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Abstract

In the study of the algebra NCSym of symmetric functions in noncommutative

variables, Bergeron and Zabrocki found a free generating set consisting of power sum

symmetric functions indexed by atomic partitions. On the other hand, Bergeron,

Reutenauer, Rosas, and Zabrocki studied another free generating set of NCSym

consisting of monomial symmetric functions indexed by unsplitable partitions. Can

and Sagan raised the question of finding a bijection between atomic partitions and

unsplitable partitions. In this paper, we provide such a bijection.

1 Introduction

In their study of the algebra NCSym of symmetric functions in noncommutative variables,
Rosas and Sagan [5] introduced a vector space with a basis

{pπ | π is a set partition},

where pπ is the power sum symmetric function in noncommutative variables. Bergeron,
Hohlweg, Rosas, and Zabrocki [1] obtained the following formula

pπ|σ = pπ pσ,

where π|σ denotes the slash product of π and σ. It follows that, as an algebra, NCSym is
freely generated by pπ with π atomic, see Bergeron and Zabrocki [3]. It should be noted
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that Wolf [6] showed that NCSym is freely generated by another basis. A combinatorial
characterization of the generating set of Wolf has been found by Bergeron, Reutenauer,
Rosas, and Zabrocki [2]. More precisely, they introduced the notion of unsplitable parti-
tions and proved that the generating set of Wolf can be described as the set of monomial
symmetric functions in noncommutative variables indexed by unsplitable partitions.

Let [n] denote the set {1, 2, . . . , n}. Taking the degree into account, one sees that
the number of atomic partitions of [n] equals the number of unsplitable partitions of [n].
Recently, Can and Sagan [4] raised the question of finding a combinatorial proof of this
fact. The objective of this paper is to present such a proof.

2 The bijection

In this section we construct a bijection between the set of atomic partitions of [n] and the
set of unsplitable partitions of [n].

Let us begin with an overview of terminology. Let X be a finite set of positive integers.
A partition π of X is a family {B1, B2, . . . , Bk} of disjoint nonempty subsets of X whose
union is X. The subsets Bi are called blocks of π. Without loss of generality, we may
assume that the blocks of a partition are arranged in the increasing order of their minimal
elements, and that the elements in each block are written in increasing order.

Let π be a partition of X and S ⊆ X. We say that σ is the restriction of π on S,
denoted by σ = πS, if σ is a partition of S such that any two elements lie in the same
block of σ if and only if they are in the same block of π. In other words, πS is obtained
from π by removing all elements that do not belong to S. For two positive integers i and
j with i < j, we use [i, j] to denote the set {i, i+ 1, . . . , j}. For example, if

π =
{

{1, 3, 5, 6}, {2, 7, 9}, {4, 8, 10}
}

, (2.1)

then
π[5,10] =

{

{5, 6}, {7, 9}, {8, 10}
}

. (2.2)

Let Πn be the set of partitions of [n]. Assume that

π = {B1, B2, . . . , Bk} ∈ Πm, σ = {C1, C2, . . . , Cl} ∈ Πn.

The slash product of π and σ, denoted by π|σ, is defined to be the partition obtained by
joining the blocks of π and the blocks of the partition

σ +m = {C1 +m, C2 +m, . . . , Cl +m},

that is,
π|σ = {B1, B2, . . . , Bk, C1 +m, C2 +m, . . . , Cl +m},

where Ci + m denotes the block obtained by adding m to each element in Ci. It can
be seen that π|σ ∈ Πm+n. A partition π is said to be atomic if there are no nonempty
partitions σ and τ such that π = σ|τ . Let An be the set of atomic partitions of [n]. For
example, for n = 3 there are two atomic partitions

{

{1, 3}, {2}
}

and
{

{1, 2, 3}
}

.
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The split product of π and σ, denoted by π ◦ σ, is given by

π ◦ σ =

{

{B1 ∪ (C1 +m), . . . , Bk ∪ (Ck +m), Ck+1 +m, . . . , Cl +m}, if k ≤ l;

{B1 ∪ (C1 +m), . . . , Bl ∪ (Cl +m), Bl+1, . . . , Bk}, if k > l.

Clearly, π ◦ σ ∈ Πm+n. A partition is said to be splitable if it is the split product of two
nonempty partitions. Otherwise, it is said to be unsplitable. Denote by USn the set of
unsplitable partitions of [n]. For example, for n = 3 there are two unsplitable partitions
{

{1}, {2, 3}
}

and
{

{1}, {2}, {3}
}

.
To describe our bijection, we first notice that it is possible for a partition to be atomic

and unsplitable at the same time. For example, the partition

{

{1, 3, 7}, {2, 6}, {4, 5, 8}
}

is both atomic and unsplitable. Our bijection will be concerned with atomic partitions
that are splitable and unsplitable partitions that are not atomic. In other words, we shall
establish a bijection

ϕ : An\USn −→ USn\An.

For the sake of presentation, let us introduce a notation. Let X = {x1, . . . , xn} be a
finite set of positive integers such that x1 < · · · < xn. Suppose that π = {B1, B2, . . . , Bk}
is a partition of X. Let r be the largest integer j such that

Bj ∪Bj+1 ∪ · · · ∪ Bk = {xt, xt+1, . . . , xn}

for some t. The existence of such an integer r is evident. We define

R(π) = {Br, Br+1, . . . , Bk}.

Given the partition π =
{

{1, 3, 5, 6}, {2, 7, 9}, {4, 8, 10}
}

as in (2.1), we have

R(π[5,10]) =
{

{7, 9}, {8, 10}
}

. (2.3)

In the above notation, we see that π is atomic if and only if π = R(π).
We are now ready to present the map ϕ. Suppose that π = {B1, B2, . . . , Bk} ∈

An\USn. It consists of three steps.
Step 1. Let i be the smallest element in B1 such that π = π[i−1] ◦ (π[i, n] − i + 1). The
existence of the element i is guaranteed by the condition that π is splitable.
Step 2. Let j be the smallest element in the underlying set of the partition R(π[i, n]). We
see that 2 ≤ i ≤ j ≤ n and R(π[i, n]) = π[j, n].
Step 3. Set ϕ(π) to be the partition π[j−1]

∣

∣ (π[j, n] − j + 1).
For example, considering the partition given in (2.1), we have i = 5. By (2.3), we get

j = 7 and thus
ϕ(π) =

{

{1, 3, 5, 6}, {2}, {4}, {7, 9}, {8, 10}
}

. (2.4)

Theorem 2.1 The map ϕ is a bijection from An\USn to USn\An.
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Proof. First, we claim that ϕ(π) ∈ USn\An. Since 2 ≤ j ≤ n, both π[j−1] and π[j, n] are
nonempty partitions. This implies that ϕ(π) 6∈ An.

We next proceed to show that ϕ(π) is unsplitable. To this end, let

π[j−1] = {C1, C2, . . . , Cs}, π[j,n] = {D1, D2, . . . , Dt}.

Then
ϕ(π) = {C1, C2, . . . , Cs, D1, D2, . . . , Dt}.

Assume to the contrary that ϕ(π) is splitable, namely, there exists an element l ∈ C1 such
that

ϕ(π) = ϕ(π)[l−1] ◦ (ϕ(π)[l, n] − l + 1).

Since n belongs to some block Dh, by the definition of the split product, we deduce that

Cp ∩ [l, n] 6= ∅, for each 1 ≤ p ≤ s. (2.5)

By the choice of i, we find that l ≥ i. Recall that π = {B1, B2, . . . , Bk}. By the definition
of π[j,n], we may assume that the block D1 of π[j,n] is contained in some block Br of π. If
D1 = Br, then the smallest element of Br is j. Therefore all elements in Br+1, Br+2, . . . , Bk

are larger than j. Now, by the choice of j, we deduce that

Br ∪ Br+1 ∪ · · · ∪Bk = [j, n].

Consequently,
π = π[j−1]

∣

∣ (π[j, n] − j + 1),

which contradicts the assumption that π is atomic. Hence we have D1 6= Br, and so
Cr = Br\D1 6= ∅. Since D1 is a block of the partition π[i,n], it consists of all the elements
in Br that are larger than or equal to i. In other words, each element in Cr is less than i.
This yields that Cr ∩ [l, n] = ∅, a contradiction to (2.5). Thus we have proved the claim
that ϕ(π) ∈ USn\An.

We now define a map
ψ : USn\An −→ An\USn,

and we shall show that ψ is the inverse of ϕ. Let σ = {B1, B2, . . . , Bk} ∈ USn\An.
Step 1. Let j be the smallest element in the underlying set of the partition R(σ).
Step 2. If σ[j−1] is unsplitable, then set

ψ(σ) = σ[j−1] ◦ (σ[j, n] − j + 1).

If σ[j−1] is splitable, then choose i to be the smallest element in B1 such that

σ[j−1] = σ[i−1] ◦ (σ[i, j−1] − i+ 1). (2.6)

Let q = min{l |Bl ⊆ [i − 1]}, and let Br be the first block in the partition R(σ). If
2r − q − 1 ≤ k, then set

ψ(σ) = {B1, . . . , Bq−1, Bq ∪Br, . . . , Br−1 ∪B2r−q−1, B2r−q, . . . , Bk}.
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If 2r − q − 1 > k, then set

ψ(σ) = {B1, . . . , Bq−1, Bq ∪Br, . . . , Bq+k−r ∪ Bk, Bq+k−r+1, . . . , Br−1}.

First, we show that ψ is well-defined. For any σ ∈ USn\An, we notice that in Step 1
of the above construction of ψ, the element j always exists. Moreover, we observe that
j ≥ 2 since σ is not atomic. By the choice of j, we have

σ[j−1] = {B1, B2, . . . , Br−1},

σ[j, n] = R(σ) = {Br, Br+1, . . . , Bk}.

Since σ is unsplitable, we can always find the element q. Otherwise, if every block
B1, B2, . . . , Bk contains an element in [i, n], by the assumption (2.6), we have Bp∩[i, n] 6= ∅
for any 1 ≤ p ≤ k, and

min(B1 ∩ [i, n]) < min(B2 ∩ [i, n]) < · · · < min(Bk ∩ [i, n]).

This implies that
σ = σ[i−1] ◦ (σ[i, n] − i+ 1),

a contradiction to the fact that σ is unsplitable. This confirms the existence of the element
q. At this point, we still need to show that ψ(σ) ∈ An\USn. It is clear from the above
construction that ψ(σ) is splitable. For the case when σ[j−1] is unsplitable, it is easily
seen that ψ(σ) is atomic. When σ[j−1] is splitable, since i ∈ B1 and Bq ⊆ [i − 1], we
find that ψ(σ) is atomic. Thus we have shown that ψ(σ) ∈ An\USn. Consequently, ψ is
well-defined.

It remains to show that ψ is indeed the inverse of ϕ, that is, ψ(ϕ(π)) = π for any
π ∈ An\USn. As in the construction of ϕ, we assume that i is the smallest element in
the first block of π such that

π = π[i−1] ◦ (π[i, n] − i+ 1),

and j is the smallest element in the underlying set of the partition R(π[i, n]). First we
notice that the element j chosen during the process of computing ϕ(π) coincides with the
element j defined when computing ψ(ϕ(π)), since

R(ϕ(π)) = ϕ(π)[j, n] = π[j, n], (2.7)

by the definition of ϕ. Moreover, from Step 3 in the construction of ϕ, we see that

ϕ(π)[j−1] = π[j−1]. (2.8)

Now we need to consider two cases. If R(π[i, n]) = π[i, n], i.e., i = j, then (2.8) implies
that ϕ(π)[j−1] = π[i−1]. Since π[i−1] is unsplitable by the choice of i, from (2.7) it follows
that

ψ(ϕ(π)) = ϕ(π)[j−1] ◦ (ϕ(π)[j, n] − j + 1) = π[i−1] ◦ (π[i, n] − i+ 1) = π.
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If R(π[i, n]) 6= π[i, n], that is, i < j, then we have

ϕ(π)[j−1] = π[j−1] = π[i−1] ◦ (π[i, j−1] − i+ 1).

This implies that ϕ(π)[j−1] is splitable. Recall that if the first block D1 of π[j,n] is contained
in the block Br of π, then Cr = Br\D1 is a block of π[j−1] which consists of elements that
are smaller than i. So we may assume that

ϕ(π)[j−1] = {C ′
1 ∪ C

′′
1 , C

′
2 ∪ C

′′
2 , . . . , C

′
u−1 ∪ C

′′
u−1, Cu, . . . , Cs},

where
π[i−1] = {C ′

1, C
′
1, . . . , C

′
u−1, Cu, . . . , Cs}

for some u ≤ s and
π[i, j−1] = {C ′′

1 , C
′′
2 , . . . , C

′′
u−1}.

Since π = π[i−1] ◦ (π[i, n] − i+ 1) and π[i, n] = π[i, j−1] ∪ π[j, n], we deduce that u = r and

π = {C ′
1 ∪ C

′′
1 , . . . , C

′
r−1 ∪ C

′′
r−1, Cr ∪D1, Cr+1 ∪D2, . . .},

where π[j, n] = {D1, D2, . . . , Dt}, and the last block of π depends on whether s− r+ 1 ≤ t

or s− r+1 > t. In other words, π can be recovered from ϕ(π) as the following procedure.
First, we combine the first block D1 of ϕ(π)[j, n] with the block Cr of ϕ(π)[j−1]. Then
we combine the second block of ϕ(π)[j, n] with Cr+1, and so on. This process coincides
exactly with the construction of ψ(ϕ(π)) when ϕ(π)[j−1] is splitable. Thus we deduce that
ψ(ϕ(π)) = π. This completes the proof.

We conclude with some examples to illustrate the maps ϕ and ψ. Assume that

σ =
{

{1, 3, 5, 6}, {2}, {4}, {7, 9}, {8, 10}
}

which is the partition given in (2.4). It can be checked that ψ(σ) = π as given in (2.1).
In fact,

R(σ) =
{

{7, 9}, {8, 10}
}

and thus j = 7 is the smallest element in the underlying set of R(σ). Now,

σ[j−1] = {B1, B2, B3}

is splitable, where B1 = {1, 3, 5, 6}, B2 = {2}, and B3 = {4}. In Step 2 of the map ψ,
i = 5 is the smallest element in B1 such that

σ[j−1] = σ[i−1] ◦ (σ[i, j−1] − i+ 1).

Since B2 is the first block of σ[j−1] that is contained in [i− 1], we get ψ(σ) = π.
Below is an example for the case when ϕ(π)[j−1] is unsplitable. Let

π =
{

{1, 3, 5, 8}, {2, 6, 9}, {4, 7, 10}
}

.
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In Step 1 of the map ϕ, we have i = 5 and

π[5,10] =
{

{5, 8}, {6, 9}, {7, 10}
}

. (2.9)

Since R(π[5,10]) = π[5,10], we see that j = 5 = i, and so

ϕ(π) =
{

{1, 3}, {2}, {4}, {5, 8}, {6, 9}, {7, 10}
}

. (2.10)

Conversely, let σ be the partition given in (2.10). It is easy to verify that the partition
R(σ) agrees with the partition given in (2.9). So we get j = 5 and

σ[j−1] =
{

{1, 3}, {2}, {4}
}

,

which is unsplitable. So we arrive at ψ(σ) = π.
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