lemma 1.12 and $[u, v, w] \geq 2$, we have $[u, v, w]=s+1$. Therefore $\left[u_{1}, u_{2}, \cdots, u_{s}\right]=s+1$. This means that $\Omega(a, b)$ is an affine line.
(2) From (1), $\Omega(0,0)$ and $\Omega(0, b)(b \neq 0)$ are affine lines. Let $\Omega(0,0)=\left\{u_{1}, u_{2}, \cdots, u_{s}\right\}$ and $\Omega(0, b)=\left\{v_{1}, v_{2}, \cdots, v_{s}\right\}$. Then $\left[u_{1}, u_{2}, \cdots, u_{s}\right]=s+1$ and $\left[v_{1}, v_{2}, \cdots, v_{s}\right]=s+1$. Let Γ_{3} and Γ_{4} be infinite points which correspond to $\Omega(0,0)$ and $\Omega(0, b)$ respectively. Let $\Gamma_{3}=\left\{C_{1}, C_{2}, \cdots, C_{s+1}\right\}$ and set $a=u_{1}\left(C_{3}\right)=u_{2}\left(C_{3}\right)=\cdots=u_{s}\left(C_{3}\right)$. We prove $C_{3} \in \Gamma_{4}$. Suppose that some value of $v_{1}\left(C_{3}\right), v_{2}\left(C_{3}\right), \cdots, v_{s}\left(C_{3}\right)$ is equal to a. We may assume that $v_{1}\left(C_{3}\right)=a$. Then $u_{1}\left(C_{3}\right)=u_{2}\left(C_{3}\right)=v_{1}\left(C_{3}\right)=a$. From these equations and $u_{1}\left(C_{1}\right)=u_{2}\left(C_{1}\right)=v_{1}\left(C_{1}\right)=0$, we have $\left[u_{1}, u_{2}, v_{1}\right] \geq 2$. Therefore $\left[u_{1}, u_{2}, v_{1}\right]=$ $s+1$ by Lemma 1.12. Hence $v_{1} \in \Omega(0,0)$. This is a contradiction. Thus any value of $v_{1}\left(C_{3}\right), v_{2}\left(C_{3}\right), \cdots, v_{s}\left(C_{3}\right)$ is not equal to a. By the pigeonhole principle, there exist distinct v_{i}, v_{j} such that $v_{i}\left(C_{3}\right)=v_{j}\left(C_{3}\right)$. Therefore $v_{1}\left(C_{3}\right)=v_{2}\left(C_{3}\right)=\cdots=v_{s}\left(C_{3}\right)$, because $\left[v_{1}, v_{2}, \cdots, v_{s}\right]=s+1$, by Lemmas 1.12 and 1.4. Thus $C_{3} \in \Gamma_{4}$. Similarly we can show that $C_{4}, C_{5}, \cdots, C_{s+1} \in \Gamma_{4}$. Moreover since $C_{1}, C_{2} \in \Gamma_{4}$, we have $\Gamma_{3}=\Gamma_{4}$. Similarly, it is shown that the infinite points corresponding to $\Omega(0, b)$ and $\Omega(a, b)$ are equal. Therefore the infinite points corresponding to $\Omega(0,0)$ and $\Omega(a, b)$ are equal. This completes the proof.

Lemma 2.4 (1) For any $C_{1}, C_{2} \in \Gamma$ there exists an infinite point $\Gamma_{1}\left(\in \mathcal{P}_{\infty}\right)$ uniquely such that $C_{1}, C_{2} \in \Gamma_{1}$.
(2) For any $u \in \Omega$ and any infinite point Γ_{1}, there exists only one subset $\Omega_{1} \subset \Omega$ such that $u \in \Omega_{1}$ and $\Omega_{1} \cup\left\{\Gamma_{1}\right\}$ is an ordinary line.
(3) $\left|\Gamma_{1} \cap \Gamma_{2}\right|=1$ for any distinct infinite points Γ_{1} and Γ_{2}.
(4) Set $l_{\infty}(C)=\left\{\Gamma_{1} \mid \Gamma_{1}\right.$ is an infinite point such that $\left.\Gamma_{1} \ni C\right\}$ for $C \in \Gamma$. Then
(a) $\left|l_{\infty}(C)\right|=s+1$,
(b) $\Gamma=\bigcup_{\Gamma_{1} \in l_{\infty}(C)}\left(\Gamma_{1}-\{C\}\right) \cup\{C\}$,
(c) $\left(\Gamma_{1}-\{C\}\right) \cap\left(\Gamma_{2}-\{C\}\right)=\emptyset \quad$ for distinct $\Gamma_{1}, \Gamma_{2} \in l_{\infty}(C)$.

Proof. (1) Let $C_{1}, C_{2} \in \Gamma$. From (1) of Lemma 2.3, $\Omega_{1}=\left\{u \in \Omega \mid u\left(C_{1}\right)=0, u\left(C_{2}\right)=\right.$ $0\}$ is an affine line. Let Γ_{1} be the infinite point corresponding to Ω_{1}. Then $\Gamma_{1} \ni C_{1}, C_{2}$. From (2) of Lemma 2.3, the infinite point containing C_{1}, C_{2} is unique.
(2) Let $u \in \Omega$ and $\Gamma_{1} \in \mathcal{P}_{\infty}$. Let $C_{1}, C_{2} \in \Gamma_{1}$ and $\Omega_{1}=\left\{v \in \Omega \mid v\left(C_{1}\right)=\right.$ $\left.u\left(C_{1}\right), v\left(C_{2}\right)=u\left(C_{2}\right)\right\}$. From (1) of Lemma 2.3, Ω_{1} is an affine line. Let Γ_{2} be the infinite point corresponding to Ω_{1}. Then $\Gamma_{1} \cap \Gamma_{2} \supset\left\{C_{1}, C_{2}\right\}$. From (1) we have $\Gamma_{1}=\Gamma_{2}$. Therefore $\Omega_{1}=\left\{v \in \Omega \mid v(C)=u(C), C \in \Gamma_{1}\right\}$. Hence $\Omega_{1} \cup\left\{\Gamma_{1}\right\}$ is a unique ordinary line containing u and Γ_{1}.
(3) Let Γ_{1} and Γ_{2} be distinct infinite points. For any $v \in \Omega$ and for $i \in\{1,2\}$, from (2), there exists only one ordinary line containing v and Γ_{i}. We denote it by $v \Gamma_{i}$ for $i \in\{1,2\}$. Let u and w be affine points such that $u \in v \Gamma_{1}-\{v\}$ and $w \in v \Gamma_{2}-\{v\}$. Since $\Gamma_{1} \neq \Gamma_{2}$, by Lemma 1.12, $[u, v, w]=1$. Therefore there exists $C \in \Gamma$ uniquely such that $u(C)=v(C)=w(C)$. Hence $\Gamma_{1} \cap \Gamma_{2}=\{C\}$ and so $\left|\Gamma_{1} \cap \Gamma_{2}\right|=1$.
(4) Let C be a fixed element of Γ. For any $C_{0} \in \Gamma-\{C\}$, from (1), there exists $\Gamma_{0} \in \mathcal{P}_{\infty}$ uniquely such that $C, C_{0} \in \Gamma_{0}$. Since $C \in \Gamma_{0}$, we have $\Gamma_{0} \in l_{\infty}(C)$ and therefore $C_{0} \in$ $\Gamma_{0} \in l_{\infty}(C)$. Thus we have $\Gamma=\bigcup_{\Gamma_{1} \in l_{\infty}(C)} \Gamma_{1}$. Therefore $\Gamma=\bigcup_{\Gamma_{1} \in l_{\infty}(C)}\left(\Gamma_{1}-\{C\}\right) \cup\{C\}$. For distinct $\Gamma_{1}, \Gamma_{2} \in l_{\infty}(C)$, by (3), $\left(\Gamma_{1}-\{C\}\right) \cap\left(\Gamma_{2}-\{C\}\right)=\emptyset$. Let $\left|l_{\infty}(C)\right|=r$. Then we have $r\{(s+1)-1\}+1=s^{2}+s+1$. Hence $r=s+1$ and $\left|l_{\infty}(C)\right|=s+1$.

Definition 2.5 (1) For any $C \in \Gamma, l_{\infty}(C)=\left\{\Gamma_{1} \mid \Gamma_{1}\right.$ an infinite point, $\left.\Gamma_{1} \ni C\right\}$ is called an infinite line. l is called a line if l is an ordinary or an infinite line.
(2) For any $a \in S$ and any $C \in \Gamma, \pi(a, C)=\{u \in \Omega \mid u(C)=a\}, \pi(a, C) \cup l_{\infty}(C)$, and $\pi_{\infty}=\bigcup_{C \in \Gamma} l_{\infty}(C)$ are called an affine plane, an ordinary plane, and an infinite plane respectively. π is called a plane if π is an ordinary or an infinite plane.
(3) The set of infinite lines and ordinary planes are denoted by \mathcal{L}_{∞} and \mathcal{M}_{0} respectively. Moreover we set $\mathcal{L}=\mathcal{L}_{o} \cup \mathcal{L}_{\infty}$ and $\mathcal{M}=\mathcal{M}_{o} \cup\left\{\pi_{\infty}\right\}$.

Example 2.6 The case of $s=2$.

$A=$| C_{1} | C_{2} | C_{3} | C_{4} | C_{5} | C_{6} | C_{7} | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | u_{1} |
| 1 | 0 | 0 | 1 | 1 | 0 | 1 | u_{2} |
| 0 | 1 | 0 | 1 | 0 | 1 | 1 | u_{3} |
| 0 | 0 | 1 | 0 | 1 | 1 | 1 | u_{4} |
| 1 | 1 | 0 | 0 | 1 | 1 | 0 | u_{5} |
| 1 | 0 | 1 | 1 | 0 | 1 | 0 | u_{6} |
| 0 | 1 | 1 | 1 | 1 | 0 | 0 | u_{7} |
| 1 | 1 | 1 | 0 | 0 | 0 | 1 | u_{8} |

is an $O A(3,2)=O A\left(2^{3}, 2^{2}+2+1,2\right) \quad(s=2)$ of α-type.
The affine points(the elements of \mathcal{P}_{F}) are $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}, u_{7}, u_{8}$.
The infinite points (the elements of \mathcal{P}_{∞}) are $\Gamma_{1}=\left\{C_{2}, C_{3}, C_{6}\right\}, \quad \Gamma_{2}=\left\{C_{1}, C_{3}, C_{5}\right\}$, $\Gamma_{3}=\left\{C_{1}, C_{2}, C_{4}\right\}, \quad \Gamma_{4}=\left\{C_{3}, C_{4}, C_{7}\right\}, \quad \Gamma_{5}=\left\{C_{2}, C_{5}, C_{7}\right\}, \quad \Gamma_{6}=\left\{C_{1}, C_{6}, C_{7}\right\}, \quad \Gamma_{7}=$ $\left\{C_{4}, C_{5}, C_{6}\right\}$.
The ordinary lines (the elements of \mathcal{L}_{O}) are
$\left\{u_{1}, u_{2}\right\} \cup\left\{\Gamma_{1}\right\}, \quad\left\{u_{1}, u_{3}\right\} \cup\left\{\Gamma_{2}\right\}, \quad\left\{u_{1}, u_{4}\right\} \cup\left\{\Gamma_{3}\right\}, \quad\left\{u_{1}, u_{5}\right\} \cup\left\{\Gamma_{4}\right\}$,
$\left\{u_{1}, u_{6}\right\} \cup\left\{\Gamma_{5}\right\}, \quad\left\{u_{1}, u_{7}\right\} \cup\left\{\Gamma_{6}\right\}, \quad\left\{u_{1}, u_{8}\right\} \cup\left\{\Gamma_{7}\right\}, \quad\left\{u_{2}, u_{3}\right\} \cup\left\{\Gamma_{4}\right\}$,
$\left\{u_{2}, u_{4}\right\} \cup\left\{\Gamma_{5}\right\}, \quad\left\{u_{2}, u_{5}\right\} \cup\left\{\Gamma_{2}\right\}, \quad\left\{u_{2}, u_{6}\right\} \cup\left\{\Gamma_{3}\right\}, \quad\left\{u_{2}, u_{7}\right\} \cup\left\{\Gamma_{7}\right\}$,
$\left\{u_{2}, u_{8}\right\} \cup\left\{\Gamma_{6}\right\}, \quad\left\{u_{3}, u_{4}\right\} \cup\left\{\Gamma_{6}\right\}, \quad\left\{u_{3}, u_{5}\right\} \cup\left\{\Gamma_{1}\right\}, \quad\left\{u_{3}, u_{6}\right\} \cup\left\{\Gamma_{7}\right\}$,
$\left\{u_{3}, u_{7}\right\} \cup\left\{\Gamma_{3}\right\}, \quad\left\{u_{3}, u_{8}\right\} \cup\left\{\Gamma_{5}\right\}, \quad\left\{u_{4}, u_{5}\right\} \cup\left\{\Gamma_{7}\right\}, \quad\left\{u_{4}, u_{6}\right\} \cup\left\{\Gamma_{1}\right\}$,
$\left\{u_{4}, u_{7}\right\} \cup\left\{\Gamma_{2}\right\}, \quad\left\{u_{4}, u_{8}\right\} \cup\left\{\Gamma_{4}\right\}, \quad\left\{u_{5}, u_{6}\right\} \cup\left\{\Gamma_{6}\right\}, \quad\left\{u_{5}, u_{7}\right\} \cup\left\{\Gamma_{5}\right\}$,
$\left\{u_{5}, u_{8}\right\} \cup\left\{\Gamma_{3}\right\}, \quad\left\{u_{6}, u_{7}\right\} \cup\left\{\Gamma_{4}\right\}, \quad\left\{u_{6}, u_{8}\right\} \cup\left\{\Gamma_{2}\right\}, \quad\left\{u_{7}, u_{8}\right\} \cup\left\{\Gamma_{1}\right\}$.
The infinite lines (the elements of \mathcal{L}_{∞}) are
$l_{\infty}\left(C_{1}\right)=\left\{\Gamma_{2}, \Gamma_{3}, \Gamma_{6}\right\}, \quad l_{\infty}\left(C_{2}\right)=\left\{\Gamma_{1}, \Gamma_{3}, \Gamma_{5}\right\}, \quad l_{\infty}\left(C_{3}\right)=\left\{\Gamma_{1}, \Gamma_{2}, \Gamma_{4}\right\}, \quad l_{\infty}\left(C_{4}\right)=$ $\left\{\Gamma_{3}, \Gamma_{4}, \Gamma_{7}\right\}, l_{\infty}\left(C_{5}\right)=\left\{\Gamma_{2}, \Gamma_{5}, \Gamma_{7}\right\}, l_{\infty}\left(C_{6}\right)=\left\{\Gamma_{1}, \Gamma_{6}, \Gamma_{7}\right\}, l_{\infty}\left(C_{7}\right)=\left\{\Gamma_{4}, \Gamma_{5}, \Gamma_{6}\right\}$.
The ordinary planes (the elements of \mathcal{M}_{O}) are

$$
\begin{aligned}
& \pi\left(0, C_{1}\right) \cup l_{\infty}\left(C_{1}\right)=\left\{u_{1}, u_{3}, u_{4}, u_{7}\right\} \cup\left\{\Gamma_{2}, \Gamma_{3}, \Gamma_{6}\right\}, \\
& \pi\left(0, C_{2}\right) \cup l_{\infty}\left(C_{2}\right)=\left\{u_{1}, u_{2}, u_{4}, u_{6}\right\} \cup\left\{\Gamma_{1}, \Gamma_{3}, \Gamma_{5}\right\}, \\
& \pi\left(0, C_{3}\right) \cup l_{\infty}\left(C_{3}\right)=\left\{u_{1}, u_{2}, u_{3}, u_{5}\right\} \cup\left\{\Gamma_{1}, \Gamma_{2}, \Gamma_{4}\right\}, \\
& \pi\left(0, C_{4}\right) \cup l_{\infty}\left(C_{4}\right)=\left\{u_{1}, u_{4}, u_{5}, u_{8}\right\} \cup\left\{\Gamma_{3}, \Gamma_{4}, \Gamma_{7}\right\}, \\
& \pi\left(0, C_{5}\right) \cup l_{\infty}\left(C_{5}\right)=\left\{u_{1}, u_{3}, u_{6}, u_{8}\right\} \cup\left\{\Gamma_{2}, \Gamma_{5}, \Gamma_{7}\right\}, \\
& \pi\left(0, C_{6}\right) \cup l_{\infty}\left(C_{6}\right)=\left\{u_{1}, u_{2}, u_{7}, u_{8}\right\} \cup\left\{\Gamma_{1}, \Gamma_{6}, \Gamma_{7}\right\}, \\
& \pi\left(0, C_{7}\right) \cup l_{\infty}\left(C_{7}\right)=\left\{u_{1}, u_{5}, u_{6}, u_{7}\right\} \cup\left\{\Gamma_{4}, \Gamma_{5}, \Gamma_{6}\right\}, \\
& \pi\left(1, C_{1}\right) \cup l_{\infty}\left(C_{1}\right)=\left\{u_{2}, u_{5}, u_{6}, u_{8}\right\} \cup\left\{\Gamma_{2}, \Gamma_{3}, \Gamma_{6}\right\}, \\
& \pi\left(1, C_{2}\right) \cup l_{\infty}\left(C_{2}\right)=\left\{u_{3}, u_{5}, u_{7}, u_{8}\right\} \cup\left\{\Gamma_{1}, \Gamma_{3}, \Gamma_{5}\right\}, \\
& \pi\left(1, C_{3}\right) \cup l_{\infty}\left(C_{3}\right)=\left\{u_{4}, u_{6}, u_{7}, u_{8}\right\} \cup\left\{\Gamma_{1}, \Gamma_{2}, \Gamma_{4}\right\}, \\
& \pi\left(1, C_{4}\right) \cup l_{\infty}\left(C_{4}\right)=\left\{u_{2}, u_{3}, u_{6}, u_{7}\right\} \cup\left\{\Gamma_{3}, \Gamma_{4}, \Gamma_{7}\right\}, \\
& \pi\left(1, C_{5}\right) \cup l_{\infty}\left(C_{5}\right)=\left\{u_{2}, u_{4}, u_{5}, u_{7}\right\} \cup\left\{\Gamma_{2}, \Gamma_{5}, \Gamma_{7}\right\}, \\
& \pi\left(1, C_{6}\right) \cup l_{\infty}\left(C_{6}\right)=\left\{u_{3}, u_{4}, u_{5}, u_{6}\right\} \cup\left\{\Gamma_{1}, \Gamma_{6}, \Gamma_{7}\right\}, \\
& \pi\left(1, C_{7}\right) \cup l_{\infty}\left(C_{7}\right)=\left\{u_{2}, u_{3}, u_{4}, u_{8}\right\} \cup\left\{\Gamma_{4}, \Gamma_{5}, \Gamma_{6}\right\} . \\
& \text { The infinite plane is } \pi_{\infty}=\left\{\Gamma_{1}, \Gamma_{2}, \Gamma_{3}, \Gamma_{4}, \Gamma_{5}, \Gamma_{6}, \Gamma_{7}\right\} .
\end{aligned}
$$

Lemma 2.7 (Lemma A)
For $l \in \mathcal{L}$, we have $|l| \geq 3$.
Proof. From (2) of Definition 2.1 and (4) of Lemma 2.4, $|l|=s+1$ for $l \in \mathcal{L}$. Since $s \geq 2$, we have the assertion.

Lemma 2.8 (Lemma B)
For distinct points $\alpha, \beta \in \mathcal{P}$, there exists a unique line $l \in \mathcal{L}$ such that $\alpha \in l$ and $\beta \in l$. We denote the line l by $\alpha \beta$.

Proof. Let α and β be distinct points. Then three cases (a) $\alpha, \beta \in \mathcal{P}_{\mathcal{F}}$, (b) $\alpha \in \mathcal{P}_{\mathcal{F}}$, $\beta \in \mathcal{P}_{\infty}$, and (c) $\alpha, \beta \in \mathcal{P}_{\infty}$ occur. For (a) or (b), the lemma holds by Lemma 2.2 and (2) of Lemma 2.4. We consider the case (c). Let $\alpha=\Gamma_{1}$ and $\beta=\Gamma_{2}$ be distinct infinite points. From (3) of Lemma 2.4, $\left|\Gamma_{1} \cap \Gamma_{2}\right|=1$. Let $\Gamma_{1} \cap \Gamma_{2}=\{C\}$. Then $l_{\infty}(C) \ni \Gamma_{1}, \Gamma_{2}$. From the uniqueness of $C, l_{\infty}(C)$ is the unique line containing Γ_{1} and Γ_{2}.

Lemma 2.9 (1) Let $\alpha, \beta \in \mathcal{P}$ be distinct points and π a plane containing α and β. Then every point on the line $\alpha \beta$ is a point on the plane π.
(2) Let $\alpha, \beta, \gamma \in \mathcal{P}$ be noncollinear points. Then there exists a unique plane π containing α, β, and γ.

Proof. (1) Let α is an affine point u. From Definition 2.5, any plane containing u is $\pi(u(C), C) \cup l_{\infty}(C)$ for some $C \in \Gamma$ and any line containing u is $\{v \in \Omega \mid v(C)=u(C), C \in$ $\left.\Gamma_{1}\right\} \cup\left\{\Gamma_{1}\right\}$ for some infinite point Γ_{1}. First, moreover let β be also an affine point v. Let Γ_{1} be the infinite point corresponding to the line $u v$, then $\Gamma_{1}=\{C \in \Gamma \mid u(C)=v(C)\}$, and $u v=\left\{w \in \Omega \mid w(C)=u(C), C \in \Gamma_{1}\right\} \cup\left\{\Gamma_{1}\right\}$. Let $\pi=\pi(u(C), C) \cup l_{\infty}(C)$ be a plane containing u and v. Then $C \in \Gamma_{1}$. Hence $\alpha \beta=u v \subset \pi$. Second, when β be an infinite point Γ_{1}, from Lemma 2.8, by a similar argument as stated above, we have the assertion in this case.

Next case, let α and β be both infinite points Γ_{1} and Γ_{2} respectively. From (3) of Lemma 2.4, there exists $C \in \Gamma$ such that $\Gamma_{1} \cap \Gamma_{2}=\{C\}$. Hence the line containing Γ_{1} and Γ_{2} is $l_{\infty}(C)$. A plane containing Γ_{1} and Γ_{2} is π_{∞} or $\pi(a, C) \cup l_{\infty}(C)$ for some $a \in S$. Therefore every point on $l_{\infty}(C)$ is a point on a plane containing Γ_{1} and Γ_{2}.
(2) Let Γ_{1}, Γ_{2} be distinct infinite points. Let $\Gamma_{1} \cap \Gamma_{2}=\{C\}$. Then for any affine point $u, \pi=\pi(u(C), C) \cup l_{\infty}(C)$ is a unique plane containing u, Γ_{1}, and Γ_{2}. Next, let u and v be affine points, Γ_{1} the infinite point corresponding to the line $u v$, and Γ_{2} an infinite point. Then a plane containing u, Γ_{1}, and Γ_{2} is the above plane π. Actually, from (1), the plane containing u, v, and Γ_{2} is π. Hence we have the assertion in this case. Let u, v, and w be non collinear affine points. Then we can show that there exists exactly one plane containing u, v, and w by a similar argument. Finally, we can show that a plane containing any three infinite points is π_{∞}. Thus we have the assertion.
Lemma 2.10 Let $\pi \in \mathcal{M}$ be a plane and $l, m \in \mathcal{L}$ distinct lines. If $l, m \subseteq \pi$ then $|l \cap m|=1$.
Proof. Let l and m be distinct lines. Since there exists only one line through distinct two points, we have $|l \cap m| \leq 1$. Therefore it is enough to show $l \cap m \neq \emptyset$. Then three cases (a) l and m are both ordinary lines, (b) l is an ordinary line and m is an infinite line, and (c) l and m are infinite lines, occur.
(a): Let Γ_{1} and Γ_{2} be the infinite points corresponding to lines l and m respectively. If $\Gamma_{1}=\Gamma_{2}$, then $l \cap m=\left\{\Gamma_{1}\right\}$. Hence we may assume that $\Gamma_{1} \neq \Gamma_{2}$. Let $\Gamma_{1} \cap \Gamma_{2}=\{C\}$. Then the plane containing l and m is $\pi(a, C) \cup l_{\infty}(C)$ for some $a \in S$. Let $l=\Omega_{1} \cup\left\{\Gamma_{1}\right\}, m=$ $\Omega_{2} \cup\left\{\Gamma_{2}\right\}, C_{1} \in \Gamma_{1}-\{C\}, \Omega_{1}=\left\{u_{1}, \cdots, u_{s}\right\}$, and $\Omega_{2}=\left\{v_{1}, \cdots, v_{s}\right\}$. Then since $u_{1}\left(C_{1}\right)=\cdots=u_{s}\left(C_{1}\right), v_{1}\left(C_{1}\right), v_{2}\left(C_{1}\right), \cdots, v_{s}\left(C_{1}\right)$ are not equal to each other. This means $\left\{v_{1}\left(C_{1}\right), v_{2}\left(C_{1}\right), \cdots, v_{s}\left(C_{1}\right)\right\}=S$. Since $S \ni u_{1}\left(C_{1}\right)$, there exists t such that $v_{t}\left(C_{1}\right)=u_{1}\left(C_{1}\right)\left(=\cdots=u_{s}\left(C_{1}\right)\right)$. From this equation and $v_{t}(C)=u_{1}(C)=u_{2}(C)$, we have $\left[v_{t}, u_{1}, u_{2}\right] \geq 2$, and therefore $\left[v_{t}, u_{1}, u_{2}\right]=s+1$ by Lemma 1.12. Thus $v_{t} \in$ $\left\{u_{1}, \cdots, u_{s}\right\}$ and therefore $l \cap m=\left\{v_{t}\right\}$.
(b): Let $m=l_{\infty}(C)$. The plane containing l and $l_{\infty}(C)$ is an ordinary plane $\pi(a, C) \cup$ $l_{\infty}(C)$ for some $a \in S$. Let $l=\left\{u_{1}, u_{2}, \cdots, u_{s}\right\} \cup\left\{\Gamma_{1}\right\}$. Then $u_{1}(C)=\cdots=u_{s}(C)=a$. Therefore $C \in \Gamma_{1}$ and so $\Gamma_{1} \in l_{\infty}(C)$. Hence $l \cap l_{\infty}(C)=\left\{\Gamma_{1}\right\}$.
(c): Let $l=l_{\infty}\left(C_{1}\right)$ and $m=l_{\infty}\left(C_{2}\right)$. From (1) of Lemma 2.4, there exists an infinite point Γ_{1} such that $C_{1}, C_{2} \in \Gamma_{1}$. It follows that $l_{\infty}\left(C_{1}\right) \cap l_{\infty}\left(C_{2}\right)=\left\{\Gamma_{1}\right\}$.
Lemma 2.11 (Lemma C) Let $P, Q, R \in \mathcal{P}$ be non collinear three points. Let $l \in \mathcal{L}$ be a line such that $P, Q, R \notin l, l \cap P Q \neq \emptyset$ and $l \cap P R \neq \emptyset$. Then, $l \cap Q R \neq \emptyset$.
Proof. From (2) of Lemma 2.9, there exists a unique plane π containing P, Q, and R. From Lemma 2.8, $|l \cap P Q| \leq 1$. Hence since $l \cap P Q \neq \emptyset$, we have $|l \cap P Q|=1$. Let $l \cap P Q=\{X\}$. Similarly there exists a point Y such that $l \cap P R=\{Y\}$. From (1) of Lemma 2.9, all points on the line $X Y(=l)$ are on the plane π. Similarly all points of the line $Q R$ are on the plane π. Hence by Lemma 2.10, $l \cap Q R \neq \emptyset$.
Theorem 2.12 Let A be an $O A(3, s)$ of α-type. Then
(1) s is a prime power and
(2) $(\mathcal{P}, \mathcal{L}, \mathcal{M})$ is isomorphic to $\operatorname{PG}(3, s)$.

Proof. From Lemmas A, B, C and the theorem of Veblen and Young, we have the assertion.

3 The uniqueness

We denote the symmetric group of degree m by $\operatorname{Sym}(m)$, and the identity element of $\operatorname{Sym}(m)$ by 1_{m}. Let s and k be positive integers and $G O A(s, k)=\{f \mid f=$ $\left.\left(a_{1}, a_{2}, \cdots, a_{k}, \alpha\right) \quad a_{i} \in \operatorname{Sym}(s)(i=1,2, \cdots, k), \alpha \in \operatorname{Sym}(k)\right\}$. We define a product on $G O A(s, k)$ as follows. For $f=\left(a_{1}, a_{2}, \cdots, a_{k}, \alpha\right), g=\left(b_{1}, b_{2}, \cdots, b_{k}, \beta\right) \in G O A(s, k)$, $f g=\left(a_{1}, a_{2}, \cdots, a_{k}, \alpha\right)\left(b_{1}, b_{2}, \cdots, b_{k}, \beta\right)=\left(a_{1} b_{\alpha(1)}, a_{2} b_{\alpha(2)}, \cdots, a_{k} b_{\alpha(k)}, \beta \alpha\right)$.
Lemma 3.1 $G O A(s, k)$ is a group.
Proof. Let $f=\left(a_{1}, a_{2}, \cdots, a_{k}, \alpha\right), g=\left(b_{1}, b_{2}, \cdots, b_{k}, \beta\right), h=\left(c_{1}, c_{2}, \cdots, c_{k}, \gamma\right) \in$ $G O A(s, k)$. Then,

$$
\begin{aligned}
(f g) h & =\left(a_{1} b_{\alpha(1)}, a_{2} b_{\alpha(2)}, \cdots, a_{k} b_{\alpha(k)}, \beta \alpha\right)\left(c_{1}, c_{2}, \cdots, c_{k}, \gamma\right) \\
& =\left(a_{1} b_{\alpha(1)} c_{\beta \alpha(1)}, \cdots, a_{k} b_{\alpha(k)} c_{\beta \alpha(k)}, \gamma \beta \alpha\right) \\
& =\left(a_{1}, a_{2}, \cdots, a_{k}, \alpha\right)\left(b_{1} c_{\beta(1)}, \cdots, b_{k} c_{\beta(k)}, \gamma \beta\right)=f(g h) .
\end{aligned}
$$

Set $e=\left(1_{s}, \cdots, 1_{s}, 1_{k}\right)$. Then we can easily show that $f e=e f=f$.
Let $f=\left(a_{1}, a_{2}, \cdots, a_{k}, \alpha\right) \in G O A(s, k)$ and set $g=\left(\left(a_{\alpha^{-1}(1)}\right)^{-1}, \cdots,\left(a_{\alpha^{-1}(k)}\right)^{-1}, \alpha^{-1}\right)$. Then,

$$
\begin{aligned}
f g & =\left(a_{1}, a_{2}, \cdots, a_{k}, \alpha\right)\left(\left(a_{\alpha^{-1}(1)}\right)^{-1}, \cdots,\left(a_{\alpha^{-1}(k)}\right)^{-1}, \alpha^{-1}\right) \\
& =\left(a_{1}\left(a_{\alpha^{-1} \alpha(1)}\right)^{-1}, \cdots a_{k}\left(a_{\alpha^{-1} \alpha(k)}\right)^{-1}, \alpha^{-1} \alpha\right) \\
& =\left(1_{s}, \cdots, 1_{s}, 1_{k}\right)=e . \\
g f & =\left(\left(a_{\alpha^{-1}(1)}\right)^{-1}, \cdots,\left(a_{\alpha^{-1}(k)}\right)^{-1}, \alpha^{-1}\right)\left(a_{1}, a_{2}, \cdots, a_{k}, \alpha\right) \\
& =\left(\left(a_{\alpha^{-1}(1)}\right)^{-1} a_{\alpha^{-1}(1)}, \cdots,\left(\left(a_{\alpha^{-1}(k)}\right)^{-1} a_{\alpha^{-1}(k)}, \alpha \alpha^{-1}\right)\right. \\
& =\left(1_{s}, \cdots, 1_{s}, 1_{k}\right)=e .
\end{aligned}
$$

Therefore $G O A(s, k)$ is a group.
Let $S=\{1,2, \cdots, s\}$ and $S^{k}=\underbrace{S \times S \times \cdots \times S}_{k}$. We define an operation of $G O A(s, k)$ on S^{k} as follows. For $u=(u(1), u(2), \cdots, u(k)) \in S^{k}$ and $f=\left(a_{1}, a_{2}, \cdots, a_{k}, \alpha\right) \in$ $G O A(s, k)$, we define $f u=\left(a_{1}(u(\alpha(1))), \cdots, a_{k}(u(\alpha(k)))\right)$. Let $g=\left(b_{1}, b_{2}, \cdots, b_{k}, \beta\right) \in$ $G O A(s, k)$. Then,

$$
\begin{aligned}
g(f u) & =\left(b_{1}, b_{2}, \cdots, b_{k}, \beta\right)\left(a_{1}(u(\alpha(1))), \cdots, a_{k}(u(\alpha(k)))\right) \\
& =\left(b_{1}\left(a_{\beta(1)} u(\alpha(\beta(1)))\right), \cdots, b_{k}\left(a_{\beta(k)} u(\alpha(\beta(k)))\right)\right) \\
& \left.=\left(\left(b_{1} a_{\beta(1)}\right) u(\alpha \beta(1))\right), \cdots,\left(b_{k} a_{\beta(k)}\right) u(\alpha \beta(k))\right) \\
& =\left(b_{1} a_{\beta(1)}, \cdots b_{k} a_{\beta(k)}, \alpha \beta\right)(u(1), u(2), \cdots, u(k)) \\
& =(g f) u .
\end{aligned}
$$

We can state the definition of isomorphism of orthogonal arrays using the group $G O A(s, k)$.

Lemma 3.2 Let A, B be two $O A(N, k, s, t) s$ with entries from the set $S=\{1,2, \cdots, s\}$ and $\Omega(A), \Omega(B)$ the sets of all rows of A, B respectively. Let $f(\Omega(A))=\{f u \mid u \in$ $\Omega(A), f \in G O A(s, k)\}$ for $f \in G O A(s, k)$. Then A and B are isomorphic if and only if there exists $f \in G O A(s, k)$ such that $f(\Omega(A))=\Omega(B)$.

Theorem 3.3 The $O A(3, s) s$ of α-type are isomorphic to each other.
Proof. Let $A^{(1)}, A^{(2)}$ be $O A(3, s)$ s of α-type. Let $V^{(i)}$ be the $P G(3, s)$ defined by $A^{(i)}$, and $\pi_{\infty}^{(i)}$ the infinite plane of $V^{(i)} \quad(i=1,2)$. Then there exists an isomorphism $f ; V^{(1)} \rightarrow V^{(2)}$ such that $f\left(\pi_{\infty}^{(1)}\right)=\pi_{\infty}^{(2)}$. Let $\Gamma^{(i)}=\left\{C_{j}^{(i)} \mid j=1,2, \cdots, s^{2}+s+1, C_{j}^{(i)}\right.$ is a column of $\left.A^{(i)}\right\}$ for $i=1,2$.

First, we prove that f induces a bijection from $\Gamma^{(1)}$ to $\Gamma^{(2)}$. Since $f\left(\pi_{\infty}^{(1)}\right)=\pi_{\infty}^{(2)}$, for any infinite line $l_{\infty}\left(C_{i}^{(1)}\right)$ of $V^{(1)}$, there exists an infinite line $l_{\infty}\left(C_{j}^{(2)}\right)$ of $V^{(2)}$ such that $f\left(l_{\infty}\left(C_{i}^{(1)}\right)\right)=l_{\infty}\left(C_{j}^{(2)}\right)$. Hence f yields a permutation $\sigma \in \operatorname{Sym}\left(s^{2}+s+1\right)$ such that $f\left(l_{\infty}\left(C_{\sigma(j)}^{(1)}\right)\right)=l_{\infty}\left(C_{j}^{(2)}\right)$.

Second, we prove that for $j \in\left\{1,2, \cdots, s^{2}+s+1\right\}, f$ induces bijection from the entries of $C_{\sigma(j)}^{(1)}$ to the entries of $C_{j}^{(2)}$. For any infinite line $l_{\infty}\left(C_{j}^{(i)}\right)$, a plane containing this line can be denote by $\pi\left(x, C_{j}^{(i)}\right) \cup l_{\infty}\left(C_{j}^{(i)}\right)$ for some $x \in S$, where $\pi\left(x, C_{j}^{(i)}\right)=\left\{u \mid u\left(C_{j}^{(i)}\right)=x\right.$, u is an affine point $\}$. $(i=1,2)$ Fix $j \in\left\{1,2, \cdots, s^{2}+s+1\right\}$. From $f\left(l_{\infty}\left(C_{\sigma(j)}^{(1)}\right)\right)=l_{\infty}\left(C_{j}^{(2)}\right)$, for any ordinary plane $\pi^{(1)}=\pi\left(x, C_{\sigma(j)}^{(1)}\right) \cup l_{\infty}\left(C_{\sigma(j)}^{(1)}\right)$ on $V^{(1)}$ there exists an ordinary plane $\pi^{(2)}=\pi\left(y, C_{j}^{(2)}\right) \cup l_{\infty}\left(C_{j}^{(2)}\right)$ on $V^{(2)}$ for some $y \in S$ such that $f\left(\pi^{(1)}\right)=\pi^{(2)}$. Hence f yields a permutation $\tau_{j} \in \operatorname{Sym}(s)$ such that $f\left(\pi\left(x, C_{\sigma(j)}^{(1)}\right) \cup l_{\infty}\left(C_{\sigma(j)}^{(1)}\right)\right)=\pi\left(\tau_{j}(x), C_{j}^{(2)}\right) \cup l_{\infty}\left(C_{j}^{(2)}\right)$. Therefore $f\left(\pi\left(x, C_{\sigma(j)}^{(1)}\right)\right)=\pi\left(\tau_{j}(x), C_{j}^{(2)}\right) \cdots \cdots[1]$.

We prove that f induces an element of $G O A\left(s, s^{2}+s+1\right)$. Let u and v be affine points of $V^{(1)}$ and $V^{(2)}$ respectively satisfy $f(u)=v$. Let $u=\left(u(1), u(2), \cdots, u\left(s^{2}+\right.\right.$ $s+1)), v=\left(v(1), v(2), \cdots, v\left(s^{2}+s+1\right)\right)$. From $u \in \pi\left(u(\sigma(j)), C_{\sigma(j)}^{(1)}\right)$ and [1], we have $v=f(u) \in \pi\left(\tau_{j}\left(u(\sigma(j)), C_{j}^{(2)}\right)\right.$ for $j \in S$. Therefore $v(j)=v\left(C_{j}^{(2)}\right)=\tau_{j}(u(\sigma(j))$. Hence $v=\left(\tau_{1}\left(u(\sigma(1)), \tau_{2}\left(u(\sigma(2)), \cdots \tau_{s^{2}+s+1}\left(u\left(\sigma\left(s^{2}+s+1\right)\right)\right.\right.\right.\right.$. Let $\varphi=\left(\tau_{1}, \tau_{2}, \cdots, \tau_{s^{2}+s+1}, \sigma\right) \in$ $G O A\left(s, s^{2}+s+1\right)$. Then $\varphi u=v . \varphi$ is independent of a choice of u. From Lemma 3.2, $A^{(1)}$ and $A^{(2)}$ are isomorphic as $O A(3, s) \mathrm{s}$. This completes the proof.

Acknowledgments

The author thanks Professor V.D. Tonchev for reading carefully the manuscript and encouraging comments. Further, the author thanks the referee for his very helpful comments and suggestion.

References

[1] A. S. Hedayat, N. J. A. Sloane, and J. Stufken, Orthogonal Arrays, Springer-Verlag, Berlin/Heidelberg/New York, 1999.
[2] O. Veblen, J. W. Young, Projective Geometry, Ginn \& Co., Boston, 1916.
[3] C. Lam, V. D. Tonchev, Classification of affine resolvable 2-(27,9,4) design, J. Statist. Plann. Infer. 56(1996) 187-202.
[4] J. Bierbrauer, Introduction to Coding Theory, CRC Press 2004
[5] V. D. Tonchev, Affine design and linear orthogonal arrays, Discrete Math. 294(2005) 219-222.
[6] R. C. Bose, K. A. Bush, Orthogonal arrays of strength two and three, Sankhya 6(1942) 105-110.
[7] V. Mavron, Parallelisms in designs, J. London. Math. Soc. Ser. 2(4) (1972) 682-684.
[8] R. L. Plackett, J. B. Burman, The design of optimum multifactorial experiments, Biometrika 33(1946) 305-325.

[^0]: *Osaka prefectual Nagano high school, 1-1-2 Hara, Kawachinagano, Osaka, Japan, e-mail; denen482@yahoo.co.jp

