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Abstract

In this note we consider unimodality problems of sequences of multinomial co-
efficients and symmetric functions. The results presented here generalize our early
results for binomial coefficients. We also give an answer to a question of Sagan about
strong ¢-log-concavity of certain sequences of symmetric functions, which can unify
many known results for ¢g-binomial coefficients and ¢-Stirling numbers of two kinds.
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. be a sequence of nonnegative numbers. It is called unimodal if ay <
a; < o < a1 < Ay > Gy > - for some m. It is called log-concave (resp. log-
convez) if a;_ja;.1 < a? (vesp. a;_ja;11 > a?) for all i > 1. Clearly, a sequence {a;} of
positive numbers is log-concave (resp. log-convex) if and only if a;,_ja;41 < a;a; (resp.
a;i—1a;41 > a;a;) for 1 < ¢ < j. So the log-concavity of a sequence of positive numbers



Unimodality problems, including unimodality, log-concavity and log-convexity of se-
quences, arise naturally in combinatorics and other branches of mathematics (see, e.g.,
[1,2,6,7,9,12, 14, 15]). In particular, many sequences of binomial coefficients enjoy
various unimodality properties. For example, the sequence of binomial coefficients along
any finite transversal of Pascal’s triangle is log-concave and the sequence along any infinite
downwards-directed transversal is asymptotically log-convex. More precisely, we have the
following result.

Theorem 1 ([13]). Let ng, ko, d,d be four nonnegative integers and nyg > ko. Define

ng + id )
Bi: y = ,1,2,....
<k0+i6) =0

Then
(i) if 6 > d >0, the sequence {B;} is log-concave; and

(ii) if 0 < § < d, the sequence {B;} is asymptotically log-convez, i.e., there exists a
nonnegative integer t such that By, Byi1, Biio, ... is log-convex.

The object of the present paper is to generalize the above result for binomial coefficients
to multinomial coefficients and symmetric functions. In §2 we give a generalization of
Theorem 1 to multinomial coefficients. In §3 we give an answer to a question of Sagan
about strong ¢-log-concavity of certain sequences of symmetric functions, which can unify
many known results for g-binomial coefficients and ¢-Stirling numbers of two kinds.

2 Unimodality of multinomial coefficients
Binomial coefficients can be generalized to multinomial coefficients, which are defined by

My mg e my | [ ekl g, e N for all k;
my, Mo, ..., My, 0, otherwise.

The case n = 2 gives binomial coefficients:
mi + Mo . mi + ma
my, M2 my '
The following result gives a generalization of Theorem 1 to multinomial coefficients.

Theorem 2. Let my € N and dy € Z for k=1,2,...,n. Define
MZ-:( L T+ 1 gy ) i=0,1,2,....

m1+id1,m2+id2,...,mn+idn

Then
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(1) if dy > > ,_, dp > 0, then the sequence {M;} is log-concave; and

(i) of di, > 0 for all k, then the sequence {M;} is asymptotically log-convex. Further-
more,

n—1

M\ M, 2\ 7
#N (z?l—l) as i — o0. (1)

Proof. (i) Clearly, to prove the log-concavity of {M,}, it suffices to prove the inequality

( k=1 Th— ket i ) ( k=1 Tht 2 Ak )
x1—d1,x2—d2,....xn—dn/ \x1+d1,x24+d2,...,Tn+dn <1
( b1 Tk )2 B

T1,L25-+5 Tn

H =

for xy > |dg|. Denote X =35, x; and D =>_7_, d;. Then
X -D)(X+ D)! — WX +dy — 1
H:( + H H (1 —J+ +di—j+1)
(X —d)U(X +dy)! = (2 — d :Ek—l—dk' X—j+)(ey+d—j+1)

Since the factorial {i!} is log-convex and any subsequence of a log-convex sequence is
still log-convex, we have

' < (:L’k — dk) (xk + dk)

and
(X =D X+D)<(X—-d)I(X+dy)!

for d; > D > 0. Also,
(v — 7+ D)X +di—j+1)— (X —j+D)(r1+dy —j+1)= (1 — X)d; <0.

Thus H < 1, as desired.
(ii) To prove the asymptotic estimate (1), we need the Stirling’s approximation for
the factorial function

From the above formula we have as 1 — +o0,

d m~+id d m4id
(m +id)! ~ 27r(m+z’d)(miz) ~ 2m’d(z—)

e
for d > 0.
Now assume dj, > 0 for all k. Denote M = >, my and D = >_}_, dy. Then
M — (M +iD)! DM+iD+3 1 -t
[ HZ:l(mk _'_ de)' d;ﬂ1+id1+% o dnmn+idn+% 27'('7, .
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It follows that as i — +o0,

n—1

M; 1 M; 1y i oz
M? 2-1) -

Thus M; 1 M;;, > M? for sufficiently large i. In other words, the sequence {M;} is

asymptotically log-convex. This completes the proof of the theorem. O
Remark 3. An infinite sequence ag,aq,... is called a Pdlya frequency (PF, for short)
sequence if every minor of the matrix (a;—;); ;>0 is nonnegative, where a; = 0 if k <
0. A finite sequence ag,ay,...,a, is PF if the infinite sequence ag,aq,...,a,,0,0,...

is PF. Clearly, a PF sequence is log-concave. Recently, Yu [16] showed the following
strengthening of Theorem 1, which was conjectured by the present authors in [13]:

(i) If 6 > d > 0, then the sequence {B;} is PF.

(ii) If 0 < ¢ < d, then there exists a nonnegative integer ¢t such that {B;} is log-concave
for 0 <1 <t and log-convex for ¢ > t.

It would be interesting to know whether similar results hold for multinomial coefficients.

3 Unimodality of symmetric functions

A natural problem is to consider the g-analogue of Theorem 1. We first demonstrate
some necessary concepts. Many combinatorial sequences {a;} admit g-analogues, that is,
polynomial sequences {ax(¢)} in a variable ¢ such that a,(1) = a;. Gaussian polynomials,
also called ¢-binomial coefficients, are given by

[n]! . .
n] _ ) e H0<k<n
k 0, otherwise,

where [m]! = [1][2]---[m] and [{] = 1 + ¢+ --- + ¢"'. Clearly, Gaussian polynomials
are the g-analogs of common binomial coefficients. Following Sagan [10], we introduce
the definition of g-log-concavity. Given two real polynomials f(g) and g(q), we write
(@) <4 9(q) if g(q) — f(¢) has nonnegative coefficients as a polynomial in ¢. Let {fi(q) }i>o
be a sequence of real polynomials with nonnegative coefficients. It is called ¢-log-concave
if fio1(q)fir1(q) <, f7(q) for all @ > 1, and strongly q-log-concave if f;_1(q)fi+1(q) <,
fi(@)f;(q) for all 1 <i < j. Clearly, the ¢-log-concavity for ¢ = 1 reduces to the ordinary
log-concavity, and the strong g-log-concavity implies the ¢-log-concavity. But a ¢-log-
concave polynomial sequence need not be strongly g-log-concave (see, e.g., Sagan [10]).
There have been various results on the (strong) g-log-concavity of g-binomial coeffi-

cients. For example, it is known that {m }nzk , { m }0 <k<n and {[Ziﬂ }i> , are strongly

g-log-concave respectively (Sagan [11, Theorem 1.1]). It is also well known that ¢g-binomial
coefficients can be expressed as specializations of symmetric function. So it is natural to
consider log-concavity of symmetric functions.
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Let X = {x1,29,...} be a countably infinite set of variables. The elementary and

complete homogeneous symmetric functions of degree k in x4, xs,...,x, are defined by
6k(n) = 6k(I1>I2, e >In) = E Ly Lig =« iy
1< <2< <1 <n
hk(n) = hk(l’l,l’g,...,l’n) = E Ljy Xy + * * Ty,

where eg(n) = ho(n) =1 and ex(n) = 0 for k > n. Set ex(n) = hx(n) = 0 unless k,n > 0,
and ey (0) = hy(0) = 0 4 where &g, is the Kronecker delta. Then for n > 1 and k € Z,

ex(n) = ex(n—1)+zpep_1(n —1),

In [11], Sagan showed that the sequences

{ex(m)tnz0,  {Pe(n)}nuzo,  {erx—i(n +9)}izo,  {ha—i(n +14)}izo

are all strongly g-log-concave if {z;};>1 is a strongly ¢-log-concave sequence of polynomials
in ¢. He also gave the following ([11, Theorem 4.4]).

Proposition 1. Let {z;};>1 be a sequence of polynomials in q with nonnegative coeffi-
cients. Then for k <1 and m <n,

(1) ex—1(n)eca(m) <q ex(n)e(m);

(il) Ar-1(n)huga(m) <g hi(n)hu(m).
Moreover, if the sequence {x;};>1 is strongly q-log-concave, then
(i) ex(n+ Le(m — 1) <q ex(n)ei(m);

(iv) hg(n+ D)hy(m — 1) <, hy(n)hy(m).

Furthermore, Sagan asked that for which linear relations between n and k, ex(n) and
hi(n) are strongly g-log-concave respectively ([11, §6]). Here we give an answer to this
question by means of Proposition 1.

Theorem 4. Let {z;};>1 be a sequence of polynomials in q with nonnegative coefficients.
If the sequence {x;};i>1 is strongly q-log-concave, then for the fized integers a,b,ng and ko
satisfying ab > 0, ng > ko, the sequences

{ero—iv(no + ia) }icz, {hky—in(no +ia) }icz

are strongly q-log-concave respectively.
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Proof. We may assume, without loss of generality, that both a and b are positive. Then,
to prove the strong g-log-concavity of {eg,_i(no + ia)}, it suffices to show that for £ <1
and m <n,

ex—p(n + a)ep(m —a) <, ex(n)e;(m). (2)

Applying Proposition 1 (i) and (iii) repeatedly, we have
ek_b(n + a)el+b(m — a) Sq ek_b(n +a— 1)el+b(m —a-+ 1) Sq tee Sq ek_b(n)el+b(m)

and
er—v(n)errs(m) <q ex_prr(n)ep-1(m) <q - <y ep(n)e(m).

Thus (2) follows.
Similarly, the strong ¢-log-concavity of {hx,—(no+ia)} follows from Proposition 1 (ii)
and (iv). O

Theorem 4 can unify many known results. In what follows we present some applications
of Theorem 4 for ¢-binomial coefficients and ¢-Stirling numbers of two kinds.
It is well known that the g-binomial coefficients satisfy the recursions

nl  |n—1 +kn—1  oakln—1 +n—1
Y e TR I P ko]
Thus the ¢-binomial coefficients can be expressed as specializations of symmetric function:

n —(* n— n—
|:]{?:| =dq (2)ek(17q7"'7q l)zhk(17q7"'7q k)

Similar results hold for the ¢-Stirling numbers of ¢[n, k] and S[n, k] two kinds:

cn, k] = e,k([1],[2],...,[n — 1)),
S[n7k] = hn—k([1]7[2]77[k]>7

where the ¢-Stirling numbers are defined by the recursions:

cn, k] = ¢n—1,k—1]+[n—1]cn —1,k] for n > 1, with ¢[0, k] = 0ok,
Sin,k] = Sn—1,k—1]4 [k]S[n —1,k] for n > 1, with S[0, k] = do.

See Sagan [10, 11] for details. Note that two sequences {¢"~'},5, and {[i]};>1 are strongly

g-log-concave respectively. Hence the following corollary is an immediate consequence of
Theorem 4.

Corollary 1. Let ng, ko, a,b be four nonnegative integers, where ng > kq. The following
sequences are all strongly q-log-concave:

() {[i]} o withab>0;
(ii) {c[no + ia, ko + b]}io, with b > a > 0;
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(iii) {S[no - z'a, kO + ib]}izo, with a, b > 0;'
(iv) {S[no + ia, ko + ib] }izo, with b > a > 0.

Remark 5. Many special cases of Corollary 1 have occurred in the literature ([3, 4, 5, 10,
11]).

Remark 6. The g-binomial coefficients, as well as ¢-Stirling numbers of two kinds, can be
arranged in a triangle like Pascal’s triangle for the binomial coefficients. Each sequence
in Proposition 1 locates exactly on a transversal of the triangle. In particular, by the

symmetry of the g-binomial coefficients, each sequence located on a transversal of g¢-
Pascal triangle has a form as {[Zg;zﬂ }i>0. The sequence {[Zgizﬂ }i>0 with a,b > 0 is
not strongly g-log-concave in general. For example, the sequence {[222]} is not strongly

g-log-concave.

Remark 7. The sequence {c[ng — ia, ko + ib]} with a,b > 0 is not strongly g-log-concave
in general. For example, the sequence ¢[11, 1], ¢[7, 2], ¢[3, 3] is not even ¢-log-concave.
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