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Abstract

Let 7 be a fixed lattice path (called in this context string) on the integer plane,
consisting of two kinds of steps. The Dyck path statistic “number of occurrences
of 77 has been studied by many authors, for particular strings only. In this paper,
arbitrary strings are considered. The associated generating function is evaluated
when 7 is a Dyck prefix (or a Dyck suffix). Furthermore, the case when 7 is neither
a Dyck prefix nor a Dyck suffix is considered, giving some partial results. Finally, the
statistic “number of occurrences of 7 at height at least j” is considered, evaluating
the corresponding generating function when 7 is either a Dyck prefix or a Dyck
suffix.

1 Introduction

Throughout this paper, a path is considered to be a lattice path on the integer plane,
consisting of steps u = (1,1) (called rises) and d = (1,—1) (called falls). Since the
sequence of steps of a path is encoded by a word in {u,d}*, we will make no distinction
between these two notions. The length |a| of a path « is the number of its steps. The
height of a point of a path is its y-coordinate.

A Dyck path is a path that starts and ends at the same height and lies weakly above
this height. It is convenient to consider that the starting point of a Dyck path is the
origin of a pair of axes; (see Fig. 1).

The set of Dyck paths of semilength n is denoted by D, and we set D = |J,~, Dn,
where Dy = {e} and ¢ is the empty path. It is well known that |D,| = C,, where
Cn = (*") is the n-th Catalan number; (see sequence A000108 in [23]).

Every non-empty Dyck path a can be uniquely decomposed in the form a = ugdy,
where (3,7 € D. This is the so called first return decomposition. If v = ¢, then « is a
prime Dyck path.
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Figure 1: The Dyck path uudduuuududddudd.

A path which is a prefix (resp. a suffix) of a Dyck path, is called Dyck prefiz (resp.
Dyck suffix). For example, the path uudduu (resp. udddudd) consisting of the first six
(resp. last seven) steps of the Dyck path of Fig. 1 is a Dyck prefix (resp. Dyck suffix).
In the literature, Dyck prefixes are also called ballot paths.

We define the depth (resp. height) of a path « to be the difference between the height
of the first (resp. last) point and the height of a lowest point of «. A path having depth
d and height h is referred as a (d, h)-path. For example, the path udduuuud which lies
between the second and the tenth point of the Dyck path of Fig. 1isa (1,3)-path. Clearly,
every Dyck prefix (resp. Dyck suffix) is a (0, h)-path (resp. (d,0)-path), whereas a Dyck
path is a (0, 0)-path.

Every (0, h)-path a, with §, A > 0, can be uniquely decomposed in the form a = ajas,
where o is a prime Dyck suffix (i.e., a suffix of a prime Dyck path) of depth § and «s is
a Dyck prefix of height h; (see Fig. 2, where the semicircles represent Dyck paths). We
call this the leftmost lowest point decomposition of a.

Figure 2: The leftmost lowest point decomposition of a = a;as.

A path 7 € {u,d}*, called in this context string, occurs in a path « if o = pr17, for
some (3,7 € {u,d}*. The number of occurrences of the string 7 in «, is denoted by |a|,.

For the study of the Dyck paths statistic N,;: “number of occurrences of 77, (with
respect to the semilength) we consider the bivariate generating function

F fry F(:L" y) fry Z :I:‘O{'uy'a“’—.

aeD

We will also need the generating function A, (resp. By) of the set of all Dyck paths
having prefix p (resp. suffix s), as well as the generating function I', 5 of the set of all
Dyck paths having prefix p and suffix s at the same time. We denote, for simplicity, the
generating functions A,;, By and I'y, 4¢ by A;, B; and I';; respectively.
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Given a string 7, the symmetric string of 7 with respect to a vertical axis is called
the mirror string of 7 and it is denoted by 7. Clearly, the statistics N, and N- are
equidistributed.

Many articles dealing with the occurrence of strings in Dyck paths have appeared
in the literature (e.g. see [1, 3, 5, 8, 12, 13, 14, 19, 20, 21, 24]). In particular, it has
been proved (see [8]) that the statistic IV, follows the Narayana distribution (4001263 of
[23]), for every string 7 of length 2, the statistic Nyq, follows the Donaghey distribution
(see [24]) and the statistic Ngy, follows the Touchard distribution (see [8]). A systematic
study of all strings with length up to 4 has been presented in [19], whereas some strings of
arbritrary length have been studied in [13, 14]. Strings in k-colored Motzkin paths have
been studied in [22], whereas strings in ballot paths have been studied in [15, 16].

So far, all results that appear in the literature involve particular strings. In this
paper, we consider arbitrary strings, obtaining general results on this subject, which yield
all known results as special cases. We will see that the statistic N, depends on some basic
characteristics of the string 7, namely its number of rises, height, depth and periodicity.
The importance of the notion of periodicity in words is well known, and it has been used
extensively in various string enumeration problems.

In Section 2, we summarize some general results on the periodicity of words, which
are used in the next sections.

In Section 3, we evaluate the generating function F' when 7 is a Dyck prefix (or
equivalently a Dyck suffix) and we give several applications of the above result.

The same problem is studied in Section 4 for an arbitrary string which is neither a
Dyck prefix nor a Dyck suffix. We give a complete answer for the case where the string
is non-periodic. We also examine the class of strings of the form d%p, where § € N* and
p is a Dyck prefix.

In Section 5, we classify the occurrences of 7 according to their height and we evaluate
the associated generating functions.

Finally, in Section 6, we unify the main results of Sections 3, 4 and 5.

We note that some of the results of this paper have been announced in the 7th Inter-
national Conference on Lattice Paths Combinatorics and Applications [11].

2 Periodic words

A non-empty word w = ajas - -a, of length |w| = n, is called periodic if there exists a
positive integer p < |w|, such that a;y, = a;, for all i € [n — p]. The number p is called a
period of w.

Equivalently, w is periodic iff there exist words A, 1, with X # ¢, such that w = (Au)*,
for some k£ € N*. In this expression, the period p = |Au| uniquely determines A, p, k.

A non-empty word v that is both a proper prefix and suffix of w, is called a border
of w. A word w is periodic iff it contains a border. More precisely, if p is a period of w,
then the prefix v of length |w| — p (i.e. v = (Au)*!A) is a border of w. Conversely, if v
is a border of w, then |w| — |v| is a period of w, as it follows immediately from the next
result, which can be easily proved using induction.
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Lemma 1. Let w be a word and v any border of w. If k is the least positive integer such
that k|lw| > (k + 1)|v|, then there exist unique words A, p, with A # €, such that

w=Ap)*\ and v=Ap)"I\

The borders of w are ordered with respect to their length. Clearly, the greatest border
of w corresponds to the smallest period of w.

If v is a border of w and v’ is a non-empty word with |v/| < |v|, then v’ is a border of
w iff v’ is a border of v.

If A is the least border of w, then |w| > 2|A|, so that w can be written in the form
w = AuA, where p is a (possibly empty) word.

We also have the following result, the proof of which is easy and it is omitted.

Proposition 2. Let w be a periodic word and let v be the greatest positive integer such
that there exist words X\, u, with X\ # ¢, and w = (Au)"X. Then, for every border v of
ApA, we have that |v] < [Aul.

From the above Proposition, it follows easily that, for v > 2, the words A, p in the
expression of w are unique. This expression is called the canonical form of w.

However, for v = 1, the expression w = ApA is not unique. For example, the word
w = u’du? = u(udu)u has two different expressions. Since in this case w = AuA, where
A is the greatest border of w, the canonical form can be also extended in the case v = 1,
assuming that A is the greatest border of w.

In the sequel, we determine the set V of all borders of a periodic word. For this, we
need the following two Lemmas.

Lemma 3. For every periodic word w, words \, pi, with A # ¢ and v € N*, we have that
w = (M)’ is the canonical form of w iff (A\pw)" "1\ is the greatest border of w (i.e., |\l
is the smallest period of w).

Lemma 4. For any positive integers v,k > 2 and any two words A\, u, we have that
(M) 7\ is the greatest border of ()" X iff (Au)*~1\ is the greatest border of (Au)*\.

Lemma 3 is an immediate consequence of Lemma 1, whereas the proof of Lemma 4 is
based on the observation that it is enough to show that (Au)”~!\ is the greatest border
of (Ap)” A iff AuA is the greatest border of AuApA, for v > 3.

Proposition 5. If w = (Au)"\ is the canonical form of the periodic word w, then v is a
border of w iff it is either a border of \uX or of the form v, = (A\u)*X\, k=0,1,...,v—1.

Proof. Clearly, it is enough to show that for v > 2 and for every border v of w with
|u| > |v1], there exists k € [v — 1], such that v = vy.

Let k be the greatest element of [v — 1] such that |vg| < |v|. Then |v| < |vg41], so that
v is a border of vg,q. Since, by Lemmas 3 and 4, v, is the greatest border of v i, we
deduce that v = vy. O
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For every border v of a periodic word w, we denote by 7(v) the complementary to v
suffix of w, i.e., w = vr(v).

Proposition 6. Let w = (Au)” A be the canonical form of the periodic word w. Then we
have that

i) for every border v of w, r(v) starts with uX iff v = vy, for some k € {0,1,...,v—1},
i) for every two borders v,v" of AuX with |v| < |v'|, r(v) does not start with r(v').

Proof. i) Clearly, r(vy) = (u)\)"~* starts with p for every k € {0,1,...,v — 1}. For the
converse, in view of Proposition 5, it is enough to show that if r(v) starts with g\ and
v is a border of AuA, then v = . Indeed, we can easily check that vu) is a border of
w, if v > 2, or vuX = w, if v = 1. Since |vuA| > |Au|, by Proposition 2 we deduce that
vpuA = ApA, which implies that v = A.

i1) If r(v) starts with r(v'), then it can be easily shown that vr(v’) is a border of w.
Clearly, since by Proposition 2 |v'| < |uA|, we obtain that

()] = [A)" Al = V| = (v + DA + vlpl = (Al = |v-].

Then, |vr(v")| > |v,_1|, which is a contradiction. O

3 Counting Dyck prefixes

In this section, we consider the string 7 being a Dyck prefix, and we evaluate the associated
generating function F.

Proposition 7. The generating function F' which counts the occurrences of a Dyck prefix
T, satisfies the equation

F=1+aF?+ (y— 1)zt plrl=lrla (F +(F—1—2zF? Zx—\v\uplvld—lvlu)’

veY
where V is the set of all borders of T.

Proof. Firstly, we write 7 = wp, where p is a Dyck prefix and w = u, if 7 does not return
to the x-axis, or w is a prime Dyck path, otherwise.
Using the first return decomposition @ = uf3d~, we obtain that a has an occurrence of
7 which does not lie entirely inside 3 or 7, iff w = u and p is a prefix of 3 (resp. w = ufd
and p is a prefix of v), when 7 does not (resp. does) return to the z-axis. Thus, it follows
easily that
F=1+4aF*4 (y — Dalhphh=iviag (3.1)

For the evaluation of A,, we consider the following cases:
i) The string 7 is non-periodic.
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A Dyck path o with prefix p can be decomposed as o = p(3, where

B = Bodpid---Be_1dfBe, &= [plu—[Pla, Bo,Br,...,B: €D.

Clearly, since 7 is non-periodic, every occurrence of 7 in o must lie entirely in 3 and
furthermore, since 7 is a Dyck prefix, it must lie entirely in a single f3;, for some i € [£].
Thus,

A, = 2lPle plplu=Ipla+1

Substituting in relation (3.1), we obtain that
F=1+zF?+ (y— 1)zl plrl=irlatt (3.2)

and since in this case V = @, we deduce the required result.

i1) The string 7 is periodic.

Let 7 = A(uA)”, v € N*, be the canonical form of the string 7.

It follows easily that |w| < |Ap|, so that v,_; is a suffix of p.

If « is a Dyck path with prefix p, then, since v,_; is the greatest border of 7, every
occurrence of 7 starting from some point of p in «, must start from a point of v,_1; (see
Fig. 3).

It follows that

Ay = Pt plpha= il (pla=fo-1la) 4

Vp—1)
or equivalently
Ay =g M ERTIGA, (3.3)
where G = Ml plaulu—|iula
T BNl
Be
- N

Figure 3: A Dyck path « with prefix p.

Let Ej be the generating function of the set &, of all Dyck paths starting with A(u)*
but not with A\(uA\)**1, where k& € N* and let E be the generating function of the set £
of all Dyck paths starting with pusA but not with pusAuA, where p = pqps is the leftmost
lowest point decomposition of .

Every Dyck path § € &, k € N*, can be uniquely decomposed as follows:

B = MpA) " BodBy - - - Bk,
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Figure 4: A Dyck path § € &, where (3, € £.

where & = k(|(pX\) Lo — (AN pala), B € Dyi € [€] and By € E; (see Fig. 4).

Every occurrence of 7 in  not lying entirely in some (; must start from a point
of AM(uA)*~1. Any such point M should be an initial point of some )\ in the expression
A(pA)*=1) (i.e., one of the bold vertices in Fig. 4) since otherwise the path v starting from
M and ending at the first on the right terminal point of some A of A(uA)*~! would be a
border of AuA, while uA would be a prefix of r(v), which contradicts Proposition 6.

Moreover, since (3 does not start with pus AuX, we deduce that, for k > v, among these
points M, an occurrence of 7 can only start from the k£ — v + 1 leftmost ones, while if
k < v, no occurrence of 7 starts before (3.

It follows that

E, = xk‘Al"u_‘ﬂQ‘uFk(p‘ﬂ‘u—‘)‘Md)_(‘ﬂﬂ|u—‘ﬂ2‘d)y(k_’/+1)+E’

or equivalently

Ek: — ka_‘ﬁaluF_(‘U2‘u_|ﬂ2|d)y(k‘—l/+l)+E’ k c N* (34)
It follows that
A, = Z B, = g2l p=(uzli—luzla) Z Gy,
k=v—1 k=v—1

which gives that
o=l p=(p2lu=lp2la) Gv-1F

Avu—l - 1 _ yG (35)
and for v > 2
v—2 v—2 Gy_l
A, = ZEk + A, , = el prlplaiezl) (Z GF + - G) £,
k=1 k=1 Y
which gives that
sl (o) G = 9G) + (y — DG”
A = gl p—(nzlu—lualo) E 3.6
o (1= G)(1 - 40 20
From relations (3.1), (3.3) and (3.5), we obtain that
E=(F-1- xFZ)x*‘z'uFlmu-ﬂzldG—Vily__yf. (3.7)
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In the following, we give another formula for the generating function E.
Every Dyck path § € £ can be uniquely decomposed as follows:

B = paNy,

where v = yodyy - - -dyy, t = |ueA|lw — [peAla, vi € D,i = 0,1,...,t and v does not start
with pA.

o .'\/,3

Figure 5: A Dyck path § € £ containing an occurrence of 7 which starts at some point
of the initial psA.

Every occurrence of 7 in [ not lying entirely in some ~;, must start with some v € V' =
V\{vi:i=0,1,...,v— 1} (which is a suffix of usA) and it occurs iff r(v) is a prefix of
v ie., if ri(v) = vody1 - - - dy,-1d and 72(v) is a prefix of ~,, where p = |ri(v)|a — |r1(v) ]
Here, r(v) = r1(v)re(v) is the leftmost lowest point decomposition of r(v); (see Fig. 5).

Furthermore, since by Proposition 6, 7 can start with r(v) for at most one v € V', it
follows that

E = glr2Al <F|uz/\\u—|u2/\\d+1 _ xlm\uF\uzx\\u—\uw\\d—(\m\d—lmlu)Aw/\

F(y—1) 3 @Ol Ol ). (3.8)
veV’
For v > 2, we have that
Apr=E+ A, =F+ xlﬂz\upluzlu—\m\dAvl’
and, using relation (3.6), we deduce that
1-yG+ (y—1)G"
A\ = 3.9
e (e 3
We note that, for v = 1, relation (3.9) follows automatically from relation (3.5).
Furthermore, using similar ideas as before, we obtain that
Ay = glr2@hi=lve—ile plrz@)l=lra@)la=(jvo-1la=lvv-1la) 4 »
v—1
— gPula=lri@)lu=lvlu=lpzlu pliufa=(ri)lu=|vlu=lpzlu=(Aula=lri(©)la=lvla—=|rz2]a) G E
1—yG
(3.10)
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for every v € V.
From relations (3.8), (3.9) and (3.10), we deduce that

1-yG+ (y—1)G¥

E = gyl pluedu—=lp2Ala+1 _ T-00 30 GE
(g — 1)z Al i”fG ;I_MHFM_M“’ (3.11)
If we set T =3, ,, &~ Pl FlYla=lvle " then we have that
-1

$ gl plelamleh — gl el

vel’

1-G

Then, by substituting in relation (3.11), we obtain after some simple manipulations
that

E TG'E

= gl plueda—lueX a1l o )Pl pRA=M e 22T 2

1—yG * (y=1) 1 —yG
Finally, by substituting the above expression for E in relation (3.7), we easily obtain
the required result. O

We note that the above result has been proved in [25], for non-periodic 7.

Applications

1. If 7 = p%, where p is a non-periodic Dyck prefix, and € € N*, ¢ > 2, then V = {p* :
ie[¢—1]} and
Gt -1
—lvh plola=lvle — 2 =
Zx P 1 =G 7

veV

where G = z/Pls FlPl=IPla Tt follows from Proposition 7, that the associated gener-
ating function satisfies the equation

1_7615_1) (3.12)

F:1+:):F2+(y—1)G<F+(GF—1—xFQ) —

Examples

i) If 7 = ué, then G = zF, so that from equation (3.12) we deduce that the
associated generating function satisfies the equation
1— (xF)5_1>

Fe1l+a2F2+ (y—1 F(F—
+xF*+ (y G T 27
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ii) If 7 = (uod)®, where o € D with |o|, = r, then since the path uod is non-
periodic and G = "1, substituting in (3.12), we deduce that the associated
generating function satisfies the equation

1— I(m)(&—l))

F:1+IFW+@—1WH%F+«ﬂ“F—1—xF% s

2. If 7 = pué, where p is a non-periodic Dyck prefix, and £ € N*, then V = {u’ : i €
[m]}, where m = min{&, k} and k is the length of the first ascent of p. It is easy to
check that

F)y™m—1
ol prlola—tole _ (2
Z . 1—aF

veY
so that, from Proposition 7, it follows that the associated generating function satis-
fies the equation

N e 1— (zF)™
F=1+aF%+ (y—1)glth-mplrh-ira ’”(F - 7)
+xF*+ (y— 1z T oF

Example

If p = u*d”, where k, v € N*, with v < k, from the previous formula, we obtain that
the generating function which counts the occurrences of the string u*d”u¢ satisfies
the equation

_ 1—(zF)™
_ 2 N\ MpM-v(
F=142F+ (y—1a"F (F —— ) (3.13)
where M = max{k,{} and m = min{k, £}.

We note that this result has been proved firstly in [13], for v = £ = 1 and it was
extended in [20], for v = 1.

If £, > v, then we can exchange the roles of k,&. It follows that the statistics
Nykgrye and Nyeqvyr are equidistributed. To illustrate this result bijectively, we will
construct an involution ¢ of D such that

[p(a)l = lalu and  Nurgrue(p(a)) = Nuearur (@), for every ar € D.
Indeed, firstly we define the involution ¢ of the set B of all paths
B =ustd"u - - - d“utt1dvudt,
where k > 2 and §; > v, i € [k], by
P(B) = ukdvutt - .- drusdiud.

It is clear that every Dyck path «a containing u”d”u” can be uniquely decomposed
as a = Y171 8272 - - - Beye, where (3; is a maximal subpath of a in B and ~; avoids
the string u”d”u”, i € [¢]. It follows that the required involution is given by

() = %V (B) M (B2)v2 - - (Be)ve
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Remark

For every Dyck suffix 7, applying Proposition 7 for the mirror string 7, we obtain that
the generating function F' which counts the occurrences of 7 satisfies the equation

F=1+aF?+ (y—1)gl7apirlazirh (F +(F—1—-2xzF? Zx—ividF‘”‘u—ivid), (3.14)
veVY

where V is the set of all borders of 7.

This result can be generalized for ballot paths. For this, we evaluate the associated
generating function G = G(z,y, z), where x, y, z count the number of rises, the number
of occurrences of 7 and the height h(«) of a ballot path a respectively.

Indeed, every ballot path o with height h(c«) = h is uniquely decomposed as

a=Foubi---uby, BieD, 0<i<h

Since 7 is a Dyck suffix, an occurrence of 7 in o must be entirely contained in a single j3;,
for some 0 < ¢ < h. It follows that

G = f: Z xla\uy\alfzh _ f: Z xh"'z?:o ‘ﬁi\uyZ?:o 1Bilr h

h=0 « ballot path h=0 B,eD
h(a)=h 0<i<h
[e9) h 0
- Z ot H Z x\ﬁi\uy\ﬁi\r — Z l’hZhFh+1(l’, y).
h=0 i=0 B;€D h=0
Thus,
F
G — ($7 y) ,
1 —xzF(z,y)

where F satisfies relation (3.14).
Sullivan [18], using a different approach, provided a recursive formula for the evaluation
of the coefficients of G.

4 Counting strings with positive depth and height

Throughout this section, 7 is a (9, h)-string with 0, h > 0, i.e., 7 is neither a Dyck prefix
nor a Dyck suffix. In this case, 7 is uniquely decomposed as 7 = sdp, where s is a
Dyck suffix of depth 6 — 1 and p is a Dyck prefix of height h. Using the first return
decomposition, we deduce that

F=1+2F+ (y—1)zB,A,. (4.1)

For the evaluation of the generating functions By, A, in terms of F', we will use the
(Fibonacci-like) polynomials p;, g;, i > —1, (see [10, p. 327]) defined by
1
pi(t) = pica(t) —apia(t), p-i(t) = z’ po(t) =t, (4.2)
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(where x is considered as a parameter), and

¢i(z) = qi-1(x) — 2qi—2(x), q-1(x) =0, qo(x) =1 (4.3)
We note that )
— 4.4
) (14)
for i > —1, where U;(x) are the Chebyshev polynomials of the second kind (see sequence

A053117 in [23]).
It is easy to check that these polynomials satisfy the following identities:

¢(z) = VailUy(

pi(t) = wtpi 1 (5h), (4.5)
(1 —at)pi(t) — (t — 1 — xtP)gq;(x) = op;i_1 (1), (4.6)
pii(O)pi(t) — () — apiy (t) = 2"t — 1 — xt?), (4.7)

for every ¢ € N.
We first give the following result, which will be used in the sequel.

Lemma 8. For every (d, h)-string T, we have that
B, =pi(F), i<min{h+k,h+2} (4.8)

and
Ipai = ¢i(x)A4,, @ <min{h+k,h+2,|ply — |pla +t}, (4.9)

where p is a non-empty Dyck prefix and k (resp. t) is the number of all consecutive falls
in the end of T (resp. p).

Proof. Using the bijection of Fig. 6, under the inequality restrictions of relations (4.8)
and (4.9) respectively, for ¢ > 2, we have that

Bz‘—l - Bz = .Z’BZ'_Q and Fp7di71 — Fp,di = LE‘FILdi—z,

since, for ¢« < h + k, the last peak of the Dyck path o does not belong to any occurrence
of 7, while for i < h + 2, its deletion does not result to a new occurrence of 7 in «’'.

Figure 6: The Dyck path a ending with exactly ¢ — 1 falls is mapped to o’ ending with
(at least) i — 2 falls.

Furthermore, since By = F', By = FF—1 and I') g0 = I', 4 = A,, the result follows
immediately from relations (4.2) and (4.3). O
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We note that if we apply the previous Lemma for the mirror string 7, it follows that
A; =pi(F), j<min{é+k,o+2}, (4.10)

and
Tws=qj(x)Bs, j<min{d+&,6+2,[s|lq — |s|u+1'}, (4.11)

where s is a non-empty Dyck suffix and &’ (resp. t') is the number of all consecutive rises
in the beginning of 7 (resp. s).
In particular, we have that

4.12

r {qi(sc)Aj, i <min{h+k,h+2j5}
Ji =

In the following result we establish the equation of the generating function F', for a
non-periodic string.

Proposition 9. The generating function F which counts the occurrences of a non-periodic
(0, h)-string T, satisfies the equation

p\h—él—i—l(F)

F=1+aF+ (y—Dalrnln

Pm—1 (F)
where m = min{h, §}.

Proof. Firstly, we write 7 = sdp, where s = ydf3; - - -dBs_1, p = ypu---y1uy, and G;,7; €
D,0<i<6§—1,0<j<h.

Let bl = ﬁodﬂldﬂl, 0<:1< 0 — 1 and C; = 7Y;u- - 71uvo, 0< j < h. Since T is
non-periodic, using the first return decomposition, we can easily show that

Ag, = aohlomh (A Pt (y = 10T, 04, (4.13)
for every 0 < 7 < h, where c_; = €.

For every j < 4, using the fact that 7 is non-periodic, we can easily check that the
bijection of Fig. 7 preserves the number of occurrences of 7, so that

A, = glih=iA, - § <m. (4.14)
Yo @o o
V1 N\ X ul T\ A
L - . H L - .
Yioo L@ L
N ) Ve

Figure 7: The bijection between Dyck paths starting with ¢; and those starting with u’.
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Figure 8: The bijection between Dyck paths ending with b; and those ending with d’.

Similarly, using the bijection of Fig. 8, we deduce that

By, =alhB;, i <m, and Ty =a"Ml, 4, i< (4.15)

Cj,

Without loss of generality, we may assume that 0 < h, since, otherwise we replace 7
by its mirror string 7. For 6 < j < h, using relations (4.9), (4.13) and (4.15), we deduce

that
ch:[;_|cj lu

T oo = P D)4,

It follows that

C&,lx_‘0671|u

h—6+1
A — |p|u—|65,1|uA Acégj_‘c(i'u B |p|u_hpgl 6+1(F)
p =T cs—1 A— =X W
6—1

The last equality follows from relations (4.10) and (4.14).
Furthermore, since 6 < h, from relations (4.8) and (4.15), we obtain that

BS = x's‘uBJ_l = x's‘upé_l(F)'
Therefore, after substituting the above expressions for A, and Bs in relation (4.1), we
obtain the required result. O

Example

The string 7 = d“ud”u?- - -d“u®, v € N*, is non-periodic with § = % "+1 ) and h = 423 "+3).
It follows from Proposition 9 that the assocnated generating function satlsﬁes the equatlon

p”zilu (F)

plzj/2+11/—2 (F> ‘
2

3v2—v42

F=1+2F*+(y— 1)z

The case of a periodic string seems very complex. We will examine some particular
cases where the polynomials p; are also used. Before that, in the next result we give
an expression of the generating function A,, where p is a Dyck prefix, in terms of the
generating functions A;, i € N.
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Lemma 10. Let 7 be a (0, h)-string starting with a fall and let p be a Dyck prefix such
that |p| < |7|. Then, the generating function A, with respect to the string T is given by

Ay = iUlpIdAlplu—\p\d + Z xllp(w)ld(Ajw —zAj,—1 — Aj,+1),

weWp

where W, is the set of all non-empty suffives of p which are prefizes of 7, l,(w) is the
complementary to w prefiz of p (i.e., p=l,(w)w) and j, = |l,(w)|s — |lp(w)]a.

Proof. We will use induction with respect to M, = max{|w|: w € W,}.

If M, =0, then W, = @ and the result follows immediately, since for every Dyck path
with prefix p we can replace that prefix with ulPh=IPla without affecting the number of
occurrences of 7 in the path.

For M, > 0, let ¢ be the greatest element of W,, i.e., |¢| = M,. We first assume
that p ends with a fall and we write ¢ = ¢’d, p1 = u®q¢’ and p, = u®q’u, where £ =
11,(¢)|u — |lp(q)]a > 0. Clearly, p;, ps are Dyck prefixes such that M, = |¢| < |¢| = M,
and M, <|q'u| = |q| = M,,

Let W (resp. W) be the set of all elements w € W,, such that wd (resp. wu) is a
prefix of 7. Clearly, the sets W and W’ form a partition of W,, such that

W, = {wd : w e W} U{d}, W,, ={wu:w e W'}

and
() = lpya(wd), weW
Ly, (wu), weW.

Using the induction hypothesis, we have that
A, = l»‘lP(QHdApld — I\lp(q)ld(Apl — A,)

= gl (Ip”Aplu—md + Y alnlA — Ay - A )

wEWp,
T P S e T Ajw+1)>
wEWp,
= gl @la [ glala=1(4 _A ) + Z gl @A — gz A, 1 — A 4q)
[plu—[pla+1 plu—lpla+2 Juw Jw—1 Jwt1

weW
_ Ipla |pla—1 _ _
= 2P Ap—ppla + TP (Aplaiplatt = TAplu—lpla — Alpla—iplat2)

+ ) alr DAy —w A, = Aj)

weW
= Pl Ay g Y a4, —a A, — A ).

weWp

The proof of the result when p ends with a rise is similar, except when the height of p
is equal to 1, since, in this case, the path obtained by replacing the last rise of u¢q with
a fall is a Dyck suffix, and the induction step cannot be applied.
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This particular case, where p = au and « is a Dyck path, is treated below separately.
Clearly, in this case, every w € W, is a Dyck suffix of depth |w|q — |w|, < d. Further-
more, if the depth of w is less than ¢, we have that

Jw = lla(w)u = [la(w)la = [wla = [wly <6 =1,
so that, from relation (4.10), we deduce that
Ajw - xAjw—l - Ajw+1 =0.

In fact, the above equality holds for every w € W,, such that wd is a prefix of 7,
which yields that

S aletloa; —wA; = Aj )= > a4y — 24y — Ay ). (416)

weEWq weWp

Let g be the largest element of W,. If |¢lq — |¢|lu < 6 — 1, then every Dyck path with
prefix p has no occurrence of 7 starting from a point of p, so that

Ay =alth(F = 1) = aPliAy, .

Since in this case the sums of relation (4.16) are equal to 0, we obtain the required result.

Finally, if |g|la — |¢la = J, then qu € W,, so that M, = |q| < |qu| = M,. Then, since
A, = A, — x1%l using the induction hypothesis and relation (4.16), we obtain again the
required result. O

In the next Proposition we restrict ourselves to the string 7 = d°p, where p is a Dyck
prefix.

Proposition 11. Let F' be the generating function which counts the occurrences of the
string d°p, where p is a Dyck prefiz of height h. Then, we have that

i) if 0 <min{h + k,h + 3}, then

F h—§
F=1+2F 4 (y— 1)l (M)

pé—l(F)
— 11—z 2 ;(;5—1 (L‘_|U|d pé(F) la=lls
(P&(F)p5—1(F) +(F—1—-2zF? ; (F_l ( F)) . (417)
i) ifh+k+1<§andV ={d":ie€ [k]|}, then
F=1+aF+ (y— 1)zt (pph(g))é_h
— 11—z 2 ;(;h—l ;(;_‘U\u ph(F) ol
(ph(F)ph_l(F) +(F—1—-2zF? ; (}rl ( F)) , (4.18)
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where V is the set of all borders of T and k is the number of all consecutive falls in the
end of T.

Proof. i) Let § < min{h + k, h + 3}. Then, using the first return decomposition of Dyck
paths and relation (4.12), we obtain that

Aj=w(AaF + (y— Dla504p) =2A; 0 (F+ (y — 1)gs1(2)4,), j=>0. (4.19)

Using relation (4.10), it follows that

641
A; = ps_1(F) (%) . j>0-1. (4.20)

Then, from Lemma 10, it follows that

Ap = &M (Ap 4D o (Aol = TAntpolatola-1 = Antlola-fols1)

vey

h—6
Tlu— P
_ ot (F) (pfj(l (;))

[vla—[v]u 2
| _ps(F) |v| ps(F) ps(F) . [ _ps(F)
<P6 1( —G—Z:L’ ’ (Pa 1(F ) (Pél(F) t <p571(F)) )) ’

veyY

Finally, since from relation (4.8) we have that Bs_1 = ps—1(F'), the required result
follows by substituting the expressions for A, and By in relation (4.1) and by using
relation (4.7).

ii) Let h+ k+ 1 < §. Then, since we have also assumed that each border of 7 is
of the form d, i € [k], we deduce that the bijection of Fig. 9 preserves the number of
occurrences of 7. It follows that

A, = zlT=h 4, (4.21)

and

by sl R+ 1 <i<h+k
dei_{a: hi M, +1<1<h+ (4.22)

plTh=hTy o i>h+k+1

For the justification of relation (4.22), notice also that d’ is a suffix of « iff d* is a
suffix of o/, except when o = pd" and h +1 < i < h+ k; (see Fig. 9).

For the evaluation of Bs_q, first notice that, using the first return decomposition of
Dyck paths, we obtain that

Bi=x(Bio1 + FB;+ (y — 1)Bs_1 i), i> 1. (4.23)

Then, for i > h + k + 1, using relations (4.1), (4.10), (4.12), (4.21) and (4.22), we
deduce that

((1 —xF)pp(F)— (F—1— :L'FQ)qh(a:)) B; = xpp(F)B;_1,
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- . uh ™
Yoo @ g/f\ Loom
- N N

Figure 9: The Dyck path « is mapped to o’ by substituting its prefix p = yju - - - v, pud®
with u”.

or equivalently, using relation (4.6), that

B, ph(F)
B4 ph—l(F)‘

This shows that
ph(F )
h+k (Ph—1( F)

For the evaluation of B;, for h + 1 < i < h 4 k, we proceed as before, obtaining that

i—h—k
) . i>h+k (4.24)

ph_1(F)B; — pp(F)Bi_y = 2" Y(F — 1 — 2F?).

By solving the above linear recurrence equation with initial condition B, 11 = ppi1(F),
and using relation (4.7), we obtain, after some simple manipulations, that

i—h
| _pu(F)
_ xp%_l(F) _ 1 (m:(ﬂ)
p(F)  pha(F) — pp(F)

Bz‘ :ph(F) 1

for every h +1 <1 < h + k. Applying the previous equality for i = h + k and relation
(4.24) for i = § — 1, we obtain that

_ n(F)
B, . PN E) [ ena(F) 1 <ph 1<F>>
1= — _
p‘,i_}{ k_l(F) pr(F) 1 — _PalE)_

Ph—1(F)

which, after some simple manipulations and using relation (4.7), yields that

—h [vlu—[v]a
Bs_1 = p (F) (ph(F)ph_l(F)+(F_1 — oF?)gh Yy gl (L‘(F ))) )

veEVY ph_l(F
Finally, since from relations (4.10) and (4.21) we have that A, = z/7la=9p, (F), the

required result follows, after substituting the expressions for A, and By in relation (4.1).
U
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Example

Let 7 = dfu”d*, where &, v € N*, k € N and let F be the associated generating function.
If v < k, then, by the equidistribution of the statistics Nyeywqr and Nykqvye, it follows
that F' is given by relation (3.13).
If v > k, by applying Proposition 9, we obtain that

v—M+1 F F 1— (xpéfl(F))m

F=1+aF+(y— 1)xk—m+1p7§_M_l(F) | g bel } : ;iF(’F) , (4.25)
p{—l ( ) pf—l( ) 1-— IL’W

for ¢ < min{v,v — k+ 3}, m = min{¢, k} and M = max{¢, k}, and
k

E—v+1 1 _ pufkt(F) )

U ey = WG PR UG D =TV O3
S HF) Py—ik(F) 1 — ek

for £ >v+1.
We do not know the equation of the generating function F' when v > kand v—k+4 <
¢ <.

5 Occurrences at height at least j

The occurrence of strings at a specified height was introduced for certain strings in [12]
and it has been studied extensively for arbitrary strings in [19]. It was shown that the
generating function which counts the occurrences of a string 7 at height 5 can be expressed
via the Chebyshev polynomials of the second kind and the generating function which
counts the low occurrences of 7; (see Proposition 1 in [19]).

In this section, we study the occurrences of strings at height greater or equal to a given
j € N. We say that the string 7 occurs at height at least j in a Dyck path, if the minimum
height of the points of 7 in this occurrence is greater or equal to j. For example, the Dyck
path of Fig. 1 has four occurrences of the string ud at height at least 1 (two at height 1
and two at height 3).

An occurrence of the string 7 at height at least 1 is usually referred as a high occurrence
of 7. It is known that the statistics “number of high (ud)”’s” and “number of (du)"’s” are
equidistributed for every r € N* (for r = 1, see [6] and [8]).

We denote with F; = Fj(z,y) the generating function which counts the occurrences
of the string 7 at height at least j. Clearly, Fy = F' (resp. F}) is the generating function
which counts all (resp. the high) occurrences of the string 7. Using the first return
decomposition, we can easily deduce that

J 1 e N
I 1-— LUFj_l’ J < )

Furthermore, following the same procedure used in [19], and relation (4.4), we can

express the generating function Fj in terms of F':
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Proposition 12. For every string T, the generating function Fj is given by

- 1) N a’

In the following result, an alternative way for the evaluation of F; (without the use of
F), when 7 is a Dyck prefix, is presented.

Proposition 13. The generating function F; for a Dyck prefix T satisfies the equation

ITlu—]7]a
s p;(Fy)
Fj=1+aF24(y — 1)zl (]7
’ ! pj-1(Fy)

(Y [ela—lol

veY
where V is the set of all borders of T.

For the proof of the above formula, we first show, using identity (4.5), that

pitFy) _ o pj(F}')Pj—l(sz) 1-j _ r._
p]_l(F}) Fj—l—l’F’] F—1—aF?

for every j € N, and then we substitute in the formula of Proposition 7.

Example

If 7 = utd"u*, where £,v € N*, k € N with k <v <& then V = {u’: i € [k]}, for k > 0,
and V = &, for k = 0. From Proposition 13, using identity (4.7) and after some simple
manipulations, we deduce that

£—v+1 1-— _pj(Fj)
?E) ([ pary (A
F; = 1+ij2—|—(y—1):L' j+12_l,_71J 1 -z~ , F'] Jp,-l(F:J)
PN (F) pi(Fy) 1 - 2l
pjfl(FJ)

Furthermore, if v < &, applying the above relation for 7 = v — k and using relation
(4.26), we deduce that the statistics “number of d*u”d*’s” and “number of usd“u*’s at
height at least v — k” are equidistributed.

This remains true if v = ¢ and k = 0. In fact, using the mirror string u”d¢, when
v > £, we deduce thar the statistics “number of déu”’s” and “number of u”d¢’s at height
at least m”, where m = min{¢{, v} are equidistributed.

We remark that the analogous equation for Fj, when 7 is a Dyck suffix, follows by
applying Proposition 13 for the mirror string 7.
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6 Unification

All the equations of the generating function F' obtained in this paper, for various strings,
can be put under the same roof. For this, we consider the rational functions

and the equations

Ri(F) =1+ 2R} (F)+(y — Da™ R ()

(RZ-(F) + (Ri(F) — 1 — zR¥(F)) Zx—lvluRL”'d—”u(F)> , (6.1)

veY
Ri(F) =14 2R2(F)+(y — D™ gz )

<RZ-<F> + (Ri(F) — 1 — 2R¥(F)) Zx-'”'dRL”'“‘“%F)) . (62)

veV

If 7 is a Dyck prefix (resp. Dyck suffix), then I’ satisfies equation (6.1) (resp. (6.2)),
for i = 0.

If 7 is a non-periodic (0, h)-string, then ' satisfies equation (6.1) (resp. (6.2)),if h > §
(resp. h <), for i = min{h, }.

If 7 = d%, where p is a Dyck prefix of height h, then, under the corresponding
inequality conditions of Proposition 11, F' satisfies either of the equations (6.1), (6.2), for
1 = 0, h respectively.

Finally, notice that the generating function Fj for a Dyck prefix (resp. Dyck suffix)
satisfies equation (6.1) (resp. (6.2)), for i = j.
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