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Abstract

The Belkale-Kumar product on H∗(G/P) is a degeneration of the usual cup product on
the cohomology ring of a generalized flag manifold. In the case G = GLn, it was used
by N. Ressayre to determine the regular faces of the Littlewood-Richardson cone.

We show that forG/P a (d−1)-step flagmanifold, each Belkale-Kumar structure constant
is a product of

(
d
2

)
Littlewood-Richardson numbers, for which there are many formulae

available, e.g. the puzzles of [Knutson-Tao ’03]. This refines previously known factor-
izations into d − 1 factors. We define a new family of puzzles to assemble these to give
a direct combinatorial formula for Belkale-Kumar structure constants.

These “BK-puzzles” are related to extremal honeycombs, as in [Knutson-Tao-Woodward
’04]; using this relation we give another proof of Ressayre’s result.

Finally, we describe the regular faces of the Littlewood-Richardson cone on which the
Littlewood-Richardson number is always 1; they correspond to nonzero Belkale-Kumar
coefficients on partial flag manifolds where every subquotient has dimension 1 or 2.

1 Introduction, and statement of results

Let 0 = k0 < k1 < k2 < . . . < kd = n be a sequence of natural numbers, and
Fℓ(k1, . . . , kd) be the space of partial flags {(0 < V1 < . . . < Vd = Cn) : dim Vi = ki} in
Cn.

∗AK was supported by NSF grant 0303523.
†KP was supported by an NSERC discovery grant.
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Schubert varieties on Fℓ(k1, . . . , kd) are indexed by certain words σ = σ1 . . . σn on a
totally ordered alphabet of size d (primarily, we will use {1, 2, . . . , d}). The content of σ
is the sequence (n1, n2, . . . , nd), where ni is the number of is in σ. We associate to σ a
permutationwσ, whose one-line notation lists the positions of the 1s in order, followed
by the positions of the 2s, and so on (e.g. w12312 = 14253; if σ is the one-line notation
of a permutation, i.e. ∀i, ni = 1, then wσ = σ−1). We say that (p, q) is an inversion of
σ if p < q, wσ(p) > wσ(q); more specifically (p, q) is an ij-inversion if additionally we
have σq = i > j = σp. Let inv(σ) (resp. invij(σ)) denote the number of inversions (resp.
ij-inversions) of σ.
Given a word σ of content (k1, k2 − k1, . . . , kd − kd−1), and a complete flag F•, the

Schubert variety Xσ(F•) ⊂ Fℓ(k1, . . . , kd) is defined to be the closure of

{
(0 < V1 < . . . < Vd) : (Vσp

∩ Fn−p+1) 6= (Vσp
∩ Fn−p) for p = 1, . . . , n

}
.

(In many references, this is the Schubert variety associated to wσ.) With these con-
ventions, the codimension of Xσ(F•) is inv(σ); hence the corresponding Schubert class,
denoted [Xσ], lies in H2inv(σ)(Fℓ(k1, . . . , kd)).
Let π, ρ, σ be words with the above content. The Schubert intersection number

cπρσ =

∫

Fℓ(k1,...,kd)

[Xπ][Xρ][Xσ]

counts the number of points in a triple intersection Xπ(F•)∩Xρ(G•)∩Xσ(H•), when this
intersection is finite and transverse. These numbers are also the structure constants of
the cup product for the cohomology ring H∗(Fℓ(k1, . . . , kd). Write cσ

πρ := cπρσ∨ , where
σ∨ is σ reversed. The correspondence [Xσ] 7→ [Xσ∨ ] takes the Schubert basis to its dual
under the Poincaré pairing, and so

[Xπ][Xρ] =
∑

σ

cσ
πρ[Xσ]

in H∗(Fℓ(k1, . . . , kd)).
We are interested in a different product structure onH∗(Fℓ(k1, . . . , kd)), the Belkale-

Kumar product [BeKu06],

[Xπ] ⊙0 [Xρ] =
∑

σ

c̃σ
πρ[Xσ]

whose structure constants can be defined as follows (see proposition 2):

c̃σ
πρ =

{
cσ

πρ if invij(π) + invij(ρ) = invij(σ) for 1 ≤ j < i ≤ d

0 otherwise.
(1)

If our flag variety is a Grassmannian, this coincides with the cup product; otherwise, it
can be seen as a degenerate version. The Belkale-Kumar product has proven to be the
more relevant product for describing the Littlewood-Richardson cone (recalled in §4).
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Our principal results are a combinatorial formula for the Belkale-Kumar structure
constants, and using this formula, a way to factor each structure constant as a product
of

(
d

2

)
Littlewood-Richardson coefficients.1 There are multiple known factorizations

(such as in [Ri09]) into d − 1 factors, of which this provides a common refinement.
The factorization theorem is quicker to state. For S ⊂ {1, . . . , d}, define the S-

deflation DS(σ) of σ to be the word on the totally ordered alphabet S obtained by
deleting letters not in σ. In particular Dij(σ) has only the letters i and j.

Theorem 3. (in §3) Let π, ρ, σ be words with the same content. Then

c̃σ
πρ =

∏

i>j

c
Dijσ

Dijπ,Dijρ
.

The opposite extreme from Grassmannians is the case of a full flag manifold. Then
the theorem says that [Xπ]⊙0 [Xρ] is nonzero only if π and ρ’s inversion sets are disjoint,
and their union is an inversion set of another permutation σ. In that case, [Xπ]⊙0 [Xρ] =

[Xσ], in agreement with [BeKu06, corollary 44] and [Ri09, corollary 4].
We prove this theorem by analyzing a combinatorial model for Belkale-Kumar co-

efficients, which we call BK-puzzles.2 Define the two puzzle pieces to be

1. A unit triangle, each edge labeled with the same letter from our alphabet.

2. A unit rhombus (two triangles glued together) with edges labeled i, j, i, j where
i > j, as in figure 1.

They may be rotated in 60◦ increments, but not reflected because of the i > j require-
ment.

ij

iii
i

j

Figure 1: The two puzzle pieces. On the rhombus, i > j.

A BK-puzzle is a triangle of side-length n filled with puzzle pieces, such that ad-
joining puzzle pieces have matching edge labels. An example is in figure 2. We will
occasionally have need of puzzle duality: if one reflects a BK-puzzle left-right and re-
verses the order on the labels, the result is again a BK-puzzle.

1Since finishing this paper, we learned that N. Ressayre had been circulating a conjecture that some
such factorization formula should exist.

2In 1999, the first author privately circulated a puzzle conjecture for full Schubert calculus, not just
the BK product, involving more puzzle pieces, but soon discovered a counterexample. The 2-step flag
manifold subcase of that conjecture seems likely to be true; it has been checked up to n = 16 (see
[BuKrTam03]).
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Figure 2: A BK-puzzle whose existence shows that c̃32121
12132,23112 ≥ 1. (In fact it is 1). The

edge orientations are explained in §4.

Theorem 1. (in §3) The Belkale-Kumar coefficient c̃σ
πρ is the number of BK-puzzles with π on

the NW side, ρ on the NE side, σ on the S side, all read left to right.

Puzzles were introduced in [KnTao03, KnTaoWo04], where the labels were only al-
lowed to be 0, 1. In this paper BK-puzzles with only two numbers will be calledGrass-
mannian puzzles. As we shall see, most of the structural properties of Grassmannian
puzzles hold for these more general BK-puzzles. Theorem 2 corresponds a BK-puzzle
to a list of

(
d

2

)
Grassmannian puzzles, allowing us to prove theorem 3 from theorem 1.

Call a BK-puzzle rigid if it is uniquely determined by its boundary, i.e. if the corre-
sponding structure constant is 1. Theorem D of [Re10], plus the theorem above, then
says that regular faces of the Littlewood-Richardson cone (defined in §4) correspond to
rigid BK-puzzles. We indicate an independent proof of this result, and in §5 determine
which regular faces hold the Littlewood-Richardson coefficients equaling 1.

Acknowledgments

We thank ShrawanKumar for correspondence on the BK product, andNicolas Ressayre
and Mike Roth for suggesting some references. The honeycomb-related work was de-
veloped a number of years ago with Terry Tao, without whom this half of the paper
would have been impossible.

2 The Belkale-Kumar product on H∗(Fℓ(k1, . . . , kd))

For the moment let G be a general complex connected reductive Lie group, and P a
parabolic with Levi factor L and unipotent radical N. Very shortly we will specialize
to the G = GLn case.
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Proposition 1. The Schubert intersection number cπρσ is non-zero if and only if there exist
a1, a2, a3 ∈ P such that

n = (a1nπa−1
1 ) ⊕ (a2nρa

−1
2 ) ⊕ (a3nσa−1

3 ) . (2)

The definition of nσ for G = GLn will be given shortly. Briefly, proposition 1 is
proven by interpreting nσ as the conormal space at a smooth point (V1 < . . . < Vd)

to some Schubert variety Xσ(F•). The condition (2) measures whether it is possible to
make (V1 < . . . < Vd) a transverse point of intersection of three such Schubert varieties.
See [BeKu06] or [PuSo08] for details.
Belkale and Kumar define the triple (π, ρ, σ) to be Levi-movable if there exist a1, a2,

a3 ∈ L such that (2) holds. Using this definition, they consider the numbers

c̃πρσ :=

{
cπρσ if (π, ρ, σ) is Levi-movable

0 otherwise ,

and show that the numbers c̃σ
πρ = c̃πρσ∨ are the structure constants of a commutative,

associative product on H∗(G/P).
Our first task is to show that, in our special case G = GLn, this definition of c̃

σ
πρ is

equivalent to the definition (1) given in the introduction. In this context P ⊂ GLn is
the stabilizer of a coordinate flag (V1 < . . . < Vd) ∈ Fℓ(k1, . . . , kd), and N ⊂ GLn is the
unipotent Lie group with Lie algebra

n = {A ∈ Matn : Apq = 0 if p > kj−1, q ≤ kj for some j} .

We denote the set (not the number) of all inversions of a word σ (resp. ij-inversions)
by Inv(σ) (resp. Invij(σ)). Define nσ ⊂ n to be the subspace spanned by {epq : (p, q) ∈
Inv(σ)}; here epq ∈ Matn denotes the matrix with a 1 in row p, column q, and 0s
elsewhere.

Proposition 2. The triple (π, ρ, σ∨) is Levi-movable if and only if cσ
πρ 6= 0 and for all 1 ≤ j <

i ≤ d, we have
invij(π) + invij(ρ) = invij(σ) .

Proof. By duality (replacing σ by σ∨), we may rephrase this as follows. Assume cπρσ 6=
0. We must show that (π, ρ, σ) is Levi-movable iff for all i > j,

invij(π) + invij(ρ) + invij(σ) = (ki − ki−1)(kj − kj−1) . (3)

The center of L ∼=
∏d

i=1 GL(ni) is a d-torus, and acts on n by conjugation. This action
defines a weight function on the standard basis for n, which may be written: wt(epq) =

yj − yi where ki−1 < q ≤ ki and kj−1 < p ≤ kj. In particular, we have wt(epq) =

yj − yi if (p, q) is an ij-inversion of π, ρ or σ. The action of the center of L, and hence
the weight function, extends to the exterior algebra

∧∗
(n). The weights are partially

ordered:
∑d

i=1 αiyi is higher than
∑d

i=1 βiyi if their difference is in the cone spanned
by {yi − yi+1}i=1,...,d−1.
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Let Λπ =
∧

(p,q)∈Inv(π) epq and Λij
π =

∧
(p,q)∈Invij(π) epq, with Λρ, Λij

ρ , etc. defined

analogously. By proposition 1, there exist a1, a2, a3 ∈ P such that

a1Λπa−1
1 ∧ a2Λρa

−1
2 ∧ a3Λσa−1

3 6= 0 (4)

Write am = bmcmwhere bm ∈ N, cm ∈ L, m = 1, 2, 3. Note that cmepqc−1
m is a sum of

terms of the same weight as epq, and that

amepqa−1
m = cmepqc−1

m + terms of higher weight.

Hence the left hand side of (4) can be written as

c1Λπc−1
1 ∧ c2Λρc

−1
2 ∧ c3Λσc−1

3 + terms of higher weight. (5)

Now
∧

dim(n)
(n) has only one weight, which is

∑
i>j(ki − ki−1)(kj − kj−1)(yj − yi). If

(3) holds, then the first term of (5) has this weight, and the terms of higher weight are
zero; thus

c1Λπc−1
1 ∧ c2Λρc

−1
2 ∧ c3Λσc−1

3 = a1Λπa−1
1 ∧ a2Λρa

−1
2 ∧ a3Λσa−1

3 6= 0 ,

which shows that (π, ρ, σ) is Levi-movable.
Conversely, if (π, ρ, σ) is Levi-movable, then there exist a1, a2, a3 ∈ L such that (4)

holds. Since Λπ =
∧

i>j Λ
ij
π, we have

a1Λ
ij
πa−1

1 ∧ a2Λ
ij
ρa−1

2 ∧ a3Λ
ij
σa−1

3 6= 0

for all i > j. Since the action of L on n preserves the weight spaces, this calculation
is happening inside

∧∗
(
yj − yiweight space of n

)
. This weight space has dimension

(ki − ki−1)(kj − kj−1), so

invij(π) + invij(ρ) + invij(σ) ≤ (ki − ki−1)(kj − kj−1) .

If any of these inequalities were strict, then summing themwould yield inv(π)+inv(ρ)+

inv(σ) < dim(Fℓ(k1, . . . , kn)). But this contradicts cπρσ 6= 0, and hence we deduce (3).

Remark 1. Belkale and Kumar give a different numerical criterion for Levi-movability
[BeKu06, theorem 15]. When expressed in our notation, their condition asserts that
(π, ρ, σ∨) is Levi-movable iff cσ

πρ 6= 0 and for all 1 ≤ l < d,

∑

j≤l<i

(
invij(π) + invij(ρ) − invij(σ)

)
= 0 .

It is is an interesting exercise to show combinatorially that this is equivalent to the
condition in proposition 2.
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Recall from the introduction the deflation operations DS on words. Next, consider
an equivalence relation ∼ on {1, . . . , d} such that i ∼ j, i > l > j =⇒ i ∼ l ∼ j, and
define A∼(σ) := σ/∼ (where A introduces Ambiguity).
Given such an equivalence relation, let S1 < S2 < . . . < Sd′ be the (totally ordered)

equivalence classes of ∼, and let k ′
i = kmax(Si). There is a natural projection

α∼ : Fℓ(k1, . . . , kd)→ Fℓ(k ′
1 . . . , k ′

d′) .

whose fibres are isomorphic to products of partial flag varieties:

Fℓ(kj : j ∈ S1) × Fℓ(kj − k ′
1 : j ∈ S2) × · · · × Fℓ(kj − k ′

d′−1 : j ∈ Sd′) .

The image of a Schubert variety Xσ(F•) is the Schubert variety XA∼(σ)(F•). The fibre over
a smooth point (V ′

1 < . . . < V ′
d′) is a product of Schubert varietiesXDS1

(σ)×· · ·×XDS
d ′

(σ).

We will denote this fibre by XD∼(σ)(F•, V
′).

It is easy to verify that

codim XD∼(σ)(F•, V
′) =
∑

i∼j

invij(σ) (6)

codim XA∼(σ)(F•) =
∑

i≁j

invij(σ) . (7)

The main result we’ll need in subsequent sections is the next lemma. We sketch a
proof here; a more detailed proof can be found in [Ri09, Theorem 3].

Lemma 1. Assume (π, ρ, σ∨) is Levi-movable. Then

c̃σ
πρ = c̃

A∼(σ)

A∼(π)A∼(ρ)
·

d′∏

m=1

c̃
DSm (σ)

DSm (π)DSm (ρ)
.

Proof. First observe that for generic complete flags F•, G•, H•, the intersections

Xπ(F•) ∩ Xρ(G•) ∩ Xσ∨ (H•) (8)

XA∼(π)(F•) ∩ XA∼(ρ)(G•) ∩ XA∼(σ∨)(H•) (9)

XD∼(π)(F•, V
′) ∩ XD∼(ρ)(G•, V

′) ∩ XD∼(σ∨)(H•, V
′) (10)

are all finite and transverse. (In (10), V ′ is any point of (9).) The fact that the expected
dimension of each intersection is finite can be seen using (6), (7) and proposition 2.
Transversality follows from Kleiman’s transversality theorem. For (8) and (9) this is a
standard argument; for (10), we use the fact a Levi subgroup of the stabilizer of V ′ acts
transitively on the fibre α−1

∼
(V ′).

This shows that the number of points in (8) is the product of the numbers of points
in (9) and (10), i.e.

cσ
πρ = c

A∼(σ)

A∼(π)A∼(ρ)
·

d′∏

m=1

c
DSm (σ)

DSm (π)DSm (ρ)
.

Again, using proposition 2, we find that (A∼(π), A∼(ρ), A∼(σ
∨)) and (DSm

(π), DSm
(ρ),

DSm
(σ∨)),m = 1, . . . , d ′, are Levi-movable; hence we may add tildes everywhere.
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3 BK-puzzles and their disassembly

Say that two puzzle pieces in a BK-puzzle P of exactly the same type, and sharing an
edge, are in the same region, and let the decomposition into regions be the transitive
closure thereof. Each region is either made of (i, i, i)triangles, and called an i-region,
or (i, j, i, j)-rhombi, and called an (i, j)-region.
The basic operation we will need on BK-puzzles is “deflation” [KnTaoWo04, §5],

extending the operation DS defined in the introduction on words.

Proposition 3. Let P be a BK-puzzle, and S a set of edge labels. Then one can shrink all of P’s
edges with labels not in S to points, and obtain a new BK-puzzle DSP whose sides have been
S-deflated.

Proof. It is slightly easier to discuss the case Sc = {s}, and obtain the general case by
shrinking one number s at a time.
Let t ∈ [0, 1], and change the puzzle regions as follows: keep the angles the same,

but shrink any edge with label s to have length t. (This wouldn’t be possible if e.g.
we had triangles with labels s, s, j 6= s, but we don’t.) For t = 1 this is the original
BK-puzzle P, and for all t the resulting total shape is a triangle. Consider now the
BK-puzzle at t = 0: all the s-edges have collapsed, and each (i, s)- or (s, i)-region has
shrunk to an interval, joining two i-regions together.

Call this operation the S-deflation DSP of the BK-puzzle P.

Proposition 4. Let P be a BK-puzzle. Then the content (n1, n2, . . . , nd) on each of the three
sides is the same. There are

(
ni+1

2

)
right-side-up i-triangles and

(
ni

2

)
upside-down i-triangles,

and ninj (i, j)-rhombi, for all i and j.
More specifically, the number of (i, j)-rhombi (for i > j) with a corner pointing South

equals the number of ij-inversions on the South side. (Similarly for NW or NE.)

Proof. Deflate all numbers except for i, resulting in a triangle of size ni, or all numbers
except for i and j, resulting in a Grassmannian puzzle. Then invoke [KnTaoWo04,
proposition 4] and [KnTao03, corollary 2].

Now fix π, ρ, σ of the same content, and let ∆σ
πρ denote the set of BK-puzzles with

π, ρ, σ on the NW, NE, and S sides respectively, all read left to right. Then DS on BK-
puzzles is a map

DS : ∆σ
πρ→ ∆DSσ

DSπ,DSρ.

Corollary 1. Let π, ρ, σ be three words. If they do not have the same content, then ∆σ
πρ = ∅. If

they have the same content, but for some i > j we have invij(π) + invij(ρ) 6= invij(σ), then
∆σ

πρ = ∅.

It is easy to see that any ambiguator A∼ extends to a map

A∼ : ∆σ
πρ→ ∆A∼π

A∼π,A∼ρ

the electronic journal of combinatorics 18 (2011), #P76 8



which one does not expect to be 1 : 1 or onto in general. The only sort we will use is
“Ai]”, which amalgamates all numbers ≤ i, and all numbers > i. In particular, each
Ai]P is a Grassmannian puzzle.
Wewill need to study a deflation (of the single label 1) and an ambiguation together:

A1] × D1c : ∆σ
πρ→ ∆

A1]σ

A1]π,A1]ρ
× ∆

D1c σ

D1c π,D1c ρ.

Our key lemma (lemma 3) will be that either this map is an isomorphism or the source
is empty. That suggests that we try to define an inverse map, but to a larger set.
Define the set (∆1)σ

πρ of BK
1-puzzles to be those made of the following labeled

pieces, plus the stipulation that only single numbers (not multinumbers like (53)) may
appear on the boundary of the puzzle triangle:

i i j (ij) 1
i

i
((ij)1)(ij)

Again i > j, and on the third pieces i > j > 1. If we disallow the ((ij)1) labels (and with
them, the third type of piece), then any triangle of the second type must be matched
to another such, and we recover an equivalent formulation of ∆σ

πρ. In this way there
is a natural inclusion ∆σ

πρ → (∆1)σ
πρ, cutting each (i, j)-rhombus into two triangles of

the second type. In figure 3 we give an example of a BK1-puzzle that actually uses the
((32)1) label.

3
3 3

23
32

32

(32)1

31

c

32
1D

23

1 1 1
1

132
2 2 3 3 3 2 2

2

Figure 3: The BK1-puzzle on the left deflates to the Grassmannian puzzle on the right,
which naturally carries a honeycomb remembering where the 1-edges were, as in the
proof of lemma 3.

Lemma 2. For a word τ, let Y(τ) :=
∑

i invi1(τ)yi. Then for each puzzle P ∈ (∆1)σ
πρ,

∑

e labeled ((ij)1)

yj − yi = Y(π) + Y(ρ) − Y(σ).
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Proof. Consider the vector space R
2⊗R

d, where R
2 is the plane in which our puzzles

are drawn, and Rd has basis {x1, . . . , xd}. Assign to each directed edge e of P a vector
ve ∈ R2⊗Rd, as follows:

e =
i

−→ =⇒ ve =−→ ⊗xi

e =
(ij)
−→ =⇒ ve = ( −

→⊗xi) + (

−→ ⊗xj)

e =
((ij)1)
−→ =⇒ ve = (

←
− ⊗xi) + (−→ ⊗xj) + ( ←

−⊗x1)

If e points in another direction, ve is rotated accordingly (e 7→ ve is rotation-equivariant).
This assignment has the property that if the edges e, f, g of a puzzle piece are directed
to to form a cycle, then ve + vf + vg = 0. Consider the bilinear form ⊡ on R

2⊗R
d

satisfying:

• ⊡ is rotationally invariant;

• (e⊗xi) ⊡ (f⊗xj) = 0, if i = 1 or j 6= 1;

• (−→ ⊗xi) ⊡ (−→ ⊗x1) = (−→ ⊗xi) ⊡ (
−→ ⊗x1) = yi, if i 6= 1.

These conditions completely determine ⊡. For example, bilinearity and rotational in-
variance give

(

−
→⊗xi) ⊡ (

−→ ⊗x1) = (−→ ⊗xi) ⊡ ( ←
−⊗x1) = (−→ ⊗xi) ⊡ ((

−→ − −→)⊗x1)

= (−→ ⊗xi) ⊡ (

−→ ⊗x1) − (−→ ⊗xi) ⊡ (−→ ⊗x1) = yi − yi = 0 .

Let Ω = (e1, . . . , em) be a path from the southwest corner of P to the southeast
corner. Let Y(Ω) :=

∑
r<s ver

⊡ ves
. We claim the following:

1. IfΩ is the path along the south side, then Y(Ω) = Y(σ).

2. IfΩ is the path that goes up the northwest side and down the northeast side, then
Y(Ω) = Y(π) + Y(ρ).

3. If Ω is any path, then Y(Ω) = Y(σ) +
∑

e(yj − yi) where the sum is taken over
edges e labeled ((ij)1), lying strictly belowΩ.

The first two assertions are easily checked (the second uses the calculation in the ex-
ample above). For the third, we proceed by induction on the number of puzzle pieces
below Ω. We show that if we alter the path so as to add a single puzzle piece, Y(Ω)

doesn’t change, except when new the piece is attached to an edge ofΩ labeled ((ij)1),
in which case it changes by yj − yi. To see this, note that when a piece is added, the
sequence (ve1

, . . . , vem
) changes in a very simple way: either two consecutive vectors

ver
and ver+1

are replaced by their sum, or the reverse—a vector ver
in the sequence

is replaced by two consecutive vectors ve′

r
, ve′′

r
with sum ver

. When the first happens,
Y(Ω) changes by −ver

⊡ver+1
; in the second case, by ve′

r
⊡ve′′

r
. It is now a simple matter

to check that this value is 0 or yj − yi as indicated.
The lemma follows from assertions 1 and 3 in the claim.
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Lemma 3. Fix π, ρ, σ, and let c = Y(π) + Y(ρ) − Y(σ) be the statistic from lemma 2.

1. The map A1] × D1c defined above factors as the inclusion ∆σ
πρ → (∆1)σ

πρ followed by a

bijection (∆1)σ
πρ −̃→ ∆

A1]σ

A1]π,A1]ρ
× ∆

D1c σ

D1c π,D1cρ.

2. If c = 0, then the inclusion ∆σ
πρ→ (∆1)σ

πρ is an isomorphism.

3. If c 6= 0, then ∆σ
πρ is empty. If c is not in the cone spanned by {yi − yi+1}i=1,...,d−1, then

(∆1)σ
πρ and at least one of ∆

A1]σ

A1]π,A1]ρ
, ∆D1c σ

D1c π,D1c ρ is empty.

To define the reverse mapwill require the concept of “honeycomb” from [KnTao99].
Decompose the equilateral triangle of size n into n2 unit triangles, and consider

a “multiplicity” function from the 3
(

n+1

2

)
edges of this decomposition to the naturals.

Define the “tension” on a vertex to be the vector sum of its incident edges (thought of
as outward unit vectors), weighted by these multiplicities. A bounded honeycomb is
a multiplicity function such that

• the tension of internal vertices is zero,

• the tension of vertices on the NW edge (except the North corner) is horizontal,
and

• the 120◦, 240◦ rotated statements hold for the remainder of the boundary.

One can add two such multiplicity functions, giving an additive structure on the set
of bounded honeycombs of size n, called overlay and denoted ⊕ (as it is related to the
direct sum operation on Hermitian matrices [KnTao99]). The dimension of a bounded
honeycomb is the sum of the multiplicities on the horizontal edges meeting the NW
edge, and is additive under ⊕. A bounded honeycomb has only simple degeneracies
if all multiplicities are 1, and there are no vertices of degree> 4. If it also has no vertices
of degree 4, it is generic.
If one relieves the tension on the boundary by attaching rays to infinity, one obtains

(a 30◦ rotation of) a honeycomb as defined in [KnTao99]. (In this way one can see
that the dimension of a bounded honeycomb is invariant under rotation.) Bounded
honeycombs already arose in [KnTaoWo04, §5, theorem 1].

Proof of lemma 3. (1) It is easy to extend A∼ to a map (∆1)σ
πρ→ ∆

A1]σ

A1]π,A1]ρ
, by

j>1 j=1

   *

*   * 

i j
1

(ij) 1
*(ij)

(*1)
((ij)1)

where ∗ represents the equivalence class “numbers larger than 1”.
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To extendD1c to a map (∆1)σ
πρ→ ∆

D1c σ

D1c π,D1c ρ, first erase any puzzle edge that has an
(i1) or ((ij)1) on it, which results in a decomposition into triangles and rhombi. Then
as before, shrink the 1-edges.

Given a pair (G, P) ∈ ∆
A1]σ

A1]π,A1]ρ
×∆

D1c σ

D1c π,D1c ρ, we knowD1cG and P are the same size,

and D1cG is a trivial puzzle in the sense that all edges are labeled ∗. But this triangle
has more structure, if one remembers where the deflated (∗, 1)-rhombi are in it: it has
a bounded honeycomb of dimension equal to the number of 1s in each of π, ρ, σ. (This
is the content of [KnTaoWo04, §5, theorem 1].) An example is in figure 3.
Take this bounded honeycomb on D1cG and overlay it on P. Then “reinflate” P to

a BK1-puzzle Q with D1cQ = P, where each honeycomb edge of multiplicity m and
P-label I (which may be i or (ij)) is inflated to m (I, 1) rhombi with label (I1) across
their waists. This is the inverse map.
(2) If c = 0, by lemma 2 each P ∈ (∆1)σ

πρ has no ((ij)1) labels, and hence is in the
image of the inclusion ∆σ

πρ→ (∆1)σ
πρ.

(3) If c 6= 0, by lemma 2 every P ∈ (∆1)σ
πρ has some ((ij)1) labels, and hence is not

in the image of the inclusion ∆σ
πρ→ (∆1)σ

πρ. So ∆σ
πρ = ∅.

By lemma 2, if P is in (∆1)σ
πρ, then c is in the positive span of {yi − yi+1}i=1,...,n−1.

Contrapositively, if c is not in this span, there can be no such P. Since the empty set

(∆1)σ
πρ is isomorphic to ∆

A1]σ

A1]π,A1]ρ
× ∆

D1c σ

D1c π,D1c ρ, one of these factors must be empty.

Theorem 1. Suppose that π, ρ, σ have the same content. Then the BK coefficient c̃σ
πρ equals

the cardinality |∆σ
πρ|.

Proof. If invij(π) + invij(ρ) 6= invij(σ) for some i > j, then c̃σ
πρ = 0 = |∆σ

πρ|, by proposi-
tion 2 and corollary 1.
If invij(π) + invij(ρ) = invij(σ) for all i > j, the statistic from lemma 2 is zero, and

we proceed by induction on d. If d = 2, this is the Grassmannian case, where the result
is known, so assume d ≥ 3. From lemma 3, we have

∆σ
πρ −̃→ ∆

A1]σ

A1]π,A1]ρ
× ∆

D1c σ

D1c π,D1c ρ .

By lemma 1 (applied to the equivalence relation “1]”) we have

c̃σ
πρ = c̃

A1]σ

A1]π,A1]ρ
· c̃D1c σ

D1c π,D1c ρ .

Inducting on d, we have c̃
A1]σ

A1]π,A1]ρ
= |∆

A1]σ

A1]π,A1]ρ
|, c̃D1c σ

D1c π,D1c ρ = |∆
D1c σ

D1c π,D1c ρ| and so c̃σ
πρ =

|∆σ
πρ| as required.

Theorem 2. Let π, ρ, σ be words with the same content, and for all i > j, invij(π)+invij(ρ) =

invij(σ). Amalgamate the maps Dij : ∆σ
πρ→ ∆

Dijσ

Dijπ,Dijρ
into a single map

(Dij) : ∆σ
πρ −→

∏

i>j

∆
Dijσ

Dijπ,Dijρ
.

Then this map is a bijection.
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Figure 4: The
(

3

2

)
deflations of the BK-puzzle from figure 2, from which it may be

reassembled as in theorem 2.

An example of the image is in figure 4.

Proof. If the number of labels is 1 or 2, the statement is trivial. So assume it is at least 3.
We need to define the reverse map, associating a puzzle Q ∈ ∆σ

πρ to a tuple (Gij ∈

∆
Dijσ

Dijπ,Dijρ
)i>j. By induction on the number of labels, we may assume that there exists a

puzzle P (with no 1s on its boundary) mapping to the tuple (Gij)i>j>1. Then the desired
Qmust have D1cQ = P.
Next we define a Grassmannian puzzle G from the tuple (Gi1)i>1. Each D1Gi1 is a

triangle of the same size, all edges labeled 1, but bearing a bounded honeycomb hi as
in the proof of lemma 3. Then ⊕i>1hi is a bounded honeycomb in this same triangle.
Again as in the proof of lemma 3, inflate ⊕i>1hi to produce a puzzle Gwith two labels
∗ > 1. With this we similarly constrain Q, by A1]Q = G.
Now use lemma 3 parts (1) and (2) to construct Q from the pair (P, G).

Theorem 3. For all π, ρ, σ as in theorem 1,

c̃σ
πρ =

∏

i>j

c
Dijσ

Dijπ,Dijρ
.

Proof. This follows immediately from theorems 1 and 2.

Remark 2. It has been observed several times now (e.g. [DeWe, KiTolTou09]) that when
a Horn inequality is satisfied with equality, a Littlewood-Richardson number factors.
This fact can be seen from theorem 3 as follows.
Let π, ρ, σ ∈ {1, 2, 3}∗ be words of length n. Let π = A2]π and π ′ = D12(π), with

similar notation for ρ, σ, and assume that cσ′

π′ρ′ 6= 0.
Under these conditions, invij(π) + invij(ρ) = invij(σ) for all i > j is equivalent

to asserting that the Horn inequality for (π, ρ, σ) associated to (π ′, ρ ′, σ ′) holds with
equality (see [PuSo08, §4]). With this hypothesis, the Littlewood-Richardson number
cσ

πρ factors as

cσ
πρ = cD23σ

D23π,D23ρ · c
D13σ
D13π,D13ρ .
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This can be seen by comparing the result of lemma 1

c̃σ
πρ = cσ

πρ · c
σ′

π′ρ′

and theorem 3
c̃σ

πρ = cD23σ
D23π,D23ρ · c

D13σ
D13π,D13ρ · c

σ′

π′ρ′ .

4 Relation to extremal honeycombs

Let Rn
+ denote the cone of weakly decreasing n-tuples. The Littlewood-Richardson

cone BDRY(n) ⊂ (Rn
+)3 is a rational polyhedral cone whose elements (λ, µ, ν) can be

characterized in several ways including the following [Fu00, KnTaoWo04]:

• There exists a triple (Hλ, Hµ, Hν) of Hermitian matrices of size n, adding to zero,
whose spectra are (λ, µ, ν).

• There exists a honeycomb h of size n whose boundary edges ∂h have constant
coordinates given by (λ, µ, ν). (We will not use this characterization, and refer
the interested reader to [KnTao99] for definitions.)

• (If (λ, µ, ν) are integral, hencemay be thought of as dominant weights forGLn(C).)
There is aGLn(C)-invariant vector in the tensor product Vλ⊗Vµ⊗Vν of irreducible
representations with those high weights.

• For each puzzle P of size n, with boundary labels 0, 1, the inequalityNW(P) · λ +

NE(P) · µ + S(P) · ν ≤ 0 holds, where NW(P), NE(P), S(P) are the vectors of 0s
and 1s around the puzzle all read clockwise and · is the dot product.

The fourth says that each inequality defining BDRY(n) (other than the chamber inequal-
ities that say λ, µ, ν are decreasing) can be “blamed” on a Grassmannian puzzle. In
[KnTaoWo04] it was shown that the puzzles that occur this way are exactly the rigid
ones, meaning that they are uniquely determined by their boundaries. (The others
define valid, but redundant, inequalities.)
In this section we extend this last connection to one between all regular faces of

BDRY(n) (meaning, not lying on chamber walls) and rigid BK-puzzles. Then the con-
nection between BK-puzzles and the BK product gives a new proof of [Re10, Theorem
D], corresponding the regular faces to BK coefficients equaling 1.
This section closely follows [KnTaoWo04, §3 and §4], and we will only point out

where the proofs there need other than trivial modification. In any case, much of it can
be avoided by invoking [Re10, Theorem D], rather than reproving it combinatorially.

Lemma 4. (Extension of [KnTaoWo04, lemma 3].) Let b be a generic point on a regular face of
BDRY(n) of codimension d − 1. Then there exists a honeycomb h with ∂h = b such that

• h = h1 ⊕ h2 ⊕ · · · ⊕ hd is an overlay of generic honeycombs,
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• h has simple degeneracies, and

• hi intersects hj transversely for each j < i, and at each point p where hi crosses hj, hj

turns clockwise to hi, meaning that a path going from hj to hi through p could turn
right 60◦, not left 60◦ (where continuing straight is turning 0◦).

If h = h1 ⊕ h2 ⊕ · · · ⊕ hd satisfies this third condition, call it a clockwise overlay.

Proof. The proof of [KnTaoWo04, lemma 3] goes by showing that a honeycomb of size
mwith simple degeneracies that is not a clockwise overlay has a (3m− 1)-dimensional
space of perturbations. So if h is written as a clockwise overlay of fewer than d − 1

honeycombs (e.g. as itself), one of them must itself be a clockwise overlay.

This already implies the interesting fact that while BDRY(n) has faces of all dimen-
sions 2, . . . , 3n − 1, its regular faces are of dimension at least 2n.

Lemma 5. (Extension of [KnTaoWo04, theorem 2 and lemma 4].) Let h = h1⊕h2⊕ · · · ⊕hd

be a clockwise overlay. Then there is a codimension d − 1 regular face F of BDRY(n) containing
∂h. It is the intersection of d − 1 regular facets.
Moreover, one can construct from h a BK-puzzle P with d labels, and for each label i < d

one can construct a Grassmannian puzzle Ai]P, such that F is the intersection of the facets
corresponding to (Ai]P).

The construction of P from h is straightforward: each 3-valent vertex in hi is re-
placed with an i-triangle; each 4-valent vertex is replaced either with two i-triangles (if
the vertex lies only on hi) or an (i, j)-rhombus (if the vertex is where hi and hj cross).
The clockwise condition causes the puzzle rhombi to have the required i > j condition.
An example is in figure 5.

3

1

2

Figure 5: A clockwise overlay h1 ⊕ h2 ⊕ h3, whose associated BK-puzzle is the one in
figure 2. The Grassmannian puzzles associated to h1⊕h2, h1⊕h3, h2⊕h3 are in figure
4.
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Remark 3. Borrowing terminology from the study of toric varieties, call a face F of a
polytope rationally smooth if F lies on only codim F many facets. Then lemma 5 im-
plies the curious fact that BDRY(n) is rationally smooth on all its regular faces. (Note
that this makes it easy to describe the partial order on faces, as is done in [Re2, The-
orem D].) This does not follow from its interpretation as a moment polytope (see e.g.
[KnTaoWo04, appendix]); while the moment polytope of a full flag manifold has all
rationally smooth faces, the moment polytope of Gr2(C

4) is an octahedron.

Combining lemmas 4 and 5, we have

Theorem 4. (Extension of [KnTaoWo04, theorem 3].) Let F be a codimension d − 1 regular
face of BDRY(n). Then there exists a BK-puzzle P with d labels, from which one can construct
d − 1 facets of BDRY(n) whose intersection is F.

To characterize the BK-puzzles arising this way, we need to adapt the “gentle loop”
technology of [KnTaoWo04] for Grassmannian puzzles. Orient the region edges as
follows:

• If the edge is between a triangle and an adjacent rhombus, orient it toward the
obtuse vertex of the rhombus.

• If the edge is between an (i, j)-rhombus and an (i, k)-rhombus, i > j > k, orient
it toward the obtuse vertex of the (i, k)-rhombus.

• If the edge is between an (i, k)-rhombus and an (j, k)-rhombus, i > j > k, orient
it toward the obtuse vertex of the (i, k)-rhombus.

Mnemonic: the rhombus with the greater spread takes precedence. The BK-puzzle in
figure 2 has its region edges oriented using this rule.
A gentle path was defined in [KnTaoWo04] as a path in this directed graph that,

at each vertex, either goes straight or turns ±60◦ (not ±120◦). For its generalization in
this paper, we need an additional constraint: if a vertex occurs as the intersection of
two straight lines, a gentle path through it must go straight through. A gentle loop is a
gentle path whose first and last edges coincide (edges not vertices – the next turn after
the last edge might not otherwise be gentle).

Proposition 5. (Extension of [KnTaoWo04, proposition 2].) Let h = h1 ⊕ h2 ⊕ · · · ⊕ hd be a
clockwise overlay of generic honeycombs, P the corresponding BK-puzzle, γ = (γ1, . . . , γs) a
list of edges along a gentle path in P of length s > 1, and γ̃ the corresponding sequence of edges
in h. Then the lengths of the honeycomb edges (γ̃i) weakly decrease.

To prove this, we will study the possible internal vertices in a BK-puzzle, and use
this classification to simultaneously prove

Lemma 6. (Extension of [KnTaoWo04, lemma 5].) Let P be a BK-puzzle without gentle loops,
and v an internal vertex. Label each region edge meeting v with the number of gentle paths
starting at that edge and terminating on the BK-puzzle boundary. Then these labels are strictly
positive, and v has zero tension.
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Proof. An internal vertex v of a puzzle may be an obtuse vertex of (a priori) 0, 1, 2 or 3
rhombi. Consider the labels on the edges meeting v, clockwise: they strictly decrease
across obtuse angles, stay the same across acute angles from triangles, and strictly
increase across acute angles from rhombi.
So if there are no obtuse vertices at v, there can be no acute rhombus vertices either,

just six i-triangles for the same i. Such a v has no gentle paths going through it.
There cannot be three obtuse vertices at v, as that would have three strict increases

with no room for any decreases.
That leaves either 1 or 2 obtuse vertices at v. We draw the possibilities up to rotation

and puzzle duality that have no triangles at v, only acute rhombi. (As each triangle
makes the situation simpler we leave those cases to the reader.) In each case the labels
are ordered a > b > c > d > e, or possibly a > c > b > d in the second case.

e b c c d d c

dd d

a

b

d d c c
a

c

b
c

b b
d ccbe

a

b

a aaa

d

b

be cb c d d c

a

aa b

aa

d

b

To prove the proposition, it suffices to check s = 2. We draw the region (in the
clockwise overlay) dual to the puzzle vertex. The arrows within are dual to 2-step
gentle paths.

c

a

b

c d

d

b

a

c

b
c

a
d a

b
d

e

1. None of these are “gentle sinks” – any incoming path can be extended to be gently
outgoing. This is why the number of gentle paths starting at an internal edge and
terminating on the puzzle boundary is strictly positive.

2. In each case, the length of an edge with an in-pointing arrow is the sum of
the lengths of the edges it points to. (This is where the modification of the
[KnTaoWo04] definition of “gentle path” is important.) Therefore if we change
the length of each honeycomb edge incident with a polygon to be the number of
gentle paths emanating from it, possibly zero, the result is still a closed polygon.
Dually, v has zero tension.

Lemma 7. (Extension of the corollary in [KnTaoWo04].) BK-puzzles associated to clockwise
overlays have no gentle loops.
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Proof. Let γ = (γ1, . . . , γs) be a path whose corresponding honeycomb edges all have
the same length. Comparing to the BK-puzzle vertex classification above, every corre-
sponding honeycomb region must be a parallelogram. (One possibility to remember is
the leftmost vertex, but with b = c = d and the rightmost two rhombi replaced with
triangles.) Chaining these together, the parallelograms all lie between the same two
lines, so γ can not close up to a loop.
But by proposition 5, any gentle loop γ will have all corresponding honeycomb

edges of the same length. So there can be no such loops.

Proposition 6. (Extension of [KnTaoWo04, proposition 3].) Let P be a BK-puzzle of size n

with no gentle loops. Then there exists a clockwise overlay h such that the BK-puzzle that
lemma 5 associates to h is P. By this lemma, the d − 1 inequalities defined by the BK-puzzle
determine a regular face of BDRY(n).

The edges in h are assigned lengths according to the number of gentle paths start-
ing at their corresponding puzzle edges. To know that the resulting h is a transverse
clockwise overlay requires the strict positivity in lemma 6.

Theorem 5. (Extension of [KnTaoWo04, theorem 5].)

1. There is a 1 : 1 correspondence between BK-puzzles of size n without gentle loops and
regular faces of BDRY(n).

2. (An analogue of [Re2, TheoremD].) One face F1 contains another, F2, if the corresponding
BK-puzzle P1 is an ambiguation A∼P2 of the BK-puzzle P2.

Proof. Claim (1) is a combination of lemma 4, lemma 5, and proposition 6. Claim (2)
follows from lemma 5.

Remark 4. The BK-puzzles for full flags (no repeated edge labels on a side) correspond
to 2n-dimensional regular faces. In the Hermitian sum context, if we fix λ and µ, these
become regular vertices and correspond to sums of commuting Hermitian matrices. So
they were easy to study, historically, and people found many of the inequalities on
BDRY(n) by looking nearby these vertices.
One might hope, then, that every regular facet of BDRY(n) contains one of these

2n-dimensional regular faces. A counterexample is provided by the unique puzzle in
∆21121

12112,12112, as any attempt to disambiguate the 2s inside a finer BK-puzzle breaks the
invij counts. Correspondingly, in the overlay h1 ⊕ h2 pictured here,

1
2
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none of the internal edges of h2 can be shrunk to points while keeping h1 ⊕ h2 trans-
verse, as those edges all cross edges of h1.

Theorem 6. (Extension of [KnTaoWo04, theorems 6 and 7].) A BK-puzzle is rigid iff it has no
gentle loops.

The hard direction, taking 3 pages in [KnTaoWo04], constructs a new BK-puzzle P ′

from a BK-puzzle P and a minimal gentle loop. We leave the reader to either check that
those arguments generalize to BK-puzzles, or to invoke [Re2, Theorem C].
The reader may be wondering about the redundant inequalities on BDRY(n) speci-

fied by nonrigid Grassmannian puzzles. Each one defines some face of BDRY(n); what
is the corresponding BK-puzzle? But [KnTaoWo04, theorem 8] says that these faces are
never regular, so do not correspond to BK-puzzles.

5 Rigid regular honeycombs

As with puzzles, call a honeycomb rigid if it is uniquely determined by its boundary.
These have received some study already; under the deflation map linking honeycombs
to puzzles, these give the rigid puzzles indexing the regular facets of BDRY(n). Ful-
ton’s conjecture (proven combinatorially in [KnTaoWo04] and geometrically in [Re1,
BeKuRe]) is that an integral honeycomb that is Z-rigid is also R-rigid.
It is easy to see that the set of boundaries of rigid honeycombs is a union of faces of

BDRY(n). In this theorem we characterize which regular faces arise this way.

Theorem 7. Let h be a honeycomb such that ∂h is regular. Then h is rigid iff h is a clockwise
overlay h1 ⊕ · · · ⊕ hd of honeycombs of size 1 or 2.

Proof. Theorem 2 from [KnTao99] says that some h ′ with ∂h ′ = ∂h has simple degen-
eracies, and if we elide them (thinking of them as a sort of local overlay, rather than
actual vertices), the underlying graph of the resulting space is acyclic. Let {h ′

i} be the
components of this forest, so h ′ =

⊕
i h

′
i (not yet necessarily clockwise). Each h ′

i auto-
matically has simple degeneracies, and being acyclic, has size 1 or 2.

=⇒ Now assume h is rigid, so h = h ′. Then for any pair h ′
i, h

′
j, one must be

clockwise of the other, exactly as in the proof of [KnTaoWo04, lemma 3]. Since h ′
i, h

′
j

must intersect, who is clockwise of whom is uniquely determined.
Moreover, the clockwiseness relation must be transitive, or else there is some triple

h ′
i, h

′
j, h

′
k with h ′

i meeting h ′
j clockwise at p, h

′
j meeting h ′

k clockwise at q, h
′
kmeeting

h ′
i clockwise at r. But then [KnTaoWo04, lemma 2] can perturb h along the unique loop
from p to q to r to p.
Hence “clockwiseness” is a total order on the {h ′

i}.
⇐=Wewish to show that if ∂h ′ = ∂h, then h ′ = h. Each of the d−1 puzzle equalities

satisfied by ∂h ′ force h ′ to be an overlay, since by the proof of [KnTaoWo04, theorem
2] the edges in h corresponding to rhombi must be length 0. So h ′ is an overlay of
these honeycombs of size 1 and 2, each of which is rigid. That is, h and h ′ are the same
overlay of the same size 1 or 2 honeycombs.
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Corollary 2. The rigid regular faces of BDRY(n) correspond to non-vanishing Belkale-Kumar
coefficients on partial flag manifolds where each ki − ki−1 ≤ 2. (By the product formula, such
coefficients are automatically 1.)

Ressayre points out to us that this result is implicit in the proof of [Re3, Theorem 8].
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