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Abstract

In this note we consider unimodality problems of sequences of multinomial co-

efficients and symmetric functions. The results presented here generalize our early

results for binomial coefficients. We also give an answer to a question of Sagan about

strong q-log-concavity of certain sequences of symmetric functions, which can unify

many known results for q-binomial coefficients and q-Stirling numbers of two kinds.
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1 Introduction

Let a0, a1, a2, . . . be a sequence of nonnegative numbers. It is called unimodal if a0 ≤
a1 ≤ · · · ≤ am−1 ≤ am ≥ am+1 ≥ · · · for some m. It is called log-concave (resp. log-

convex) if ai−1ai+1 ≤ a2
i (resp. ai−1ai+1 ≥ a2

i ) for all i ≥ 1. Clearly, a sequence {ai} of
positive numbers is log-concave (resp. log-convex) if and only if ai−1aj+1 ≤ aiaj (resp.
ai−1aj+1 ≥ aiaj) for 1 ≤ i ≤ j. So the log-concavity of a sequence of positive numbers
implies the unimodality.
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Unimodality problems, including unimodality, log-concavity and log-convexity of se-
quences, arise naturally in combinatorics and other branches of mathematics (see, e.g.,
[1, 2, 6, 7, 9, 12, 14, 15]). In particular, many sequences of binomial coefficients enjoy
various unimodality properties. For example, the sequence of binomial coefficients along
any finite transversal of Pascal’s triangle is log-concave and the sequence along any infinite
downwards-directed transversal is asymptotically log-convex. More precisely, we have the
following result.

Theorem 1 ([13]). Let n0, k0, d, δ be four nonnegative integers and n0 ≥ k0. Define

Bi =

(

n0 + id

k0 + iδ

)

, i = 0, 1, 2, . . . .

Then

(i) if δ ≥ d ≥ 0, the sequence {Bi} is log-concave; and

(ii) if 0 < δ < d, the sequence {Bi} is asymptotically log-convex, i.e., there exists a

nonnegative integer t such that Bt, Bt+1, Bt+2, . . . is log-convex.

The object of the present paper is to generalize the above result for binomial coefficients
to multinomial coefficients and symmetric functions. In §2 we give a generalization of
Theorem 1 to multinomial coefficients. In §3 we give an answer to a question of Sagan
about strong q-log-concavity of certain sequences of symmetric functions, which can unify
many known results for q-binomial coefficients and q-Stirling numbers of two kinds.

2 Unimodality of multinomial coefficients

Binomial coefficients can be generalized to multinomial coefficients, which are defined by

(

m1 + m2 + · · ·+ mn

m1, m2, . . . , mn

)

=

{

(m1+m2+···+mn)!
m1!m2!···mn!

, if mk ∈ N for all k;

0, otherwise.

The case n = 2 gives binomial coefficients:

(

m1 + m2

m1, m2

)

=

(

m1 + m2

m1

)

.

The following result gives a generalization of Theorem 1 to multinomial coefficients.

Theorem 2. Let mk ∈ N and dk ∈ Z for k = 1, 2, . . . , n. Define

Mi =

( ∑n

k=1 mk + i
∑n

k=1 dk

m1 + id1, m2 + id2, . . . , mn + idn

)

, i = 0, 1, 2, . . . .

Then
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(i) if d1 ≥
∑n

k=1 dk ≥ 0, then the sequence {Mi} is log-concave; and

(ii) if dk > 0 for all k, then the sequence {Mi} is asymptotically log-convex. Further-

more,

Mi−1Mi+1

M2
i

∼
(

i2

i2 − 1

)
n−1

2

as i → ∞. (1)

Proof. (i) Clearly, to prove the log-concavity of {Mi}, it suffices to prove the inequality

H :=

(

P

n

k=1
xk−

P

n

k=1
dk

x1−d1,x2−d2,...,xn−dn

)(

P

n

k=1
xk+

P

n

k=1
dk

x1+d1,x2+d2,...,xn+dn

)

(

P

n

k=1
xk

x1,x2,...,xn

)2 ≤ 1

for xk ≥ |dk|. Denote X =
∑n

k=1 xk and D =
∑n

k=1 dk. Then

H =
(X − D)!(X + D)!

(X − d1)!(X + d1)!

n
∏

k=2

xk!
2

(xk − dk)!(xk + dk)!

d1
∏

j=1

(x1 − j + 1)(X + d1 − j + 1)

(X − j + 1)(x1 + d1 − j + 1)
.

Since the factorial {i!} is log-convex and any subsequence of a log-convex sequence is
still log-convex, we have

xk!
2 ≤ (xk − dk)!(xk + dk)!

and
(X − D)!(X + D)! ≤ (X − d1)!(X + d1)!

for d1 ≥ D ≥ 0. Also,

(x1 − j + 1)(X + d1 − j + 1) − (X − j + 1)(x1 + d1 − j + 1) = (x1 − X)d1 ≤ 0.

Thus H ≤ 1, as desired.
(ii) To prove the asymptotic estimate (1), we need the Stirling’s approximation for

the factorial function

i! ∼
√

2πi

(

i

e

)i

.

From the above formula we have as i → +∞,

(m + id)! ∼
√

2π(m + id)

(

m + id

e

)m+id

∼
√

2πid

(

id

e

)m+id

for d > 0.
Now assume dk > 0 for all k. Denote M =

∑n

k=1 mk and D =
∑n

k=1 dk. Then

Mi =
(M + iD)!

∏n

k=1(mk + idk)!
∼ DM+iD+ 1

2

d
m1+id1+ 1

2

1 · · · dmn+idn+ 1

2

n

(

1

2πi

)
n−1

2

.
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It follows that as i → +∞,

Mi−1Mi+1

M2
i

∼
(

i2

i2 − 1

)
n−1

2

.

Thus Mi−1Mi+1 ≥ M2
i for sufficiently large i. In other words, the sequence {Mi} is

asymptotically log-convex. This completes the proof of the theorem.

Remark 3. An infinite sequence a0, a1, . . . is called a Pólya frequency (PF, for short)
sequence if every minor of the matrix (ai−j)i,j≥0 is nonnegative, where ak = 0 if k <

0. A finite sequence a0, a1, . . . , an is PF if the infinite sequence a0, a1, . . . , an, 0, 0, . . .
is PF. Clearly, a PF sequence is log-concave. Recently, Yu [16] showed the following
strengthening of Theorem 1, which was conjectured by the present authors in [13]:

(i) If δ > d > 0, then the sequence {Bi} is PF.

(ii) If 0 < δ < d, then there exists a nonnegative integer t such that {Bi} is log-concave
for 0 ≤ i ≤ t and log-convex for i ≥ t.

It would be interesting to know whether similar results hold for multinomial coefficients.

3 Unimodality of symmetric functions

A natural problem is to consider the q-analogue of Theorem 1. We first demonstrate
some necessary concepts. Many combinatorial sequences {ak} admit q-analogues, that is,
polynomial sequences {ak(q)} in a variable q such that ak(1) = ak. Gaussian polynomials,
also called q-binomial coefficients, are given by

[

n

k

]

=

{

[n]!
[k]![n−k]!

, if 0 ≤ k ≤ n;

0, otherwise,

where [m]! = [1][2] · · · [m] and [i] = 1 + q + · · · + qi−1. Clearly, Gaussian polynomials
are the q-analogs of common binomial coefficients. Following Sagan [10], we introduce
the definition of q-log-concavity. Given two real polynomials f(q) and g(q), we write
f(q) ≤q g(q) if g(q)−f(q) has nonnegative coefficients as a polynomial in q. Let {fi(q)}i≥0

be a sequence of real polynomials with nonnegative coefficients. It is called q-log-concave

if fi−1(q)fi+1(q) ≤q f 2
i (q) for all i ≥ 1, and strongly q-log-concave if fi−1(q)fj+1(q) ≤q

fi(q)fj(q) for all 1 ≤ i ≤ j. Clearly, the q-log-concavity for q = 1 reduces to the ordinary
log-concavity, and the strong q-log-concavity implies the q-log-concavity. But a q-log-
concave polynomial sequence need not be strongly q-log-concave (see, e.g., Sagan [10]).

There have been various results on the (strong) q-log-concavity of q-binomial coeffi-
cients. For example, it is known that

{[

n

k

]}

n≥k
,
{[

n

k

]}

0≤k≤n
and

{[

n+i

k+i

]}

i≥0
are strongly

q-log-concave respectively (Sagan [11, Theorem 1.1]). It is also well known that q-binomial
coefficients can be expressed as specializations of symmetric function. So it is natural to
consider log-concavity of symmetric functions.
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Let X = {x1, x2, . . .} be a countably infinite set of variables. The elementary and
complete homogeneous symmetric functions of degree k in x1, x2, . . . , xn are defined by

ek(n) := ek(x1, x2, . . . , xn) =
∑

1≤i1<i2<...<ik≤n

xi1xi2 · · ·xik ,

hk(n) := hk(x1, x2, . . . , xn) =
∑

1≤i1≤i2≤...≤ik≤n

xi1xi2 · · ·xik ,

where e0(n) = h0(n) = 1 and ek(n) = 0 for k > n. Set ek(n) = hk(n) = 0 unless k, n ≥ 0,
and ek(0) = hk(0) = δ0,k where δ0,k is the Kronecker delta. Then for n ≥ 1 and k ∈ Z,

ek(n) = ek(n − 1) + xnek−1(n − 1),

hk(n) = hk(n − 1) + xnhk−1(n).

In [11], Sagan showed that the sequences

{ek(n)}n≥0, {hk(n)}n≥0, {ek−i(n + i)}i≥0, {hk−i(n + i)}i≥0

are all strongly q-log-concave if {xi}i≥1 is a strongly q-log-concave sequence of polynomials
in q. He also gave the following ([11, Theorem 4.4]).

Proposition 1. Let {xi}i≥1 be a sequence of polynomials in q with nonnegative coeffi-

cients. Then for k ≤ l and m ≤ n,

(i) ek−1(n)el+1(m) ≤q ek(n)el(m);

(ii) hk−1(n)hl+1(m) ≤q hk(n)hl(m).

Moreover, if the sequence {xi}i≥1 is strongly q-log-concave, then

(iii) ek(n + 1)el(m − 1) ≤q ek(n)el(m);

(iv) hk(n + 1)hl(m − 1) ≤q hk(n)hl(m).

Furthermore, Sagan asked that for which linear relations between n and k, ek(n) and
hk(n) are strongly q-log-concave respectively ([11, §6]). Here we give an answer to this
question by means of Proposition 1.

Theorem 4. Let {xi}i≥1 be a sequence of polynomials in q with nonnegative coefficients.

If the sequence {xi}i≥1 is strongly q-log-concave, then for the fixed integers a, b, n0 and k0

satisfying ab ≥ 0, n0 ≥ k0, the sequences

{ek0−ib(n0 + ia)}i∈Z, {hk0−ib(n0 + ia)}i∈Z

are strongly q-log-concave respectively.
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Proof. We may assume, without loss of generality, that both a and b are positive. Then,
to prove the strong q-log-concavity of {ek0−ib(n0 + ia)}, it suffices to show that for k ≤ l

and m ≤ n,
ek−b(n + a)el+b(m − a) ≤q ek(n)el(m). (2)

Applying Proposition 1 (i) and (iii) repeatedly, we have

ek−b(n + a)el+b(m − a) ≤q ek−b(n + a − 1)el+b(m − a + 1) ≤q · · · ≤q ek−b(n)el+b(m)

and
ek−b(n)el+b(m) ≤q ek−b+1(n)el+b−1(m) ≤q · · · ≤q ek(n)el(m).

Thus (2) follows.
Similarly, the strong q-log-concavity of {hk0−ib(n0+ ia)} follows from Proposition 1 (ii)

and (iv).

Theorem 4 can unify many known results. In what follows we present some applications
of Theorem 4 for q-binomial coefficients and q-Stirling numbers of two kinds.

It is well known that the q-binomial coefficients satisfy the recursions
[

n

k

]

=

[

n − 1

k − 1

]

+ qk

[

n − 1

k

]

= qn−k

[

n − 1

k − 1

]

+

[

n − 1

k

]

.

Thus the q-binomial coefficients can be expressed as specializations of symmetric function:
[

n

k

]

= q−(k

2
)ek(1, q, . . . , q

n−1) = hk(1, q, . . . , q
n−k).

Similar results hold for the q-Stirling numbers of c[n, k] and S[n, k] two kinds:

c[n, k] = en−k([1], [2], . . . , [n − 1]),

S[n, k] = hn−k([1], [2], . . . , [k]),

where the q-Stirling numbers are defined by the recursions:

c[n, k] = c[n − 1, k − 1] + [n − 1]c[n − 1, k] for n ≥ 1, with c[0, k] = δ0,k,

S[n, k] = S[n − 1, k − 1] + [k]S[n − 1, k] for n ≥ 1, with S[0, k] = δ0,k.

See Sagan [10, 11] for details. Note that two sequences {qi−1}i≥1 and {[i]}i≥1 are strongly
q-log-concave respectively. Hence the following corollary is an immediate consequence of
Theorem 4.

Corollary 1. Let n0, k0, a, b be four nonnegative integers, where n0 ≥ k0. The following

sequences are all strongly q-log-concave:

(i)
{

[

n0−ia

k0+ib

]

}

i≥0
, with a, b ≥ 0;

(ii) {c[n0 + ia, k0 + ib]}i≥0, with b ≥ a ≥ 0;

the electronic journal of combinatorics 18 (2011), #P73 6



(iii) {S[n0 − ia, k0 + ib]}i≥0, with a, b ≥ 0;

(iv) {S[n0 + ia, k0 + ib]}i≥0, with b ≥ a ≥ 0.

Remark 5. Many special cases of Corollary 1 have occurred in the literature ([3, 4, 5, 10,
11]).

Remark 6. The q-binomial coefficients, as well as q-Stirling numbers of two kinds, can be
arranged in a triangle like Pascal’s triangle for the binomial coefficients. Each sequence
in Proposition 1 locates exactly on a transversal of the triangle. In particular, by the
symmetry of the q-binomial coefficients, each sequence located on a transversal of q-

Pascal triangle has a form as
{

[

n0−ia

k0+ib

]

}

i≥0
. The sequence

{

[

n0+ia

k0+ib

]

}

i≥0
with a, b ≥ 0 is

not strongly q-log-concave in general. For example, the sequence {
[

2i

i

]

} is not strongly
q-log-concave.

Remark 7. The sequence {c[n0 − ia, k0 + ib]} with a, b ≥ 0 is not strongly q-log-concave
in general. For example, the sequence c[11, 1], c[7, 2], c[3, 3] is not even q-log-concave.
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