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Abstract

There are many nonisomorphic orthogonal arrays with parameters OA(s3, s2 +
s + 1, s, 2) although the existence of the arrays yields many restrictions. We denote
this by OA(3, s) for simplicity. V. D. Tonchev showed that for even the case of
s = 3, there are at least 68 nonisomorphic orthogonal arrays. The arrays that
are constructed by the n−dimensional finite spaces have parameters OA(sn, (sn −
1)/(s − 1), s, 2). They are called Rao-Hamming type. In this paper we characterize
the OA(3, s) of 3-dimensional Rao-Hamming type. We prove several results for a
special type of OA(3, s) that satisfies the following condition:
For any three rows in the orthogonal array, there exists at least one column, in
which the entries of the three rows equal to each other.

We call this property α-type.
We prove the following.

(1) An OA(3, s) of α-type exists if and only if s is a prime power.

(2) OA(3, s)s of α-type are isomorphic to each other as orthogonal arrays.

(3) An OA(3, s) of α-type yields PG(3, s).

(4) The 3-dimensional Rao-Hamming is an OA(3, s) of α-type.

(5) A linear OA(3, s) is of α-type.

Keywords: orthogonal array; projective space; projective geometry

1 Introduction

An N × k array A with entries from a set S that contains s symbols is said to be an
orthogonal array with s levels, strength t and index λ if every N ×t subarray of A contains
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each t−tuple based on S exactly λ times as a row. We denote the array A by OA(N, k, s, t).
Orthogonal arrays with parameters OA(sn, (sn −1)/(s−1), s, 2) are known for any prime
power s and any integer n ≥ 2. For example, orthogonal arrays of Rao-Hamming type have
such parameters. We are interested in whether orthogonal arrays with above parameters
exist or not when s is not a prime power, but do not know the existence of arrays with
such parameters. In this paper we prove that s is prime power when n = 3, under an
additional assumption. Throughout this paper, let s be a positive integer with s ≥ 2.

Notation 1.1 Let S be a set of s symbols, A an orthogonal array OA(s3, s2 + s+1, s, 2).
Then we use the following notations.
(1) OA(s3, s2 + s + 1, s, 2) is denoted by OA(3, s) for simplicity.
(2) Ω(A) is the set of rows of A.
(3) Γ(A) is the set of columns of A.
(4) u = (u(C))C∈Γ(A) for u ∈ Ω(A).
(5) Set k(s) = s2 + s + 1.

Definition 1.2 Let A be an OA(3, s) and set Ω = Ω(A), Γ = Γ(A), k = k(s).
(1) For u, v ∈ Ω and C ∈ Γ, let

K(u, v, C) =

{

1 if u(C) = v(C),

0 otherwise.

(2) Let [u1, u2, . . . , ur] = |{C ∈ Γ|u1(C) = u2(C) = · · · = ur(C)}|.
Especially, we have [u1, u2] =

∑

C∈Γ

K(u1, u2, C).

Lemma 1.3 Let A be an OA(3, s) and set Ω = Ω(A), Γ = Γ(A), k = k(s).
Then the following statements hold.
(1) K(u, u, C) = 1 and (K(u, v, C))2 = K(u, v, C) for u, v ∈ Ω and C ∈ Γ.
(2) [u, u] = k for u ∈ Ω.
(3)

∑

v∈Ω

K(u, v, C) = s2 and
∑

v∈Ω,v 6=u

K(u, v, C) = s2 − 1 for u ∈ Ω and C ∈ Γ, and so
∑

v∈Ω,v 6=u

[u, v] = (s2 + s + 1)(s2 − 1).

(4)
∑

v∈Ω

K(u, v, C1)K(u, v, C2) = s and
∑

v∈Ω,v 6=u

K(u, v, C1)K(u, v, C2) = s − 1

for u ∈ Ω and distinct C1, C2 ∈ Γ.

PROOF. The lemma is clear from the definition of an orthogonal array. �

Lemma 1.4 Let A be an OA(3, s) and set Ω = Ω(A), Γ = Γ(A). Then [u, v] = s + 1
for distinct u, v ∈ Ω.
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PROOF. Let u ∈ Ω.

∑

v∈Ω,v 6=u

([u, v])2 =
∑

v∈Ω,v 6=u

{
∑

C∈Γ

(K(u, v, C))2 +
∑

C1∈Γ

(
∑

C2∈Γ,C2 6=C1

K(u, v, C1)K(u, v, C2))}

=
∑

C∈Γ

(
∑

v∈Ω,v 6=u

(K(u, v, C))2) +
∑

C1∈Γ

(
∑

C2∈Γ,C2 6=C1

(
∑

v∈Ω,v 6=u

K(u, v, C1)K(u, v, C2)))

=
∑

C∈Γ

(s2 − 1) +
∑

C1∈Γ

(
∑

C2∈Γ,C2 6=C1

(s − 1))

= (s2 + s + 1)(s2 − 1) + (s2 + s + 1)(s2 + s)(s − 1)

= (s2 + s + 1)(s + 1)2(s − 1).

Hence,

∑

v∈Ω,v 6=u

([u, v] − s − 1)2 =
∑

v∈Ω,v 6=u

([u, v])2 − 2(s + 1)
∑

v∈Ω,v 6=u

[u, v] +
∑

v∈Ω,v 6=u

(s + 1)2

= (s2 + s + 1)(s + 1)2(s − 1) − 2(s + 1)(s2 + s + 1)(s2 − 1) + (s + 1)2(s3 − 1) = 0.

Therefore [u, v] = s + 1 for v ∈ Ω with v 6= u. Since u is arbitrary, this completes the
proof. �

We remark that orthogonal arrays with parameters OA(3, s) have good connections
with two bounds in coding theory. Actually, Lemma 1.4 shows that the code whose words
are the rows of the OA (length s2+s+1, number of codewords s3) has constant distance s2.
This is a code which satisfies the Plotkin bound (Theorem 9.3 of [4]) with equality. Also,
the OA itself satisfies the Bose-Bush bound(Theorem 9.6 of [4]) with equality. Thus the
existence of orthogonal arrays OA(3, s) yields many restrictions. So at first we expected
that any OA(3, s) is isomorphic to Rao-Hamming type. But we knew by Tonchev [3] that
there are many nonisomorphic OA(3, s) arrays. Next, we discovered a condition for an
OA(3, s) to be Rao-Hamming type, that is the condition α (see Definition 1.8).

Definition 1.5 Let s be a prime power and A an OA(3, s) with entries from GF (s).
A is called to be linear if A satisfies

λu + µv = (λu(C) + µv(C))C∈Γ(A) ∈ Ω(A) for λ, µ ∈ GF (s) and u, v ∈ Ω(A).

Definition 1.6 Let P and Q are orthogonal arrays with the same parameters. P and Q
are isomorphic if Q can be obtained from P by permutation of the columns, the rows,
and the symbols in each column.

Remark 1.7 Let A = (aij)1≤i≤s3, 1≤j≤k(s) be a linear OA(3, s) with entries from GF (s).
Let ϕ be a permutation on {1, 2, · · · , k(s)} and λj ∈ GF (s)∗ for 1 ≤ j ≤ k(s). Let
B = (bij)1≤i≤s3, 1≤j≤k(s), where bij = λjai,ϕ(j) for 1 ≤ i ≤ s3 and 1 ≤ j ≤ k(s). Then B
is a linear OA(3, s) which is isomorphic to A.
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Definition 1.8 Let A be an OA(3, s). A is called to be of α-type if

[u, v, w] ≥ 1 for u, v, w ∈ Ω(A).

We show later that this condition corresponds to a condition in affine space order s
that “for any distinct three points there exists at least one plane containing them”.

Proposition 1.9 If A is a linear OA(3, s) with entries from GF (s), then A is of α-type.

PROOF. Set Ω = Ω(A) and k = k(s). From the linearity of A, o = (0, 0, · · · , 0) ∈ Ω.
For distinct u1, u2, u3 ∈ Ω, we have [u1, u2, u3] = [o, u2 − u1, u3 − u1]. Therefore, it
is enough to show that [o, u, v] ≥ 1 for distinct u, v ∈ Ω − {0}. Since [u, o] = s + 1
by Lemma 1.4, u has exactly s + 1 zeroes as entries. From Remark 1.7, we can as-
sume that u = (1, 1, · · · , 1,

︸ ︷︷ ︸

s2

0, 0, · · · , 0,
︸ ︷︷ ︸

s+1

) ∈ Ω(A). Then λu = (λ, λ, · · · , λ
︸ ︷︷ ︸

s2

, 0, 0, · · · , 0
︸ ︷︷ ︸

s+1

)

is an element of Ω for λ ∈ GF (s). Let v = (v(1), v(2), · · · , v(k)). Then there ex-
ists at least one zero in v(s2 + 1), v(s2 + 2), · · · , v(k). Suppose not. Since s + 1 =
[λu, v] = [(λ, λ, · · · , λ

︸ ︷︷ ︸

s2

, 0, 0, · · · , 0
︸ ︷︷ ︸

s+1

), (v(1), v(2), · · · , v(k))], there are exactly s + 1 λ’s in

v(1), v(2), · · · , v(s2). We have s2 =| {v(1), v(2), · · · , v(s2)} |≥ (s + 1)s, since λ is arbi-
trary and | GF (s) |= s, This is a contradiction. This yields [o, u, v] ≥ 1. �

Proposition 1.10 The orthogonal array OA(3, s) of 3-dimensional Rao-Hamming type
is of α−type .

PROOF. We consider the OA(3, s) of 3-dimensional Rao-Hamming type stated in Con-
struction 1 of Theorem 3.20 in [1] when n = 3. Let π be a fixed plane of the projective
geometry PG(3, s). Let Ω be the set of points of PG(3, s) excluding all points in π. Let
Γ be the set of lines contained in π. Then the OA(3, s) A = (aul)u∈Ω,l∈Γ is defined as
follows. For each line l ∈ Γ, we label planes through l except π in some arbitrary way
by 1, 2, · · · , s. Then aul is the plane containing u and l. Let u1, u2, and u3 be distinct
elements in Ω. Let τ be the plane containing u1, u2 and u3 and set l = τ ∩ π ∈ Γ. Then
au1,l = au2,l = au3,l and therefore A is of α−type. �

Throughout the rest of this paper, we assume the following.

Hypothesis 1.11 A is an OA(3,s) of α-type. Set Ω = Ω(A), Γ = Γ(A), and k = k(s).

Lemma 1.12 [u, v, w] = 1 or s + 1 for distinct u, v, w ∈ Ω.

PROOF. Let u, v be distinct fixed elements of Ω. We may assume u = (0, 0, · · · , 0). From
Lemma 1.4, v has s + 1 zeroes in entries. Set Γ1 = {C | v(C) = 0}. Then | Γ1 |= s + 1.
We note tw =| {C | w(C) = 0, C ∈ Γ1} | for any w ∈ Ω. Then

∑

w∈Ω

tw = s2(s + 1).

This is the total number of zeroes in Γ1. Moreover since the array A has strength 2,
∑

w∈Ω

tw(tw − 1) = s(s + 1)s = s2(s + 1). This is the total number of (0,0) tuples in any

two columns in Γ1. It follows that
∑

w∈Ω

(tw − 1)(s + 1 − tw) = 0. By assumption, we have

tw ≥ 1, therefore (tw − 1)(s + 1 − tw) ≥ 0. Hence tw = [u, v, w] ∈ {1, s + 1}. �
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Corollary 1.13 For distinct u, v ∈ Ω, there exist distinct u3, u4, · · · , us ∈ Ω and Γuv ⊂ Γ
satisfying the following conditions:
(1) [u1, u2, u3, u4, · · · , us] = s + 1, where u1 = u and u2 = v.
(2) If C ∈ Γuv then u1(C) = u2(C) = · · · = us(C).
(3) If C ∈ Γ − Γuv then ui(C) 6= uj(C) for distinct i, j ∈ {1, 2, · · · , s}.
(4) [u1, u2, u3, u4, · · · , us, x] = 1 for x ∈ Ω − {u1, · · ·us}.

PROOF. We use the notations used in the proof of Lemma 1.12. Set Γ1 = {C ∈ Γ |
u(C) = v(C)}, u1 = u, and u2 = v. From the proof of Lemma 1.12 , we have [u, x]Γ1

= 1
or s + 1 for x ∈ Ω − {u}. Set r =| {x ∈ Ω | x 6= u, [u, x]Γ1

= s + 1} |. Then
| {x ∈ Ω |, [u, x]Γ1

= 1} |= s3 − 1− r. Therefore, r(s+1)+ (s3 − 1− r) =
∑

x∈Ω,x 6=u

[u, x]Γ1
=

(s2 − 1)(s + 1). So rs = (s2 − 1)(s + 1) − (s3 − 1) = s(s − 1). This yields r = s − 1.
Hence there exist u3, u4, · · · , us such that [u, ui]Γ1

= s+1 for i ∈ {3, 4, · · · , s}. Therefore
u1(C) = u2(C) = · · · = us(C) for C ∈ Γ1. If there exists C 6∈ Γ1 such that ui(C) = uj(C)
for some distinct i, j ∈ {1, 2, · · · , s}, we have [ui, uj] ≥ s + 2, because [ui, uj]Γ1

= s + 1.
This is contrary to Lemma 1.4. Hence u1(C), u2(C), · · · , us(C) are distinct if C 6∈ Γ1. If
we set Γuv = Γ1, this completes the proof of (1), (2), and (3). From Lemma 1.12, for any
x ∈ Ω − {u1, · · ·us} there exists only one C ∈ Ω such that u1(C) = u2(C) = x(C). By
(2) and (3), C is in Γ1(= Γuv). Therefore x(C) = u1(C) = u2(C) = · · · = us(C). Since
x 6∈ {u1, u2, · · · , us}, we have [u1, u2, u3, u4, · · · , us, x] = 1. �

2 A geometry

Under Hypothesis 1.11, we define the following.

Definition 2.1 (1) Elements of Ω are called affine points.
(2) Let Ω1 = {u1, u2, · · · , us}(⊆ Ω), Γ1 ⊆ Γ, and | Γ1 |= s + 1. Then Ω1 ∪ {Γ1} is called
an ordinary line if [u1, u2, · · · , us] = s + 1 and u1(C) = u2(C) = · · · = us(C) for C ∈ Γ1.
Then Ω1 and Γ1 are called an affine line and an infinite point respectively.
(3) We denote the set of affine points by PF (= Ω), the set of infinite points by P∞, and
the set of ordinary lines by LO.
(4) The elements of P = PF ∪ P∞ are called points .

Lemma 2.2 For any distinct u, v ∈ PF , there exists only one l ∈ LO such that u ∈ l and
v ∈ l.

PROOF. The lemma is clear from Corollary 1.13 and Definition 2.1. �

Lemma 2.3 Let C1 and C2 are fixed distinct elements of Γ.
(1) Set Ω(a, b) = {u ∈ Ω | u(C1) = a, u(C2) = b} for a, b ∈ S. Then Ω(a, b) is an affine
line.
(2) If Ω(a, b) ∪ {Γ1} and Ω(c, d) ∪ {Γ2} are ordinary lines, then Γ1 = Γ2.
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PROOF. (1) From the definition of OA(3, s), we have | Ω(a, b) |= s. Let Ω(a, b) =
{u1, u2, · · · , us}. Let u, v, w ∈ Ω(a, b) be distinct elements. By Lemma 1.4, [u, v] =
[v, w] = [w, u] = s + 1. From Lemma 1.12 and [u, v, w] ≥ 2, we have [u, v, w] = s + 1.
Therefore [u1, u2, · · · , us] = s + 1. This means that Ω(a, b) is an affine line.

(2) From (1), Ω(0, 0) and Ω(0, b) (b 6= 0) are affine lines. Let Ω(0, 0) = {u1, u2, · · · , us}
and Ω(0, b) = {v1, v2, · · · , vs}. Then [u1, u2, · · · , us] = s + 1 and [v1, v2, · · · , vs] = s + 1.
Let Γ3 and Γ4 be infinite points which correspond to Ω(0, 0) and Ω(0, b) respectively.
Let Γ3 = {C1, C2, · · · , Cs+1} and set a = u1(C3) = u2(C3) = · · · = us(C3). We prove
C3 ∈ Γ4. Suppose that some value of v1(C3), v2(C3), · · · , vs(C3) is equal to a. We may
assume that v1(C3) = a. Then u1(C3) = u2(C3) = v1(C3) = a. From these equations
and u1(C1) = u2(C1) = v1(C1) = 0, we have [u1, u2, v1] ≥ 2. Therefore [u1, u2, v1] =
s + 1 by Lemma 1.12. Hence v1 ∈ Ω(0, 0). This is a contradiction. Thus any value
of v1(C3), v2(C3), · · · , vs(C3) is not equal to a. By the pigeonhole principle, there exist
distinct vi, vj such that vi(C3) = vj(C3). Therefore v1(C3) = v2(C3) = · · · = vs(C3),
because [v1, v2, · · · , vs] = s + 1, by Lemmas 1.12 and 1.4. Thus C3 ∈ Γ4. Similarly we
can show that C4, C5, · · · , Cs+1 ∈ Γ4. Moreover since C1, C2 ∈ Γ4, we have Γ3 = Γ4.
Similarly, it is shown that the infinite points corresponding to Ω(0, b) and Ω(a, b) are
equal. Therefore the infinite points corresponding to Ω(0, 0) and Ω(a, b) are equal. This
completes the proof. �

Lemma 2.4 (1) For any C1, C2 ∈ Γ there exists an infinite point Γ1(∈ P∞) uniquely such
that C1, C2 ∈ Γ1.
(2) For any u ∈ Ω and any infinite point Γ1, there exists only one subset Ω1 ⊂ Ω such
that u ∈ Ω1 and Ω1 ∪ {Γ1} is an ordinary line.
(3) | Γ1 ∩ Γ2 |= 1 for any distinct infinite points Γ1 and Γ2.
(4) Set l∞(C) = {Γ1 | Γ1 is an infinite point such that Γ1 ∋ C} for C ∈ Γ. Then

(a) | l∞(C) |= s + 1,
(b) Γ =

⋃

Γ1∈l∞(C)(Γ1 − {C}) ∪ {C},

(c) (Γ1 − {C}) ∩ (Γ2 − {C}) = ∅ for distinct Γ1, Γ2 ∈ l∞(C).

PROOF. (1) Let C1, C2 ∈ Γ. From (1) of Lemma 2.3, Ω1 = {u ∈ Ω | u(C1) = 0, u(C2) =
0} is an affine line. Let Γ1 be the infinite point corresponding to Ω1. Then Γ1 ∋ C1, C2.
From (2) of Lemma 2.3, the infinite point containing C1, C2 is unique.

(2) Let u ∈ Ω and Γ1 ∈ P∞. Let C1, C2 ∈ Γ1 and Ω1 = {v ∈ Ω | v(C1) =
u(C1), v(C2) = u(C2)}. From (1) of Lemma 2.3, Ω1 is an affine line. Let Γ2 be the
infinite point corresponding to Ω1. Then Γ1 ∩ Γ2 ⊃ {C1, C2}. From (1) we have Γ1 = Γ2.
Therefore Ω1 = {v ∈ Ω | v(C) = u(C), C ∈ Γ1}. Hence Ω1 ∪ {Γ1} is a unique ordinary
line containing u and Γ1.

(3) Let Γ1 and Γ2 be distinct infinite points. For any v ∈ Ω and for i ∈ {1, 2}, from
(2), there exists only one ordinary line containing v and Γi. We denote it by vΓi for
i ∈ {1, 2}. Let u and w be affine points such that u ∈ vΓ1 − {v} and w ∈ vΓ2 − {v}.
Since Γ1 6= Γ2, by Lemma 1.12, [u, v, w] = 1. Therefore there exists C ∈ Γ uniquely such
that u(C) = v(C) = w(C). Hence Γ1 ∩ Γ2 = {C} and so | Γ1 ∩ Γ2 |= 1.
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(4) Let C be a fixed element of Γ. For any C0 ∈ Γ−{C}, from (1), there exists Γ0 ∈ P∞

uniquely such that C, C0 ∈ Γ0. Since C ∈ Γ0, we have Γ0 ∈ l∞(C) and therefore C0 ∈
Γ0 ∈ l∞(C). Thus we have Γ =

⋃

Γ1∈l∞(C) Γ1. Therefore Γ =
⋃

Γ1∈l∞(C)(Γ1 − {C}) ∪ {C}.

For distinct Γ1, Γ2 ∈ l∞(C), by (3), (Γ1−{C})∩ (Γ2−{C}) = ∅. Let | l∞(C) |= r. Then
we have r{(s + 1) − 1} + 1 = s2 + s + 1. Hence r = s + 1 and | l∞(C) |= s + 1. �

Definition 2.5 (1) For any C ∈ Γ, l∞(C) = {Γ1 | Γ1 an infinite point, Γ1 ∋ C} is called
an infinite line. l is called a line if l is an ordinary or an infinite line.
(2) For any a ∈ S and any C ∈ Γ, π(a, C) = {u ∈ Ω | u(C) = a}, π(a, C) ∪ l∞(C), and
π∞ =

⋃

C∈Γ l∞(C) are called an affine plane, an ordinary plane, and an infinite plane
respectively. π is called a plane if π is an ordinary or an infinite plane.
(3) The set of infinite lines and ordinary planes are denoted by L∞ and M0 respectively.
Moreover we set L = Lo ∪L∞ and M = Mo ∪{π∞}.

Example 2.6 The case of s = 2.

A =

C1 C2 C3 C4 C5 C6 C7

0 0 0 0 0 0 0 u1

1 0 0 1 1 0 1 u2

0 1 0 1 0 1 1 u3

0 0 1 0 1 1 1 u4

1 1 0 0 1 1 0 u5

1 0 1 1 0 1 0 u6

0 1 1 1 1 0 0 u7

1 1 1 0 0 0 1 u8

is an OA(3, 2) = OA(23, 22 + 2 + 1, 2) (s = 2) of α-type.

The affine points(the elements of PF ) are u1, u2, u3, u4, u5, u6, u7, u8.
The infinite points(the elements of P∞) are Γ1 = {C2, C3, C6}, Γ2 = {C1, C3, C5},
Γ3 = {C1, C2, C4}, Γ4 = {C3, C4, C7}, Γ5 = {C2, C5, C7}, Γ6 = {C1, C6, C7}, Γ7 =
{C4, C5, C6}.
The ordinary lines (the elements of LO) are
{u1, u2} ∪ {Γ1}, {u1, u3} ∪ {Γ2}, {u1, u4} ∪ {Γ3}, {u1, u5} ∪ {Γ4},
{u1, u6} ∪ {Γ5}, {u1, u7} ∪ {Γ6}, {u1, u8} ∪ {Γ7}, {u2, u3} ∪ {Γ4},
{u2, u4} ∪ {Γ5}, {u2, u5} ∪ {Γ2}, {u2, u6} ∪ {Γ3}, {u2, u7} ∪ {Γ7},
{u2, u8} ∪ {Γ6}, {u3, u4} ∪ {Γ6}, {u3, u5} ∪ {Γ1}, {u3, u6} ∪ {Γ7},
{u3, u7} ∪ {Γ3}, {u3, u8} ∪ {Γ5}, {u4, u5} ∪ {Γ7}, {u4, u6} ∪ {Γ1},
{u4, u7} ∪ {Γ2}, {u4, u8} ∪ {Γ4}, {u5, u6} ∪ {Γ6}, {u5, u7} ∪ {Γ5},
{u5, u8} ∪ {Γ3}, {u6, u7} ∪ {Γ4}, {u6, u8} ∪ {Γ2}, {u7, u8} ∪ {Γ1}.
The infinite lines (the elements of L∞) are
l∞(C1) = {Γ2, Γ3, Γ6}, l∞(C2) = {Γ1, Γ3, Γ5}, l∞(C3) = {Γ1, Γ2, Γ4}, l∞(C4) =
{Γ3, Γ4, Γ7}, l∞(C5) = {Γ2, Γ5, Γ7}, l∞(C6) = {Γ1, Γ6, Γ7}, l∞(C7) = {Γ4, Γ5, Γ6}.
The ordinary planes (the elements of MO) are
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π(0, C1) ∪ l∞(C1) = {u1, u3, u4, u7} ∪ {Γ2, Γ3, Γ6},
π(0, C2) ∪ l∞(C2) = {u1, u2, u4, u6} ∪ {Γ1, Γ3, Γ5},
π(0, C3) ∪ l∞(C3) = {u1, u2, u3, u5} ∪ {Γ1, Γ2, Γ4},
π(0, C4) ∪ l∞(C4) = {u1, u4, u5, u8} ∪ {Γ3, Γ4, Γ7},
π(0, C5) ∪ l∞(C5) = {u1, u3, u6, u8} ∪ {Γ2, Γ5, Γ7},
π(0, C6) ∪ l∞(C6) = {u1, u2, u7, u8} ∪ {Γ1, Γ6, Γ7},
π(0, C7) ∪ l∞(C7) = {u1, u5, u6, u7} ∪ {Γ4, Γ5, Γ6},
π(1, C1) ∪ l∞(C1) = {u2, u5, u6, u8} ∪ {Γ2, Γ3, Γ6},
π(1, C2) ∪ l∞(C2) = {u3, u5, u7, u8} ∪ {Γ1, Γ3, Γ5},
π(1, C3) ∪ l∞(C3) = {u4, u6, u7, u8} ∪ {Γ1, Γ2, Γ4},
π(1, C4) ∪ l∞(C4) = {u2, u3, u6, u7} ∪ {Γ3, Γ4, Γ7},
π(1, C5) ∪ l∞(C5) = {u2, u4, u5, u7} ∪ {Γ2, Γ5, Γ7},
π(1, C6) ∪ l∞(C6) = {u3, u4, u5, u6} ∪ {Γ1, Γ6, Γ7},
π(1, C7) ∪ l∞(C7) = {u2, u3, u4, u8} ∪ {Γ4, Γ5, Γ6}.
The infinite plane is π∞ = {Γ1, Γ2, Γ3, Γ4, Γ5, Γ6, Γ7}.

Lemma 2.7 (Lemma A)
For l ∈ L , we have | l |≥ 3.

PROOF. From (2) of Definition 2.1 and (4) of Lemma 2.4, | l |= s + 1 for l ∈ L. Since
s ≥ 2, we have the assertion. �

Lemma 2.8 (Lemma B)
For distinct points α, β ∈ P, there exists a unique line l ∈ L such that α ∈ l and β ∈ l.

We denote the line l by αβ.

PROOF. Let α and β be distinct points. Then three cases (a) α, β ∈ PF , (b) α ∈ PF ,
β ∈ P∞, and (c) α, β ∈ P∞ occur. For (a) or (b), the lemma holds by Lemma 2.2 and
(2) of Lemma 2.4. We consider the case (c). Let α = Γ1 and β = Γ2 be distinct infinite
points. From (3) of Lemma 2.4, | Γ1 ∩ Γ2 |= 1. Let Γ1 ∩ Γ2 = {C}. Then l∞(C) ∋ Γ1, Γ2.
From the uniqueness of C, l∞(C) is the unique line containing Γ1 and Γ2. �

Lemma 2.9 (1) Let α, β ∈ P be distinct points and π a plane containing α and β. Then
every point on the line αβ is a point on the plane π.
(2) Let α, β, γ ∈ P be noncollinear points. Then there exists a unique plane π containing
α, β, and γ.

PROOF. (1) Let α is an affine point u. From Definition 2.5, any plane containing u is
π(u(C), C)∪l∞(C) for some C ∈ Γ and any line containing u is {v ∈ Ω | v(C) = u(C), C ∈
Γ1} ∪ {Γ1} for some infinite point Γ1. First, moreover let β be also an affine point v. Let
Γ1 be the infinite point corresponding to the line uv, then Γ1 = {C ∈ Γ | u(C) = v(C)},
and uv = {w ∈ Ω | w(C) = u(C), C ∈ Γ1}∪{Γ1}. Let π = π(u(C), C)∪ l∞(C) be a plane
containing u and v. Then C ∈ Γ1. Hence αβ = uv ⊂ π. Second, when β be an infinite
point Γ1, from Lemma 2.8, by a similar argument as stated above, we have the assertion
in this case.
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Next case, let α and β be both infinite points Γ1 and Γ2 respectively. From (3) of
Lemma 2.4, there exists C ∈ Γ such that Γ1 ∩ Γ2 = {C}. Hence the line containing Γ1

and Γ2 is l∞(C). A plane containing Γ1 and Γ2 is π∞ or π(a, C) ∪ l∞(C) for some a ∈ S.
Therefore every point on l∞(C) is a point on a plane containing Γ1 and Γ2.

(2) Let Γ1, Γ2 be distinct infinite points. Let Γ1 ∩Γ2 = {C}. Then for any affine point
u, π = π(u(C), C) ∪ l∞(C) is a unique plane containing u, Γ1, and Γ2. Next, let u and
v be affine points, Γ1 the infinite point corresponding to the line uv, and Γ2 an infinite
point. Then a plane containing u, Γ1, and Γ2 is the above plane π. Actually, from (1),
the plane containing u, v, and Γ2 is π. Hence we have the assertion in this case. Let u, v,
and w be non collinear affine points. Then we can show that there exists exactly one
plane containing u, v, and w by a similar argument. Finally, we can show that a plane
containing any three infinite points is π∞. Thus we have the assertion. �

Lemma 2.10 Let π ∈ M be a plane and l, m ∈ L distinct lines. If l, m ⊆ π then
| l ∩ m |= 1.

PROOF. Let l and m be distinct lines. Since there exists only one line through distinct
two points, we have | l ∩ m |≤ 1. Therefore it is enough to show l ∩ m 6= ∅. Then three
cases (a) l and m are both ordinary lines, (b) l is an ordinary line and m is an infinite
line, and (c) l and m are infinite lines, occur.

(a): Let Γ1 and Γ2 be the infinite points corresponding to lines l and m respectively. If
Γ1 = Γ2, then l∩m = {Γ1}. Hence we may assume that Γ1 6= Γ2. Let Γ1∩Γ2 = {C}. Then
the plane containing l and m is π(a, C)∪ l∞(C) for some a ∈ S. Let l = Ω1 ∪ {Γ1}, m =
Ω2 ∪ {Γ2}, C1 ∈ Γ1 − {C}, Ω1 = {u1, · · · , us}, and Ω2 = {v1, · · · , vs}. Then since
u1(C1) = · · · = us(C1), v1(C1), v2(C1), · · · , vs(C1) are not equal to each other. This
means {v1(C1), v2(C1), · · · , vs(C1)} = S. Since S ∋ u1(C1), there exists t such that
vt(C1) = u1(C1)(= · · · = us(C1)). From this equation and vt(C) = u1(C) = u2(C),
we have [vt, u1, u2] ≥ 2, and therefore [vt, u1, u2] = s + 1 by Lemma 1.12. Thus vt ∈
{u1, · · · , us} and therefore l ∩ m = {vt}.

(b): Let m = l∞(C). The plane containing l and l∞(C) is an ordinary plane π(a, C)∪
l∞(C) for some a ∈ S. Let l = {u1, u2, · · · , us} ∪ {Γ1}. Then u1(C) = · · · = us(C) = a.
Therefore C ∈ Γ1 and so Γ1 ∈ l∞(C). Hence l ∩ l∞(C) = {Γ1}.

(c): Let l = l∞(C1) and m = l∞(C2). From (1) of Lemma 2.4, there exists an infinite
point Γ1 such that C1, C2 ∈ Γ1. It follows that l∞(C1) ∩ l∞(C2) = {Γ1}. �

Lemma 2.11 (Lemma C) Let P, Q, R ∈ P be non collinear three points. Let l ∈ L be a
line such that P, Q, R 6∈ l, l ∩ PQ 6= ∅ and l ∩ PR 6= ∅. Then, l ∩ QR 6= ∅.

PROOF. From (2) of Lemma 2.9, there exists a unique plane π containing P, Q, and R.
From Lemma 2.8, | l ∩ PQ |≤ 1. Hence since l ∩ PQ 6= ∅, we have | l ∩ PQ |= 1. Let
l ∩ PQ = {X}. Similarly there exists a point Y such that l ∩ PR = {Y }. From (1) of
Lemma 2.9, all points on the line XY (= l) are on the plane π. Similarly all points of the
line QR are on the plane π . Hence by Lemma 2.10, l ∩ QR 6= ∅. �

Theorem 2.12 Let A be an OA(3, s) of α-type . Then
(1) s is a prime power and
(2) (P,L,M) is isomorphic to PG(3, s).
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PROOF. From Lemmas A, B, C and the theorem of Veblen and Young, we have the
assertion. �

3 The uniqueness

We denote the symmetric group of degree m by Sym(m), and the identity element
of Sym(m) by 1m. Let s and k be positive integers and GOA(s, k) = {f | f =
(a1, a2, · · · , ak, α) ai ∈ Sym(s) (i = 1, 2, · · · , k), α ∈ Sym(k)}. We define a product
on GOA(s, k) as follows. For f = (a1, a2, · · · , ak, α), g = (b1, b2, · · · , bk, β) ∈ GOA(s, k),
fg = (a1, a2, · · · , ak, α)(b1, b2, · · · , bk, β) = (a1bα(1), a2bα(2), · · · , akbα(k), βα).

Lemma 3.1 GOA(s, k) is a group.

PROOF. Let f = (a1, a2, · · · , ak, α), g = (b1, b2, · · · , bk, β), h = (c1, c2, · · · , ck, γ) ∈
GOA(s, k). Then,

(fg)h = (a1bα(1), a2bα(2), · · · , akbα(k), βα)(c1, c2, · · · , ck, γ)

= (a1bα(1)cβα(1), · · · , akbα(k)cβα(k), γβα)

= (a1, a2, · · · , ak, α)(b1cβ(1), · · · , bkcβ(k), γβ) = f(gh).

Set e = (1s, · · · , 1s, 1k). Then we can easily show that fe = ef = f .
Let f = (a1, a2, · · · , ak, α) ∈ GOA(s, k) and set g = ((aα−1(1))

−1, · · · , (aα−1(k))
−1, α−1).

Then,

fg = (a1, a2, · · · , ak, α)((aα−1(1))
−1, · · · , (aα−1(k))

−1, α−1)

= (a1(aα−1α(1))
−1, · · ·ak(aα−1α(k))

−1, α−1α)

= (1s, · · · , 1s, 1k) = e.

gf = ((aα−1(1))
−1, · · · , (aα−1(k))

−1, α−1)(a1, a2, · · · , ak, α)

= ((aα−1(1))
−1aα−1(1), · · · , ((aα−1(k))

−1aα−1(k), αα−1)

= (1s, · · · , 1s, 1k) = e.

Therefore GOA(s, k) is a group. �

Let S = {1, 2, · · · , s} and Sk = S × S × · · · × S
︸ ︷︷ ︸

k

. We define an operation of GOA(s, k)

on Sk as follows. For u = (u(1), u(2), · · · , u(k)) ∈ Sk and f = (a1, a2, · · · , ak, α) ∈
GOA(s, k), we define fu = (a1(u(α(1))), · · · , ak(u(α(k)))). Let g = (b1, b2, · · · , bk, β) ∈
GOA(s, k). Then,

g(fu) = (b1, b2, · · · , bk, β)(a1(u(α(1))), · · · , ak(u(α(k))))

= (b1(aβ(1)u(α(β(1)))), · · · , bk(aβ(k)u(α(β(k)))) )

= ((b1aβ(1))u(αβ(1))), · · · , (bkaβ(k))u(αβ(k)) )

= (b1aβ(1), · · · bkaβ(k), αβ)(u(1), u(2), · · · , u(k))

= (gf)u.
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We can state the definition of isomorphism of orthogonal arrays using the group
GOA(s, k).

Lemma 3.2 Let A, B be two OA(N, k, s, t)s with entries from the set S = {1, 2, · · · , s}
and Ω(A), Ω(B) the sets of all rows of A, B respectively. Let f(Ω(A)) = {fu | u ∈
Ω(A), f ∈ GOA(s, k)} for f ∈ GOA(s, k). Then A and B are isomorphic if and only if
there exists f ∈ GOA(s, k) such that f(Ω(A)) = Ω(B).

Theorem 3.3 The OA(3, s)s of α-type are isomorphic to each other.

PROOF. Let A(1), A(2) be OA(3, s)s of α-type. Let V (i) be the PG(3, s) defined by

A(i), and π
(i)
∞ the infinite plane of V (i) (i = 1, 2). Then there exists an isomorphism

f ; V (1) → V (2) such that f(π
(1)
∞ ) = π

(2)
∞ . Let Γ(i) = {C

(i)
j | j = 1, 2, · · · , s2 + s + 1, C

(i)
j is

a column of A(i)} for i = 1, 2.

First, we prove that f induces a bijection from Γ(1) to Γ(2). Since f(π
(1)
∞ ) = π

(2)
∞ , for

any infinite line l∞(C
(1)
i ) of V (1) , there exists an infinite line l∞(C

(2)
j ) of V (2) such that

f(l∞(C
(1)
i )) = l∞(C

(2)
j ). Hence f yields a permutation σ ∈ Sym(s2 + s + 1) such that

f(l∞(C
(1)
σ(j))) = l∞(C

(2)
j ).

Second, we prove that for j ∈ {1, 2, · · · , s2+s+1}, f induces bijection from the entries

of C
(1)
σ(j) to the entries of C

(2)
j . For any infinite line l∞(C

(i)
j ), a plane containing this line can

be denote by π(x, C
(i)
j )∪ l∞(C

(i)
j ) for some x ∈ S, where π(x, C

(i)
j ) = {u | u(C

(i)
j ) = x, u is

an affine point}. (i = 1, 2) Fix j ∈ {1, 2, · · · , s2 + s + 1}. From f(l∞(C
(1)
σ(j))) = l∞(C

(2)
j ),

for any ordinary plane π(1) = π(x, C
(1)
σ(j))∪ l∞(C

(1)
σ(j)) on V (1) there exists an ordinary plane

π(2) = π(y, C
(2)
j )∪l∞(C

(2)
j ) on V (2) for some y ∈ S such that f(π(1)) = π(2). Hence f yields

a permutation τj ∈ Sym(s) such that f(π(x, C
(1)
σ(j))∪l∞(C

(1)
σ(j))) = π(τj(x), C

(2)
j )∪l∞(C

(2)
j ).

Therefore f(π(x, C
(1)
σ(j))) = π(τj(x), C

(2)
j ) · · · · · · [1].

We prove that f induces an element of GOA(s, s2 + s + 1). Let u and v be affine
points of V (1) and V (2) respectively satisfy f(u) = v. Let u = (u(1), u(2), · · · , u(s2 +

s + 1)), v = (v(1), v(2), · · · , v(s2 + s + 1)). From u ∈ π(u(σ(j)), C
(1)
σ(j)) and [1], we have

v = f(u) ∈ π(τj(u(σ(j)), C
(2)
j ) for j ∈ S. Therefore v(j) = v(C

(2)
j ) = τj(u(σ(j)). Hence

v = (τ1(u(σ(1)), τ2(u(σ(2)), · · · τs2+s+1(u(σ(s2 + s + 1)). Let ϕ = (τ1, τ2, · · · , τs2+s+1, σ) ∈
GOA(s, s2 + s + 1). Then ϕu = v. ϕ is independent of a choice of u. From Lemma 3.2,
A(1) and A(2) are isomorphic as OA(3, s)s. This completes the proof. �
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