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Abstract

A new family of generalized Stirling and Bell numbers is introduced by consider-
ing powers (V U)n of the noncommuting variables U, V satisfying UV = V U + hV s.
The case s = 0 (and h = 1) corresponds to the conventional Stirling numbers of
second kind and Bell numbers. For these generalized Stirling numbers, the recursion
relation is given and explicit expressions are derived. Furthermore, they are shown
to be connection coefficients and a combinatorial interpretation in terms of statistics
is given. It is also shown that these Stirling numbers can be interpreted as s-rook
numbers introduced by Goldman and Haglund. For the associated generalized Bell
numbers, the recursion relation as well as a closed form for the exponential gener-
ating function is derived. Furthermore, an analogue of Dobinski’s formula is given
for these Bell numbers.

1 Introduction

The Stirling numbers (of first and second kind) are certainly among the most important
combinatorial numbers as can be seen from their occurrence in many different contexts,
see, e.g., [6, 14, 35, 38, 42] and the references given therein. One of these interpretations is
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in terms of normal ordering special words in the Weyl algebra generated by the variables
U, V satisfying

UV − V U = 1, (1)

where on the right-hand side the identity is denoted by 1. A concrete representation for
(1) is given by the operators

U 7→ D ≡ d

dx
, V 7→ X

acting on a suitable space of functions (where (X · f)(x) = xf(x)). In the mathematical
literature, the simplification (i.e., normal ordering) of words in D,X can be traced back to
at least Scherk [31] (see [2] for a nice discussion of this and several other topics related to
normal ordering words in D,X) and many similar formulas have appeared in connection
with operator calculus [6, 29, 30] and differential posets [37]. Already Scherk derived that
the Stirling numbers of second kind S(n, k) appear in the normal ordering of (XD)n, or,
in the variables used here,

(V U)n =

n
∑

k=1

S(n, k)V kUk. (2)

This relation has been rediscovered countless times. In the physical literature, this con-
nection was rediscovered by Katriel [17] in connection with normal ordering expressions
in the boson annihilation a and creation operator a† satisfying the commutation relation
aa† − a†a = 1 of the Weyl algebra. Since the normal ordered form has many desirable
properties simplifying many calculations, the normal ordering problem has been discussed
in the physical literature extensively; see [2] for a thorough survey of the normal order-
ing for many functions of X and D with many references to the original literature. The
relation (2) has been generalized by several authors to the form (here we assume r ≥ s)

(V rUs)n = V n(r−s)

n
∑

k=1

Sr,s(n, k)V
kUk, (3)

where the coefficients are, by definition, generalized Stirling numbers of second kind, see,
e.g., [3, 5, 9, 19, 20, 22, 23, 25, 32, 40]. Clearly, one has S1,1(n, k) = S(n, k). Let us briefly
mention that also q-deformed versions of these Stirling numbers have been discussed
[22, 23, 32, 40].

In another direction, Howard [16] unified many of the generalizations of the Stirling
numbers by introducing degenerate weighted Stirling numbers S(n, k, λ|θ) which reduce for
λ = θ = 0 to the conventional Stirling numbers of second kind, i.e., S(n, k, 0|0) = S(n, k).
He derived many properties of these numbers and also explicit expressions. The recursion
relation for these numbers is given by [16, (4.11)]

S(n+ 1, k, λ|θ) = S(n, k − 1, λ|θ) + (k + λ− θn)S(n, k, λ|θ). (4)

As a last generalization of the Stirling and Bell numbers, we would like to mention [34]
and the r-Stirling and r-Bell number (see [24] and the references therein). Neither of these
two generalizations is directly related to the variant we discuss in the current paper.
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Two of the present authors considered in [21] the following generalization of the com-
mutation relation (1), namely,

UV − V U = hV s, (5)

where it was assumed that h ∈ C\{0} and s ∈ N0. The parameter h should be considered
as a free “deformation parameter” (Planck’s constant) and we will often consider the
special case h = 1. The dependance on the parameter s will be central for the rest of the
paper. Note that in the case s = 0 (5) reduces to (1) (if h = 1). Later on we will allow
s ∈ R, but first we restrict to s ∈ N0 to be able to use the above interpretation and the
results of [21], where it was discussed that a concrete representation of (5) is given by the
operators

U 7→ Es ≡ XsD, V 7→ X. (6)

Now it is very natural to consider in the context of arbitrary s ∈ N0 the expression (V U)n

for variables U, V satisfying (5). In [21], the following result was derived:

Proposition 1.1. Let V, U be variables satisfying (5) with s ∈ N0 and h ∈ C \ {0}. Then
one can define generalized Stirling numbers Ss;h(n, k) by

(V U)n =

n
∑

k=1

Ss;h(n, k)V
s(n−k)+kUk. (7)

These generalized Stirling numbers can be expressed as

Ss;h(n, k) = hn−k

n
∑

l=k

Ss+1,1(n, l)ss,1(l, k),

where ss,1(l, k) are the generalized Stirling numbers of first kind introduced by Lang [19].

The coefficients Ss;h(n, k) can be interpreted as some kind of generalized Stirling
numbers of second kind. As the explicit expression shows, they are very closely related to
the generalized Stirling numbers Sr,1(n, k) considered by Lang [19, 20] - and already before
him by Scherk [31], Carlitz [5] and Comtet [6, Page 220] - and more recently [2, 9, 26] (here
one may also find a combinatorial interpretation of Sr,1(n, k) in terms of certain increasing
trees). Burde considered in [4] matrices X,A satisfying XA−AX = Xp with p ∈ N and
discussed the coefficients which appear upon normal ordering (AX)n. He showed that they
can be expressed for p ≥ 2 through the degenerate weighted Stirling numbers S(n, k, λ|θ),
where λ = 0 and θ = p

p−1
[4]. Note that in terms of our variables U, V , Burde considered

normal ordering (UV )n, which is from our point of view less natural. However, since one
can write (V U)n = V (UV )n−1U , these two problems are, of course, intimately related. Let
us point out that Benaoum [1] considered the case s = 2 of such variables in connection
with a generalized binomial formula. This has been continued by Hagazi and Mansour
[15], who considered special functions in such variables. More directly related to the
present discussion, Diaz and Pariguan [8] described normal ordering in the meromorphic
Weyl algebra. Recall that for s = 0, one has the representation D,X of the variables U, V
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satisfying the relation DX −XD = 1 of the Weyl algebra. Considering instead of X the
operator X−1, one finds the relation D(X−1)−X−1D = −X−2 and thus a representation
of our variables U, V for s = 2 and h = −1. Considering s = 1 (and h = 1), one has a
representation V 7→ X and U 7→ E1 = XD, the Euler operator, and the normal ordering
is related to Touchard polynomials [7]. Varvak considered variables U, V satisfying (5) for
s ∈ N0 and their normal ordering and she pointed out the connection to s-rook numbers.
As already mentioned above, Burde [4] considered combinatorial coefficients defined by a
normal ordering of variables satisfying a very similar relation like (5).

As we will show in the present paper, the generalized Stirling numbers defined by
(7) are very natural insofar as many properties of the conventional Stirling number of
second kind find a simple analogue. For example, the interpretation of S(n, k) as a rook
number of a staircase Ferrers board generalizes in a beautiful fashion to the interpretation
of Ss;h(n, k) as a s-rook number of the staircase board.

The corresponding generalized Bell numbers are introduced in analogy to the conven-
tional case by

Bs;h(n) :=

n
∑

k=1

Ss;h(n, k). (8)

The structure of the paper is as follows. In Section 2, we consider the generalized
Stirling and Bell numbers for s = 0 and s = 1 explicitly since many simplifications
occur. For s = 0, the generalized Stirling numbers are given by the conventional Stirling
numbers of second kind, whereas in the case s = 1, they are given by the unsigned Stirling
numbers of first kind. In Section 3, the generalized Stirling numbers are considered for
arbitrary s ∈ R and the recursion relation as well as an explicit formula is derived. The
corresponding generalized Bell numbers are treated in Section 4, where the exponential
generating function, the recursion relation and an analogue to Dobinski’s formula are
given. In Section 5, several combinatorial aspects of the generalized Stirling and Bell
numbers are treated. Furthermore, it is shown that the generalized Stirling numbers
can be considered as connection coefficients and that they also have (for s ∈ N0) an
interpretation in terms of s-rook numbers. Finally, in Section 6, some conclusions are
presented.

2 The generalized Stirling and Bell numbers for s =

0, 1

In this section, we want to discuss the first two instances of the generalized Stirling and
Bell numbers, namely, the cases s = 0 and s = 1.

2.1 The case s = 0

Let s = 0. Then the commutation relation (5) reduces nearly to (1) - only the factor h
remains. From this it is clear that the generalized Stirling numbers S0;h(n, k) are given
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by the conventional Stirling numbers of second kind,

S0;h(n, k) = hn−kS(n, k), (9)

as was already discussed in [21] (and follows also immediately from Proposition 1.1). The
generalized Bell numbers are, consequently, given by

B0;h(n) =
n

∑

k=1

hn−kS(n, k) (10)

and reduce, in the case h = 1, to the usual Bell numbers, i.e., B0;1(n) =
∑n

k=1 S(n, k) =
B(n).

2.2 The case s = 1

Let s = 1. The commutation relation (5) reduces in this case to UV = V (U + h) and
yields, after a small induction,

UV k = V k(U + hk). (11)

This allows us to find the generalized Stirling numbers S1;h(n, k) in the following fashion.
For n = 2, we find (V U)2 = V UV U = V 2(U + h)U , where we have used (11) in the last
step. Now it follows that

(V U)3 = (V U){V 2(U + h)U} = V (UV 2)(U + h)U = V 3(U + 2h)(U + h)U.

An induction shows that, in general,

(V U)n = V n
n−1
∏

k=0

(U + kh) = V nhn
n−1
∏

k=0

(Ũ + k), (12)

where we have abbreviated Ũ = U/h. Recalling the generating function of the signless
Stirling numbers of first kind [38, Proposition 1.3.4]

n
∑

k=0

c(n, k)yk = y(y + 1) · · · (y + n− 1), (13)

we can rewrite (12) as

(V U)n = V nhn

n
∑

k=0

c(n, k)Ũk =

n
∑

k=0

c(n, k)hn−kV nUk.

A comparison with (7) shows that

S1;h(n, k) = hn−kc(n, k) = (−h)n−ks(n, k), (14)
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where we have used the relation s(n, k) = (−1)n−kc(n, k) [38, Page 18]. The corresponding
Bell numbers are, consequently, given by

B1;h(n) =

n
∑

k=0

hn−kc(n, k) =

n
∑

k=0

(−h)n−ks(n, k) (15)

and reduce, in the case h = 1, to B1;1(n) =
∑n

k=0 c(n, k) = n! (which can be seen from
(13) by considering y = 1). Let us introduce the exponential generating function of the
generalized Bell numbers by

Bes;h(x) :=
∑

n≥0

Bs;h(n)
xn

n!
.

Proposition 2.1. The exponential generating function of the generalized Bell numbers is
given for s = 1 and h ∈ C \ {0} by

Be1;h(x) =
1

(1 − hx)1/h
. (16)

For h = 1, it reduces to Be1;1(x) = (1 − x)−1.

Proof. Inserting the above expression (15) for B1;h(n) into the definition of Be1;h(x) yields

Be1;h(x) =
∑

n≥0

n
∑

k=0

hn−kc(n, k)
xn

n!
=

∑

n,k≥0

c(n, k)

(

1

h

)k
(hx)n

n!
.

Recalling
∑

n,k≥0

c(n, k)uk z
n

n!
=

1

(1 − z)u
,

the assertion follows.

3 The generalized Stirling numbers for arbitrary s

The following result (see [21]), which generalizes (11), will be useful in the subsequent
computations.

Lemma 3.1. Let U, V be variables satisfying (5) with s ∈ N0 and h ∈ C \ {0}. Then one
has for k ∈ N0 the relation

UV k = V kU + hkV k−1+s. (17)

Let us consider the first few generalized Stirling numbers explicitly. Clearly, (V U)1 =
V U , so Ss;h(1, 1) = 1 (and, consequently, Bs;h(1) = 1). The first interesting case is n = 2.
Directly from the commutation relation and using (17), one finds

(V U)2 = V UV U = V {V U + hV s}U = V 2U2 + hV s+1U,
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implying Ss;h(2, 1) = h,Ss;h(2, 2) = 1 (and, consequently, Bs;h(2) = 1 + h). The next
case is slightly more tedious, but completely analogous,

(V U)3 = V U{V 2U2 + hV s+1U}
= V {UV 2}U2 + hV {UV s+1}U
= V {V 2U + h2V s+1}U2 + hV {V s+1U + h(s + 1)V 2s}U
= V 3U3 + 3hV s+2U2 + h2(s + 1)V 2s+1U,

implying
Ss;h(3, 1) = h2(s+ 1), Ss;h(3, 2) = 3h, Ss;h(3, 3) = 1

and, consequently, Bs;h(3) = h2(s+ 1) + 3h+ 1.
As a first step, we now derive the recursion relation of the generalized Stirling numbers.

Proposition 3.2. The generalized Stirling numbers Ss;h(n, k) satisfy for s ∈ N0 and
h ∈ C \ {0} the recursion relation

Ss;h(n + 1, k) = Ss;h(n, k − 1) + h{k + s(n− k)}Ss;h(n, k), (18)

with the initial value Ss;h(1, 1) = 1 (and Ss;h(n, 0) = δn,0 for all n ∈ N0).

Proof. Instead of considering the explicit expression given in Proposition 1.1, we start
from (7). On the one hand, we have (V U)n+1 =

∑n+1
k=1 Ss;h(n + 1, k)V s(n+1−k)+kUk. On

the other hand, one has

(V U)n+1 =

n
∑

k=1

Ss;h(n, k)V UV
s(n−k)+kUk

=
n

∑

k=1

Ss;h(n, k)V {V s(n−k)+kU + h (s(n− k) + k)V s(n−k)+k−1+s}Uk

=
n

∑

k=1

Ss;h(n, k){V s(n−k)+k+1Uk+1 + h (s(n− k) + k)V s(n−k+1)+kUk},

where we have used (17) in the second line. Comparing the coefficients yields the asserted
recursion relation.

Remark 3.3. As mentioned in Section 1, the generalized Stirling numbers Ss;h(n, k) are
very closely related to the generalized Stirling numbers Ss,1(n, k). Lang [19, (13)] gives
for them the following recursion relation (adapted to our notation)

Ss,1(n+ 1, k) = Ss,1(n, k − 1) + {k + (s− 1)n}Ss,1(n, k).

Comparing this to the recursion relation (4) of the degenerate weighted Stirling numbers
S(n, k, λ|θ), one sees that choosing λ = 0 and θ = −(s − 1) = (1 − s) reproduces the
recursion relation of the Ss,1(n, k), i.e.,

Ss,1(n, k) = S(n, k, 0|1− s).

In contrast, the recursion relation (18) of the generalized Stirling numbers Ss;h(n, k) is
not a special case of (4), although they look very similar.
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Example 3.1. Let s = 0. The recursion relation (18) reduces to

S0;h(n+ 1, k) = S0;h(n, k − 1) + hkS0;h(n, k),

which is, in the case h = 1, exactly the recursion relation of the Stirling numbers of second
kind [38, Page 33]. In the case of arbitrary h, the generalized Stirling numbers are rescaled
Stirling numbers of second kind, see (9).

Example 3.2. Let s = 1. The recursion relation (18) reduces to

S1;h(n+ 1, k) = S1;h(n, k − 1) + hnS1;h(n, k),

which is, in the case h = 1, exactly the recursion relation of the signless Stirling numbers
of first kind [38, Lemma 1.3.3]. In the case of arbitrary h, the generalized Stirling numbers
are rescaled signless Stirling numbers of first kind, see (14).

Now, although the recursion relation (18) was derived from the definition of the
Ss,h(n, k) in (7) for s ∈ N0, we can now switch the point of view and define the gen-
eralized Stirling numbers for arbitrary s ∈ R by the recursion relation.

Definition 3.1. Let s ∈ R and h ∈ C \ {0}. The generalized Stirling numbers Ss;h(n, k)
are defined by the initial values and the recursion relation given in Proposition 3.2. The
corresponding Bell numbers are then defined by (8).

It is interesting to note that, already in the case s = 2, one obtains in the recursion
relation S2;h(n+ 1, k) = S2;h(n, k − 1) + h(2n− k)S2;h(n, k) a nontrivial mix of n and k
as factor in the second summand.

Example 3.3. Let s = 1
2

and h = 2. The corresponding generalized Stirling numbers
satisfy the recursion relation

S 1
2
;2(n+ 1, k) = S 1

2
;2(n, k − 1) + {n+ k}S 1

2
;2(n, k),

which is exactly the recursion relation of the (unsigned) Lah numbers L(n, k) = n!
k!

(

n−1
k−1

)

[6, Page 156], i.e.,
S 1

2
;2(n, k) = L(n, k).

Remark 3.4. Let us consider h = 1. Then we can write (18) equivalently as

Ss;1(n+ 1, k) = Ss;1(n, k − 1) + {sn+ (1 − s)k)}Ss;1(n, k).

Let us furthermore restrict to s ∈ [0, 1]. Since s = 0 corresponds to the conventional
Stirling numbers of second kind S(n, k) (see Example 3.1) and the case s = 1 corresponds
to the signless Stirling numbers of first kind c(n, k) (see Example 3.2), one is tempted to
view the generalized Stirling numbers Ss;1(n, k) with 0 < s < 1 due to the bracket in the
second factor as some kind of “linear interpolation” (or “convex combination”) between
these two extremal points.
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Some special values of the generalized Stirling numbers can be obtained easily.

Proposition 3.5. The generalized Stirling numbers satisfy, for n ≥ 2 and arbitrary s ∈ R

and h ∈ C \ {0},

Ss;h(n, n) = 1, Ss;h(n, n− 1) = h

(

n

2

)

, Ss;h(n, 1) = hn−1
n−2
∏

k=0

(1 + ks).

In particular, one has for s = 2 that S2;h(n, 1) = hn−1(2n− 3)!!.

Proof. The recursion relation (18) shows that Ss;h(n, n) = Ss;h(n− 1, n − 1) so that an
induction together with Ss;h(1, 1) = 1 yields the first assertion. The second follows also
from the recursion relation by induction since

Ss;h(n, n−1) = Ss;h(n−1, n−2)+h(n−1)Ss;h(n−1, n−1) = Ss;h(n−1, n−2)+h(n−1).

The last assertion follows from the recursion relation

Ss;h(n, 1) = h{1 + s(n− 2)}Ss;h(n− 1, 1)

and an induction.

In Table 1 the first few generalized Stirling numbers are given.

n Ss;h(n, 1) Ss;h(n, 2) Ss;h(n, 3) Ss;h(n, 4) Ss;h(n, 5)

1 1
2 h 1
3 h2(s + 1) 3h 1
4 h3(s + 1)(2s + 1) h2(4s + 7) 6h 1
5 h4(s + 1)(2s + 1)(3s + 1) h3(10s2 + 25s + 15) h2(10s + 25) 10h 1

Table 1: The first few generalized Stirling numbers Ss;h(n, k).

For later use, we introduce the exponential generating function of the generalized
Stirling numbers with k = 1, i.e., of Ss;h(n, 1) by

Ses;h(x) :=
∑

n≥1

Ss;h(n, 1)
xn

n!
.

Proposition 3.6. Let s ∈ R \ {0, 1} and h ∈ C \ {0}. The function Ses;h satisfies the
differential equation

Se
′
s;h(x) =

1

(1 − hsx)
1
s

.

Consequently, it is given explicitly by

Ses;h(x) =
1

h(s− 1)

{

1 − (1 − hsx)
s−1

s

}

.
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In the case s = 0, it is given by

Se0;h(x) =
1

h
(ehx − 1).

In the case s = 1, it is given by

Se1;h(x) = log

(

1

(1 − hx)1/h

)

.

Proof. Let us consider first the case s 6= 0, 1. Using the binomial series, we obtain

1

(1 − hsx)
1
s

=
∑

m≥0

(

m+ 1
s
− 1

m

)

m!(hs)mx
m

m!
.

The asserted differential equation follows due to

(

m+ 1
s
− 1

m

)

m!(hs)m = hm

m−1
∏

j=0

(1 + js) = Ss;h(m+ 1, 1),

where we have used in the second equation, Proposition 3.5. The explicit form of the
exponential generating function follows from

Ses;h(x) =

∫ x

0

dt

(1 − hst)
1
s

by a standard integration. Let us turn to the case s = 0. Using (9), one finds S0;h(n, 1) =
hn−1S(n, 1) = hn−1 and, consequently, Se0;h(x) =

∑

n≥1 h
n−1 xn

n!
= 1

h
(ehx − 1). In the case

s = 1, we use in a similar fashion (14) and find S1;h(n, 1) = (−h)n−1s(n, 1) = hn−1(n−1)!,
implying

Se1;h(x) =
∑

n≥1

hn−1(n− 1)!
xn

n!
=

1

h

∑

n≥1

(hx)n

n
=

1

h
log

(

1

1 − hx

)

= log

(

1

(1 − hx)1/h

)

,

as asserted.

Example 3.4. Let h = 1 and s = 2. It follows from Proposition 3.6 that

Se2;1(x) = 1 −
√

1 − 2x.

According to Example 5.2.6 on page 15 of [39], this is the exponential generating function
of binary set bracketings such that if b(n) is the number of (unordered) complete binary
trees with n labeled endpoints, one has

∑

n≥0 b(n)xn

n!
= 1 −

√
1 − 2x. Thus, S2;1(n, 1) =

b(n). Since b(n) = 1·3·5 · · · (2n−3) = (2n−3)!!, this is in accordance with Proposition 3.5.
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Remark 3.7. Recall that for the conventional Stirling numbers of second kind - i.e.,
the case s = 0 and h = 1 - if one considers the ordinary generating function Bk(x) :=
∑

n≥k S(n, k)xn, and applies the two-term recurrence for S(n, k), then one obtains the
relation Bk(x) = xBk−1(x) + kxBk(x), or,

(1 − kx)Bk(x) = xBk−1(x).

This can be solved easily for Bk(x), allowing for a determination of the parity (i.e., congru-
ence modulo 2) of S(n, k) [42, Page 149]. For the case of arbitrary s, the same procedure
is not successful due to the mixing of n and k in the second factor of (18). Introducing
Bk|s;h :=

∑

n≥k Ss;h(n, k)x
n, the recursion (18) yields

(1 − h(1 − s)kx)Bk|s;h(x) = xBk−1|s;h(x) + hsx2B′
k|s;h(x). (19)

Clearly, for s = 0 and h = 1, one has Bk|0;1(x) = Bk(x) and this equation reduces to
the one for the conventional Stirling numbers given above, but in general it seems much
harder to solve.

Let us introduce the bivariate ordinary generating function of the generalized Stirling
numbers by

Bs;h(x, y) :=
∑

k≥0

Bk|s;h(x)y
k =

∑

k≥0

∑

n≥k

Ss;h(n, k)x
nyk.

Proposition 3.8. Fix h 6= 0. For s ∈ R the bivariate ordinary generating function
Bs;h(x, y) satisfies the partial differential equation

{

sx
∂

∂x
+ (1 − s)y

∂

∂y

}

Bs;h(x, y) =

(

1 − xy

hx

)

Bs;h(x, y). (20)

Proof. From (19), one obtains, upon multiplying by yk and summing over k, the partial
differential equation

{

1 − h(1 − s)xy
∂

∂y

}

Bs;h(x, y) = xyBs;h(x, y) + hsx2 ∂

∂x
Bs;h(x, y),

which is equivalent to the asserted equation.

Example 3.5. Note that (20) reduces in the case s = 0 and h = 1 - corresponding to the
conventional Stirling numbers of second kind (see Example 3.1) - to

∂B0;1(x, y)

∂y
=

(

1 − xy

xy

)

B0;1(x, y).

Considering instead s = 1 and h = 1 - corresponding to the unsigned Stirling numbers of
first kind (see Example 3.2) - yields

∂B1;1(x, y)

∂x
=

(

1 − xy

x2

)

B1;1(x, y).
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Finally, letting s = 1
2

and h = 2 - corresponding to the unsigned Lah numbers (see
Example 3.3) - we obtain from (20) for the bivariate ordinary generating function of the
unsigned Lah numbers

{

x
∂

∂x
+ y

∂

∂y

}

B 1
2
;2(x, y) =

(

1 − xy

x

)

B 1
2
;2(x, y).

Now we give the explicit form of the generalized Stirling numbers in the following
theorem.

Theorem 3.9. Fix h 6= 0. For s ∈ R \ {0, 1}, the generalized Stirling numbers are given
explicitly by

Ss;h(n, k) =
hn−ksnn!

(1 − s)kk!

k
∑

j=0

(−1)k−j

(

k

j

)(

n+ j
s
− j − 1

n

)

,

for all n ≥ k ≥ 0. If s = 0, then S0;h(n, k) = hn−kS(n, k), and if s = 1, then S1;h(n, k) =
(−h)n−ks(n, k).

Proof. Let a = hs and b = h−hs. For convenience, rename Ss;h(n, k) as Sa;b(n, k). Then
(18) may be rewritten as

Sa;b(n, k) = Sa;b(n− 1, k − 1) + [a(n− 1) + bk]Sa;b(n− 1, k), n ≥ k ≥ 1, (21)

with Sa;b(0, 0) = 1 and Sa;b(n, k) = 0 if 0 ≤ n < k. Define the exponential generating
function Lk(x) for k ≥ 0 by

Lk(x) :=
∑

n≥k

Sa;b(n, k)
xn

n!
.

Multiplying both sides of (21) by xn

n!
, summing over n and then differentiating with respect

to x, we obtain

L′
k(x) −

bk

1 − ax
Lk(x) =

Lk−1(x)

1 − ax
, k ≥ 1, (22)

with L0(x) = 1.
The case s 6= 0, 1: Now assume that a, b 6= 0 (we treat the cases a = 0 or b = 0 below).

Multiplying both sides of (22) by (1 − ax)
bk
a , we see that (22) may be expressed as

[(1 − ax)
bk
a Lk(x)]

′ = (1 − ax)
b
a
−1 × (1 − ax)

b(k−1)
a Lk−1(x).

Letting r := b
a
− 1 and hk(x) := (1 − ax)

bk
a Lk(x), k ≥ 0, this equation may be rewritten

as
h′k(x) = (1 − ax)rhk−1(x), (23)
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with h0(x) = 1. To find hk(x), and thus Lk(x) = (1 − ax)−
bk
a hk(x)), we consider the

further generating function

h(x, y) :=
∑

k≥0

hk(x)y
k.

From equation (23), we obtain

∂

∂x
h(x, y) = (1 − ax)ryh(x, y) (24)

with h(x, 0) = h(0, y) = 1, which leads to

h(x, y) = e
1−(1−ax)r+1

a(r+1)
y

=
∑

k≥0

(1 − (1 − ax)r+1)k

ak(r + 1)k

yk

k!
. (25)

Thus, by r = b
a
− 1,

Lk(x) =
hk(x)

(1 − ax)
bk
a

=
(1 − (1 − ax)r+1)k

ak(r + 1)kk!(1 − ax)
bk
a

=

k
∑

j=0

(−1)j

(

k

j

)

1

bkk!(1 − ax)
b(k−j)

a

.

Hence, by comparing the xn coefficient on both sides of the above equation, we obtain

Sa;b(n, k) =
n!

bkk!

k
∑

j=0

(−1)j

(

k

j

)(

n+ b(k−j)
a

− 1

n

)

an.

Substituting a = hs and b = h− hs yields the desired result.
The case s = 0: We now treat the case s = 0, i.e., a = 0 and b 6= 0. Taking a = 0 in

(22), we get
L′

k(x) − bkLk(x) = Lk−1(x),

which is equivalent to

(e−bkxLk(x))
′ = e−bkxLk−1(x) = e−bx · e−b(k−1)xLk−1(x),

with L0(x) = 1. Define
dk(x) := e−bkxLk(x),

so
d′k(x) = e−bxdk−1(x), k ≥ 1,

with d0(x) = 1. Multiplying this recurrence by yk and summing over k ≥ 1, we obtain

∂

∂x
d(x, y) = e−bxyd(x, y),

where we have defined
d(x, y) :=

∑

k≥0

dk(x)y
k.
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Solving this equation, noting the boundary conditions d(0, y) = d(x, 0) = 1, we obtain

d(x, y) = e
y
b
(1−e−bx). (26)

Hence, dk(x) = [yk]d(x, y) = (1−e−bx)k

bkk!
, which implies

Lk(x) =
(1 − e−bx)k

e−bkxbkk!
=

(ebx − 1)k

bkk!
.

Substituting a = 0 and b = h, this shows that

S0;h(n, k) = n![xn]Lk(x) = n![xn]
(ehx − 1)k

hkk!
=
n!

hk
[xn]

∑

m≥0

S(m, k)
(hx)m

m!
= hn−kS(n, k),

as requested.
The case s = 1: We now treat the case s = 1, i.e., a 6= 0, b = 0, and r = −1. Taking

r = −1 in (24), we obtain
∂

∂x
h(x, y) =

y

1 − ax
h(x, y),

with h(0, y) = h(x, 0) = 1. Solving this equation yields

h(x, y) = (1 − ax)−
y
a =

∑

n≥0

(

n+ y
a
− 1

n

)

(ax)n. (27)

Thus,

[xn]h(x, y) = an

(

n+ y
a
− 1

n

)

= (−a)n

(−y
a

n

)

= (−a)n

(

−y
a

) (

−y
a
− 1

)

· · ·
(

−y
a
− n+ 1

)

n!

=
an

n!

n−1
∏

j=0

(ỹ + j),

where we have abbreviated ỹ = y/a. Recalling (13), it follows that

n![xn]h(x, y) = an
∑

k≥0

c(n, k)ỹk =
∑

k≥0

c(n, k)an−kyk.

Substituting a = h gives

S1;h(n, k) = hn−kc(n, k) = (−h)n−ks(n, k),

which completes the proof.
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Remark 3.10. During the proof of the theorem, we considered the cases s = 0 and
s = 1 explicitly using generating function techniques. However, we already showed that
the generalized Stirling numbers are given for s = 0 by S0;h(n, k) = hn−kS(n, k) in (9)
and for s = 1 by S1;h(n, k) = (−h)n−ks(n, k) in (14).

We now want to give an equivalent expression for the generalized Stirling numbers
making the analogy to the conventional Stirling numbers of second kind S(n, k) closer.
Recall that

S(n, k) =
1

k!

k
∑

r=0

(−1)k−r

(

k

r

)

rn.

Corollary 3.11. Let s ∈ R \ {0, 1} and h ∈ C \ {0}. The generalized Stirling numbers
can be written as

Ss;h(n, k) =
hn−k

k!

k
∑

r=0

(−1)k−r

(

k

r

)

ψs(n, k; r),

where the function ψs(n, k; r) is defined by

ψs(n, k; r) :=

n
∑

l=0

c(n, l)
sn−l

(1 − s)k−l
rl.

Proof. Starting from the explicit expression derived in Theorem 3.9, we can write

Ss;h(n, k) =
hn−k

k!

k
∑

r=0

(−1)k−r

(

k

r

)(

n + r
s
− r − 1

n

)

n!sn

(1 − s)k
.

Using (13), we obtain
(

n+ r
s
− r − 1

n

)

=
1

n!

n−1
∏

l=0

(

r

(

1 − s

s

)

+ l

)

=
1

n!

n
∑

l=0

c(n, l)
(1 − s)l

sl
rl.

Inserting this and using the definition of ψs(n, k; r), the assertion follows.

It is interesting to consider formally s → 0. Since sn−l

(1−s)k−l → δn−l,0 and c(n, n) = 1,

one obtains ψs(n, k; r) → rn, showing

Ss;h(n, k)
s→0−→ hn−kS(n, k).

Note that the consideration s → 1 is more difficult since ψs(n, k; r) has singularities for
s→ 1.

Example 3.6. Let us consider the generalized Stirling numbers for h = 1 and s = −1
r

with r ∈ N. It follows that

S− 1
r
;1(n, k) =

(−1)nn!

rn−k(r + 1)kk!

k
∑

j=0

(−1)k−j

(

k

j

)(

n− (r + 1)j − 1

n

)

=
1

rn−k(r + 1)k

k
∑

j=0

(−1)k−j{(r + 1)j}n

j!(k − j)!
,
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where we have used the lower factorial mk = m(m− 1)(m− 2) · · · (m− k+1). For r = 1,
this reduces to

S−1;1(n, k) =
1

2k

k
∑

j=0

(−1)k−j(2j)n

j!(k − j)!
. (28)

From (18), one has

S−1;1(n+ 1, k) = S−1;1(n, k − 1) + (2k − n)S−1;1(n, k).

Remark 3.12. It would be interesting to consider the asymptotic behavior of the gener-
alized Stirling numbers. However, for general h and s, this seems to be difficult, so we
restrict to the case h = 1 and s > 1. Considering the recursion relation for large n, one
sees that for fixed k the largest quotient

Ss;1(n+1,k)

Ss;1(n,k)
results by choosing k = 1. Further-

more, considering explicit values for the generalized Stirling numbers shows that, already
for relatively small n, the largest value of the Ss;1(n, k) is attained for k = 1 and yields
the greatest contribution to the Bell number Bs;1(n). From the explicit expression given in
Proposition 3.5, one has for large n that Ss;1(n, 1) ∼ s(n− 2)Ss;1(n− 1, 1). Clearly, this

can be iterated, showing that one has the rough estimate Ss;1(n, 1) ≥ sl (n−2)!
(n−2−l)!

Ss;1(n−l, 1).

Choosing l = n − 3 yields Ss;1(n, 1) ≥ (1 + s)sn−3(n − 2)!. However, for small n, the
assumption made becomes worse, so one should instead use a smaller l, e.g., l = n − 6.
Using this, one obtains for n > 6 a very rough estimate

Ss;1(n, 1) ≥ (1 + s)(1 + 2s)(1 + 3s)(1 + 4s)

24
sn−6(n− 2)!.

The heuristics mentioned above are made explicit in the following conjecture.

Conjecture 3.13. Let h = 1 and s > 1. The sequence of generalized Stirling numbers
{Ss;1(n, k)}n

k=1 is unimodal for every n ≥ 1. Furthermore, for s ≥ 2 the sequence is
monotone decreasing for every n ≥ 1 and for s > 3 the sequence is strictly monotone
decreasing for n ≥ 3.

4 The generalized Bell numbers for arbitrary s

In this section, we discuss the generalized Bell numbers. Define

Ls;h(x, y) :=
∑

k≥0

∑

n≥k

Ss;h(n, k)
xnyk

n!
.

Note that one obtains for y = 1, by the definition of the generalized Bell numbers, that

Ls;h(x, 1) =
∑

k≥0

∑

n≥k

Ss;h(n, k)
xn

n!
=

∑

n≥0

Bs;h(n)
xn

n!
= Bes;h(x),

i.e., the exponential generating function of the generalized Bell numbers. From the proof
of Theorem 3.9, we obtain the following explicit formulas for the generating functions
Ls;h(x, y).
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Corollary 4.1. Fix h 6= 0. If s ∈ R \ {0, 1}, then

Ls;h(x, y) = e
{1−(1−hsx)

s−1
s } y

h(s−1) .

If s = 0, then

L0;h(x, y) = e
y
h(ehx−1).

If s = 1, then
L1;h(x, y) = (1 − hx)−

y
h .

Proof. If s 6= 0, 1, then a, b 6= 0, where a = hs and b = h− hs, as defined above. By the
proof of Theorem 3.9, we have

Lk(x) =

(

1
(1−ax)b/a − 1

)k

k!bk
.

Thus,

Ls;h(x, y) =
∑

k≥0

Lk(x)y
k = e

0

@

1

(1 − ax)
b
a

−1

1

A

y
b

,

which gives the first formula (after substituting a = hs, b = h−hs and several simplifica-
tions). If s = 0, then Lk(x) was determined to be

Lk(x) =
(ehx − 1)k

hkk!
,

implying the desired formula. Similarly, if s = 1, then L1;h(x, y) was denoted in the proof
by h(x, y) and already given in (27).

Taking y = 1 in the prior corollary yields the exponential generating function for the
generalized Bell numbers and, therefore, leads to explicit Dobinski-type formulas for the
n-th generalized Bell numbers Bs;h(n).

Corollary 4.2. Fix h 6= 0. If s ∈ R \ {0, 1}, then

Bs;h(n) = n!(−hs)ne
1

h(s−1)

∑

j≥0

( (s−1)j
s

n

)

1

j!hj(1 − s)j
.

If s = 0, then

B0;h(n) =
1

e
1
h

∑

j≥0

hn−jjn

j!
.

If s = 1, then

B1;h(n) =

n−1
∏

j=0

(1 + jh) =

n
∑

j=0

hn−jc(n, j).
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Proof. First suppose s 6= 0, 1. Taking y = 1 in Ls;h(x, y) gives

Ls;h(x, 1) = e
1

h(s−1) e
(1−hsx)

s−1
s

h(1−s) = e
1

h(s−1)

∑

j≥0

1

j!hj(1 − s)j
(1 − hsx)

(s−1)j
s

= e
1

h(s−1)

∑

j≥0

∑

k≥0

1

j!hj(1 − s)j

( (s−1)j
s

k

)

(−hsx)k,

which implies, due to Ls;h(x, 1) = Bes;h(x), that

Bs;h(n) = n![xn]Ls;h(x, 1) = n!e
1

h(s−1)

∑

j≥0

1

j!hj(1 − s)j

( (s−1)j
s

n

)

(−hs)n,

completing the first case. If s = 0, we have

B0;h(n) = n![xn]L0;h(x, 1) = n!e−
1
h [xn]

∑

j≥0

1

j!

(

ehx

h

)j

= n!e−
1
h

∑

j≥0

1

hjj!

(hj)n

n!
,

showing the assertion. The third case follows similarly by noting

B1;h(n) = n![xn]L1;h(x, 1) = n![xn](1 − hx)−
1
h = n![xn]

∑

n≥0

(

n + 1
h
− 1

n

)

(hx)n.

Thus,

B1;h(n) = n!hn

(

n+ 1
h
− 1

n

)

= n!hn 1(1 + h)(1 + 2h) · · · (1 + (n− 1)h)

n!hn
=

n−1
∏

j=0

(1 + jh).

Using (13) yields the second asserted form of the generalized Bell numbers B1;h(n), which
was already given in (15) and which is equivalent to the definition.

Corollary 4.3. Fix h 6= 0 and let s ∈ R \ {0, 1}. The generalized Bell numbers can also
be written as

Bs;h(n) = e
1

h(s−1)

∑

j≥0

(h(1 − s))n−jjn

j!

n−1
∏

k=0

{

1 − ks

j(s− 1)

}

.

Proof. Use the expression for the generalized Bell numbers given in Corollary 4.2 and
expand the binomial coefficient.

Note that considering s = 0 and h = 1 yields the well-known classical Dobinski
relation,

B0;1(n) =
1

e

∑

j≥0

jn

j!
.

In Table 2 the first few generalized Bell numbers are given.
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n Bs;h(n)

1 1
2 h + 1
3 h2(s + 1) + 3h + 1
4 h3(s + 1)(2s + 1) + h2(4s + 7) + 6h + 1
5 h4(s + 1)(2s + 1)(3s + 1) + h3(10s2 + 25s + 15) + h2(10s + 25) + 10h + 1

Table 2: The first few generalized Bell numbers Bs;h(n).

Example 4.1. Let s = 2 and h = 1. It follows directly from Corollary 4.1 that the
exponential generating function of the corresponding Bell numbers is given by

Be2,1(x) = e1−
√

1−2x

and from Corollary 4.3 that the generalized Bell numbers are given by

B2,1(n) = e
∑

j≥0

(−1)n−jjn

j!

n−1
∏

k=0

(

1 − 2k

j

)

.

Example 4.2. Let s = −1 and h = 1. It follows directly from Corollary 4.1 that the
exponential generating function of the corresponding Bell numbers is given by

Be−1,1(x) = ex+ 1
2
x2

(29)

and from Corollary 4.2 that the generalized Bell numbers are given by

B−1,1(n) =
1√
e

∑

j≥0

(2j)n

j!2j
.

Note that (29) shows that B−1,1(n) equals the total number of involutions of [n], upon
comparison with Ex. II.13 found on page 122 of [10]. Recall that we derived in Example 3.6
the corresponding generalized Stirling numbers, see (28). Considering the sum over k
yields

∑

k≥0

S−1;1(n, k) =
∑

j≥0

(2j)n

j!2j

∑

k≥j

1

2k−j

(−1)k−j

(k − j)!
=

∑

j≥0

(2j)n

j!2j
e−

1
2 = B−1,1(n),

as it should. Let us introduce the Hermite polynomials Hn(z) as in [6, Page 50] by their
exponential generating function

e2tz−t2 =
∑

n≥0

Hn(z)
tn

n!
.

Comparing this with the exponential generating function Be−1,1(x) given in (29) shows the
very close connection to the Hermite polynomials. Choosing the correspondence t̂ = ix√

2

and ẑ = 1
i
√

2
, we find

ex+ 1
2
x2

= e2t̂ẑ−t̂2 =
∑

n≥0

Hn(ẑ)
t̂n

n!
=

∑

n≥0

Hn

(

1

i
√

2

) (

i√
2

)n
xn

n!
,
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allowing us to conclude that the generalized Bell numbers B−1,1(n) are given as special
values of Hermite polynomials, i.e.,

B−1,1(n) =

(

i√
2

)n

Hn

(

1

i
√

2

)

.

Now we consider the recursion relation for the generalized Bell numbers. Due to the
simple explicit expression for the Bell numbers in the case s = 1, we immediately recognize
the recursion relation

B1;h(n) = (1 + (n− 1)h)B1;h(n− 1), (30)

the case h = 1 of which gives B1;1(n) = n!.
In the case s = 0, the same procedure as in the conventional case [42, Page 25] works.

The exponential generating function is given by Be0;h(x) = L0;h(x, 1) = e
1
h(ehx−1), so that

we have
∑

n≥0

B0;h(n)
xn

n!
= e

1
h(ehx−1).

Taking the logarithm on both sides, differentiating both sides with respect to x, multi-
plying through by x and clearing fractions yields

∑

n≥1

nB0;h(n)
xn

n!
= (xehx)

∑

n≥0

B0;h(n)
xn

n!
, (31)

giving, in analogy to the conventional case, the relation

B0;h(n) =
n−1
∑

k=0

(

n− 1

k

)

hn−1−k
B0;h(k). (32)

Now it remains to consider the case s ∈ R \ {0, 1}. The exponential generating function
of the Bs;h(n) is given by Bes;h(x) = Ls;h(x, 1), i.e.,

∑

n≥0

Bs;h(n)
xn

n!
= e{1−(1−hsx)

s−1
s } 1

h(s−1) . (33)

Proceeding in the same fashion as in the case s = 0 above, one obtains

∑

n≥1

nBs;h(n)
xn

n!
=

x

(1 − hsx)
1
s

∑

n≥0

Bs;h(n)
xn

n!
. (34)

Using

x

(1 − hsx)
1
s

= x
∑

m≥0

(

m+ 1
s
− 1

m

)

(hsx)m =
∑

m≥1

(

m+ 1
s
− 2

m− 1

)

(hs)m−1m!
xm

m!
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and comparing coefficients for xn, we find that

nBs;h(n) =
n−1
∑

k=0

(

n

k

)

Bs;h(k)

(

n− k + 1
s
− 2

n− k − 1

)

(hs)n−k−1(n− k)!,

which is equivalent to

Bs;h(n) =
n−1
∑

k=0

(

n− 1

k

)(

n− k + 1
s
− 2

n− k − 1

)

(hs)n−k−1(n− k − 1)!Bs;h(k).

Since

(n− k − 1)!

(

n− k + 1
s
− 2

n− k − 1

)

= s−(n−k−1)

n−k−2
∏

j=0

(1 + js) ,

we have finally found the explicit recursion relation

Bs;h(n) =
n−1
∑

k=0

(

n− 1

k

)

{

n−k−2
∏

j=0

(1 + js)

}

hn−1−k
Bs;h(k).

Let us summarize the above observations in the following theorem.

Theorem 4.4. Fix h 6= 0. The recursion relation of the generalized Bell numbers is given
as follows. If s ∈ R \ {0, 1}, then

Bs;h(n) =

n−1
∑

k=0

(

n− 1

k

)

{

n−k−2
∏

j=0

(1 + js)

}

hn−1−k
Bs;h(k).

If s = 0, then

B0;h(n) =
n−1
∑

k=0

(

n− 1

k

)

hn−1−k
B0;h(k).

If s = 1, then
B1;h(n) = (1 + (n− 1)h)B1;h(n− 1).

One can express the recursion relation in a beautiful uniform way.

Proposition 4.5. Fix h 6= 0. The recursion relation for the generalized Bell numbers can
be written for all s ∈ R as

Bs;h(n) =
n−1
∑

k=0

(

n− 1

k

)

Ss;h(n− k, 1)Bs;h(k). (35)
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Proof. Let us consider first the case s 6= 0, 1. Recalling the explicit expressions given in
Proposition 3.5, we have

Ss;h(n− k, 1) = hn−k−1

n−k−2
∏

j=0

(1 + js).

Inserting this into the recursion relation given in Theorem 4.4 shows the first assertion.
If s = 0, we can use (9) and find S0;h(n− k, 1) = hn−k−1S(n− k, 1) = hn−k−1 so that the
asserted recursion above equals the one given in Theorem 4.4. Finally, we consider s = 1
and observe that the recursion given in Theorem 4.4 can be iterated in the following way:

B1;h(n) = B1;h(n− 1) + (n− 1)hB1;h(n− 1)

= B1;h(n− 1) + (n− 1)hB1;h(n− 2) + (n− 1)h(n− 2)hB1;h(n− 2).

A small induction shows that this implies B1;h(n) =
∑n−1

l=1 h
l−1 (n−1)!

(n−l)!
B1;h(n− l), or

B1;h(n) =
n−1
∑

k=1

hn−k−1 (n− 1)!

k!
B1;h(k). (36)

Let us now consider the asserted recursion relation (35) for s = 1. We may use (14) to
find S1;h(n− k, 1) = (−h)n−k−1s(n− k, 1) = hn−k−1(n− k − 1)! and, consequently, that

(

n− 1

k

)

S1;h(n− k, 1) =
(n− 1)!

k!(n− k − 1)!
hn−k−1(n− k − 1)! = hn−k−1 (n− 1)!

k!
.

Thus, the asserted recursion relation is equal to the one given in (36), which was shown
to be equivalent to the one given in Theorem 4.4.

The recursion relation (35) can be written equivalently in terms of exponential generat-
ing functions. Recall that Ses;h is the exponential generating function for the generalized
Stirling numbers with k = 1. Explicit expressions can be found in Proposition 3.6.

Theorem 4.6. Fix h 6= 0 and let s ∈ R. The recursion relation (35) can be written in
terms of Bes;h and Ses;h as the differential equation

Be
′
s;h(x) = Se

′
s;h(x)Bes;h(x).

Equivalently, this can be written in integrated form as

Bes;h(x) = eSes;h(x). (37)

Proof. The proof follows from the recursion relation (35) by multiplying with xn

n!
, sum-

ming over n and manipulating the generating functions. Alternatively, we can check it
more directly using expressions already obtained. For example, in the case s 6= 0, 1, the
relation (37) was already derived in (33) due to Proposition 3.6. In the case s = 0, we
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can write (31) also as Be
′
0;h(x) = ehx

Be0;h(x) (which is well-known for h = 1, see [42,
Page 45]). Recalling from Proposition 3.6 that Se0;h(x) := 1

h
(ehx − 1), we write this as

Be
′
0;h(x) = Se

′
0;h(x)Be0;h(x). Finally, in the case s = 1, the exponential generating func-

tion Be1;h(x) = 1
(1−hx)1/h was determined in Proposition 2.1. According to Proposition 3.6,

one has Se1;h(x) = log
(

1
(1−hx)1/h

)

, showing directly that Be1;h(x) = eSe1;h(x)(and, conse-

quently, that Be
′
1;h(x) = Se

′
1;h(x)Be1;h(x)).

Note that the case s = 0 and h = 1 of (37) yields the classical result

Be0;1(x) = eex−1.

5 Combinatorial interpretations

In this section, we provide combinatorial interpretations for the numbers Ss;h(n, k). As
in the proof of Theorem 3.9 above, it will be more convenient to let a = hs and b = h−hs
and then consider the equivalent recurrence

Sa;b(n, k) = Sa;b(n− 1, k − 1) + [a(n− 1) + bk]Sa;b(n− 1, k), n ≥ k ≥ 1, (38)

with Sa;b(0, 0) = 1 and Sa;b(n, k) = 0 if 0 ≤ n < k.
When a = b = 1, we see from (38) that the Sa;b(n, k) reduce to the (unsigned) Lah

numbers L(n, k) (named for Ivo Lah, see [18] and Example 3.3). It is well known that
L(n, k) = |L(n, k)|, where L(n, k) denotes the set of all distributions of n balls, labeled
1, 2, . . . , n, among k unlabeled, contents-ordered boxes, with no box left empty. Garsia
and Remmel [11] call such distributions Laguerre configurations. See also [33] and [41].
For example, if n = 3 and k = 2, then L(3, 2) = 6, the configurations being {1, 2}, {3};
{2, 1}, {3}; {1, 3}, {2}; {3, 1}, {2}; {2, 3}, {1}; and {3, 2}, {1}. The numbers L(n, k) were
originally introduced by Lah [18] as the connection constants in the polynomial identities

x(x+ 1) · · · (x+ n− 1) =

n
∑

k=0

L(n, k)x(x− 1) · · · (x− k + 1), n ≥ 0. (39)

We observe that the s = 1
2
, h = 2 case (equivalently a = b = 1) of the explicit formula in

Theorem 3.9 reduces to the well known formula

L(n, k) =
n!

k!

(

n− 1

k − 1

)

, 1 ≤ k ≤ n,

for the Lah numbers via the binomial identity
(

n−1
k−1

)

=
∑k

j=0(−1)k−j
(

k
j

)(

n+j−1
j

)

(see, e.g.,

[14]).
Let L(n) =

∑n
k=0Ln,k and L(n) = ∪n

k=0L(n, k). Then L(n) = |L(n)|, the cardinality
of the set of all distributions of n labeled balls in unlabeled, contents-ordered boxes. The
L(n) are analogues of the usual Bell numbers B(n) and are clearly of greater value; see,
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e.g., [27], where they are described as counting sets of lists having size n. Letting s = 1
2
,

h = 2 in Corollary 4.2, we obtain a Dobinski formula for L(n), namely

L(n) =
1

e

∑

j≥0

1

j!

{

n−1
∏

i=0

(j + i)

}

, n ≥ 0, (40)

which does not seem to have been previously noted.
We now proceed in supplying a combinatorial interpretation for the numbers Sa;b(n, k)

defined by (38) above. To do so, we will now regard a and b as indeterminates and describe
statistics on L(n, k) for which Sa;b(n, k) is the joint distribution polynomial.

Definition 5.1. If λ ∈ L(n) and i ∈ [n], then we say that i is a record low of λ if there
are no elements j < i to the left of i within its block in λ.

For example, if n = 8 and λ = {3, 1, 4}, {7, 5, 6, 2}, {8} ∈ L(8), then the elements 3 and
1 are record lows in the first block, 7, 5, and 2 are record lows in the second, and 8 is a
record low in the third block for a total of six record lows altogether. (For convenience,
we will arrange the blocks in ascending order according to the size of the first elements.)
Note that the smallest element within a block as well as the left-most one are always
record lows.

Definition 5.2. Given λ ∈ L(n), let rec∗(λ) denote the total number of record lows of λ
which are not themselves the smallest member of a block. Let nrec(λ) denote the number
of elements of [n] which are not record lows of λ.

For example, if λ is as above, then rec∗(λ) = 3 (corresponding to 3, 7, and 5) and
nrec(λ) = 2 (corresponding to 4 and 6). Given λ ∈ L(n), let w(λ) = anrec(λ)brec∗(λ). If
n ≥ k ≥ 0, then define the distribution polynomial La;b(n, k) by

La;b(n, k) =
∑

λ∈L(n,k)

w(λ). (41)

We now give a recurrence for La;b(n, k). If λ ∈ L(n, k) and the element n belongs to
its own block, then it is counted by neither rec∗ nor nrec, and thus the total w-weight of
all such configurations is La;b(n − 1, k − 1). Now suppose that n goes in a block within
λ with at least one member of [n − 1]. If n is the left-most member of its block, then it
would be a record low that is not the smallest member of its block and hence it would
be counted by rec∗(λ); thus, the contribution in this case would be bkLa;b(n − 1, k). If
n is not the left-most member of its block, then it would not be a record low of λ and
thus it would be counted in nrec(λ), which implies the contribution in this case would be
a(n−1)La;b(n−1, k) since n may directly follow any member of [n−1]. Putting together
these three cases implies

La;b(n, k) = La;b(n− 1, k − 1) + [a(n− 1) + bk]La;b(n− 1, k), n ≥ k ≥ 1.

Since Sa;b(n, k) clearly satisfies the same boundary conditions as La;b(n, k), we have shown
the following.
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Theorem 5.1. If n and k are non-negative integers, then

Sa;b(n, k) = La;b(n, k).

Let Ba;b(n) =
∑n

k=0 Sa;b(n, k). Using the interpretation above, we may find a combi-
natorial explanation for the first recurrence in Theorem 4.4, rewritten as

Ba;b(n) =

n−1
∑

k=0

(

n− 1

k

)

{

n−k−1
∏

j=1

(b+ ja)

}

Ba;b(k), n ≥ 1, (42)

where we have substituted s = a
a+b

and h = a+ b.

Proof. Both sides give the total w-weight of all of the members of L(n), the left-hand side
by Theorem 5.1. As for the right-hand side, observe that the k-th term of the sum gives
the total weight of all of the members of L(n) in which the cardinality of the block B
containing the element n is n− k, where 0 ≤ k ≤ n− 1. To show this, let B = S ∪ {n},
where |S| = n − 1 − k. There are

(

n−1
n−1−k

)

=
(

n−1
k

)

choices regarding the set S and L(k)
ways to arrange the elements of [n−1]−S (which contributes Ba;b(k) towards the weight).

Finally, the block B contributes
∏n−k−1

j=1 (b + ja) (*) for each choice of the set S. To see
this, suppose the elements of B are b1 < · · · < bn−1−k < bn−k = n and write the element
b1, noting that it contributes to neither nrec nor rec∗ since it is the smallest element of
the block. Then write b2 either before b1 (in which case b2 would be a record low) or
after b1 (in which case it would not). This implies that b2 contributes b + a towards the
product (*). By the same reasoning, the element bj , 2 ≤ j ≤ n − k, contributes the
factor b+ (j − 1)a towards (*), each one in an independent fashion, which completes the
proof.

Using recurrence (38), one can show by induction that the numbers Sa;b(n, k) are
connection constants in the following polynomial identities, which generalizes (39), but
here we will give a combinatorial proof using an interpretation similar to the one given
for Sa;b(n, k) in Theorem 5.1 above.

Theorem 5.2. The numbers Sa;b(n, k) are determined uniquely by the identities

x(x+ a) · · · (x+ (n− 1)a) =

n
∑

k=0

Sa;b(n, k)x(x− b) · · · (x− (k − 1)b), n ≥ 0. (43)

Proof. It suffices to show (43) in the case when x = ℓb, where ℓ is a positive integer, i.e.,

ℓb(ℓb+ a) · · · (ℓb+ (n− 1)a) =
ℓ

∑

k=0

Sa;b(n, k)b
kℓ(ℓ− 1) · · · (ℓ− k + 1). (44)

Given ℓ labeled boxes and n labeled balls, let A(n, ℓ) denote the set of distributions of
the balls in the boxes, where some of the boxes may be left empty and the balls in each
box are ordered. Given λ ∈ A(n, ℓ), let v(λ) = anrec(λ)brec(λ), where nrec(λ) is defined
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as before and rec(λ) counts all of the record lows of λ. The product on the left-hand
side of (44) then gives the total v-weight of all the members of A(n, ℓ), by independently
choosing the positions of the n balls in order. To see this, note that ball 1 contributes
bℓ since it is automatically a record low in one of the ℓ boxes and that ball 2 contributes
bℓ + a since it can either follow the first ball in its box (and so contribute a) or come
before it (and thus be a record low in this box) or go in one of the other ℓ − 1 boxes as
a record low. Similar considerations show in general that i-th ball contributes the factor
bℓ + (i− 1)a towards the product.

On the other hand, one may form members of A(n, ℓ) by first arranging the balls in
unlabeled blocks according to some λ ∈ L(n, k), where 0 ≤ k ≤ ℓ, and then placing these
blocks in ℓ labeled boxes so that no box receives more than one block (which can be done
in ℓ(ℓ− 1) · · · (ℓ− k + 1) ways). The total weight of all such members of A(n, ℓ) formed
is bkSa;b(n, k)ℓ(ℓ − 1) · · · (ℓ − k + 1); note that we must multiply by bk to account for
the additional record lows which are not included in the Sa;b(n, k) factor. Summing over
0 ≤ k ≤ ℓ gives the total v-weight of A(n, ℓ), which completes the proof.

In [36], it was shown that the Bell numbers satisfy the relation

B(n+m) =

n
∑

k=0

m
∑

j=0

(

n

k

)

S(m, j)jn−kB(k), n,m ≥ 0,

by an elegant combinatorial argument, which is readily generalized using w-weights to
yield the following result.

Theorem 5.3. If n and m are non-negative integers, then

Ba;b(n+m) =

n
∑

k=0

m
∑

j=0

(

n

k

)

Sa;b(m, j)

{

n−k−1
∏

i=0

(bj + a(i+m))

}

Ba;b(k). (45)

Proof. Given the set [n + m], one can partition its members into ordered blocks in the
following manner. First divide the members of [m] into exactly j subsets in Sa;b(m, j)
ways. Then choose k members from [m+1, m+n] = {m+1, . . . , m+n} to be partitioned
into additional subsets in

(

n
k

)

Ba;b(k) ways. Finally, distribute the remaining n−k members

of [m+1, m+n] among the j subsets, which can be done in
∏n−k−1

i=0 (bj+ a(i+m)) ways,
reasoning as in the prior proofs.

The combinatorial interpretation for Sa;b(n, k) given in Theorem 5.1 above readily
explains additional relations

Proposition 5.4. If n and k are positive integers, then

Sa;b(n, k) =

k
∑

j=0

[a(n− j − 1) + b(k − j)]Sa;b(n− 1 − j, k − j). (46)
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Proof. Condition on the largest element, n− j, not going in its own block. Note that the
elements 1, 2, . . . , n− j − 1 must then occupy k − j blocks, which implies that there are
a(n − j − 1) + b(k − j) options regarding the placement of n − j. Then the elements of
[n− j + 1, n] must all go in their own singleton blocks.

Proposition 5.5. If n and k are positive integers, then

Sa;b(n, k) =

n
∑

j=k

{

n−1
∏

i=j

(ai+ bk)

}

Sa;b(j − 1, k − 1). (47)

Proof. Assume that the blocks of λ ∈ L(n, k) are arranged from left to right in ascending
order according to the size of the smallest element. Condition on j, the smallest element in
the right-most block, and note that there are

∏n−1
i=j (ai+ bk) options regarding placement

of the elements of [j + 1, n].

As a further application of our combinatorial model, we can find a simple closed form
for Ss;h(n, k) when s = −1 and h = 1 which was considered above in Example 3.6.
Equivalently, we evaluate Sa;b(n, k) when a = −1 and b = 2. To do so, we first describe
a structure enumerated by Sa;b(n, k) in the a = 1, b = 2 case.

Definition 5.3. If π ∈ L(n, k), then assign each record low of π not corresponding to a
minimal element in some block one of two colors. No other elements of π are colored.
If an element r is colored, we will denote it by either r1 or r2. We will call π a colored
Laguerre configuration.

Definition 5.4. Let H(n, k) denote the set of all colored Laguerre configurations of size
n having k blocks and H(n) = ∪n

k=0H(n, k).

For example, if n = 8 and k = 3, then π = {21, 1}, {4, 6, 8}, {71, 52, 3} ∈ H(n, k). Note
that the only members of π assigned a superscript are those corresponding to record lows
which aren’t minimal elements within their respective blocks. From the definitions, we
have |H(n, k)| = Sa;b(n, k) |a=1,b=2.

Define the distribution polynomial Ha(n, k) by

Ha(n, k) =
∑

π∈H(n,k)

anrec(π).

From our combinatorial interpretation of Sa;b(n, k), we then have

Sa;b(n, k) = H−1(n, k) and Ba;b(n) =
n

∑

k=0

H−1(n, k)

when a = −1 and b = 2.
The following proposition shows that Ss;h(n, k) equals the number of involutions of

[n] having exactly k cycles when s = −1 and h = 1.
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Proposition 5.6. If s = −1 and h = 1, then

S−1;1(n, k) =

(

n

2k − n

)

(2n− 2k)!

(n− k)!2n−k
, 0 ≤ k ≤ n, (48)

for all n ≥ 0. Furthermore, B−1;1(n) equals the number of involutions of [n].

Proof. From the preceding, we need to show that H−1(n, k) is given by the right side of
(48). Denote the set H(n, k) by H and let H+ and H− denote, respectively, the subsets of
H having even and odd nrec value. To show (48), it suffices to identify a subset H∗ ⊆ H+

having cardinality given by the right side, along with an involution of H − H∗ which
changes the parity of nrec.

Let H∗ consist of all of those members of H whose blocks are (i) singletons or (ii)
doubletons containing elements a < b of the form {b1, a}. Note that members of H∗ all
have zero nrec value and are synonymous with involutions of [n] having k cycles and thus
their number is given by the right side of (48). We now define an involution off of H∗

which changes the nrec parity. Let π ∈ H−H∗ and let B denote the block of π containing
the smallest element among all the blocks which either have cardinality three or more or
are of the form {b2, a} or are of the form {a, b}, where a < b in the latter two cases.
Note that the cases in which B is of the latter two forms cancel out since the block in the
second case has no non-record lows whereas the block in the third has one.

So we may assume |B| ≥ 3. Let a < b < c denote the three smallest elements of B.
We first exchange the following two cases concerning their relative positions within B:

c2 · · · b1 · · ·a ↔ b1 · · ·a · · · c,

where the other elements of B are left undisturbed. Note that the ordering of B on the
right has one more non-record low (the c) than the one of the left, whence the nrec values
of the corresponding members of H −H∗ are of opposite parity. Similarly, we exchange
the other cases as shown:

c1 · · · b1 · · ·a ↔ b1 · · · c · · ·a,

and
b2 · · ·a ↔ a · · · b.

Combining the above mappings yields the desired involution of H−H∗.

Remark 5.7. Equating the expression in (28) with the one given in Proposition 5.6 yields
the identity

k
∑

j=⌈n
2 ⌉

(−1)k−j(2j)n

j!(k − j)!
=

22k−nnk

(2k − n)!
,

⌈n

2

⌉

≤ k ≤ n,

for all n ≥ 0, which we were unable to find in the literature.

the electronic journal of combinatorics 18 (2011), #P77 28



In addition to the above combinatorial interpretation, we can relate the generalized
Stirling numbers Ss;1(n, k) for s ∈ N0 to the s-rook numbers introduced by Goldman and
Haglund [12]. This connection generalizes the well-known interpretation of the Stirling
numbers of second kind to particular rook numbers. In the case s = 0 - corresponding to
the Weyl algebra generated by variables D,U satisfying DU − UD = 1 - the connection
between normal ordering and rook numbers was discussed already by Navon [28]. Varvak
pointed out the connection between normal ordering words in variables D,U satisfying
DU − UD = Us and s-rook numbers in the beautiful paper [40] but, unfortunately, the
result given in [40, Theorem 7.1] is not quite correct. Below, we give a corrected version
for the particular words (UD)n involving the generalized Stirling numbers Ss;1(n, k), see
Proposition 5.9. To begin, we briefly recall that a Ferrers board B is made up of adjacent
solid columns of cells with a common lower edge such that the heights (number of cells)
h1, h2, . . . , hn of the columns form a non-decreasing sequence reading from left to right
[12, 13, 38, 40]. For convenience, we allow columns of height zero. In Figure 1, two
examples of Ferrers boards are given with their height vectors (h1, h2, . . . , hn).

1 2 3 4 5 6
(1, 2, 3, 3, 3, 5)

1 2 3 4 5
(0, 1, 2, 3, 4)

Figure 1: Two examples for Ferrers boards: On the left-hand side, a “typical” board with
height vector (1, 2, 3, 3, 3, 5), and on the right-hand side, the staircase board J5,1.

Following [12, 13], Ferrers boards with column heights (0, m, 2m, . . . , (n − 1)m) are
called m-jump Ferrers boards and are denoted by Jn,m. We will use the term staircase
board when referring to the particular case m = 1, i.e., Jn,1; see Figure 1 for J5,1. If we
denote the k-th rook number of a Ferrers board B by rk(B), then it is a classical result
[13, Page 491] (see also [38, Page 75]) that the Stirling numbers of second kind are rook
numbers of the staircase board, i.e.,

S(n, k) = rn−k(Jn,1). (49)

Goldman and Haglund introduced in [12] for any s ∈ N0 and Ferrers board B so called

s-rook numbers r
(s)
k (B) generalizing the conventional case when s = 0, i.e., r

(0)
k (B) =

rk(B). Let us introduce the notation

x(n,m) := x(x+m)(x+ 2m) . . . (x+ (n− 1)m)

for m > 0 and x(0,m) = 1. Goldman and Haglund derived as a special case of their
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factorization theorem the following result [12, Example 3] for m-jump Ferrers boards

x(n,m+s−1) =

n
∑

k=0

r
(s)
k (Jn,m)x(n−k,s−1),

which reduces for staircase boards to

x(n,s) =

n
∑

k=0

r
(s)
k (Jn,1)x

(n−k,s−1). (50)

Let us turn to the generalized Stirling numbers Sa;b(n, k) satisfying (43). We restrict
to h = 1 and s ∈ N0. It follows that a = s and b = 1 − s, so that Sa;b(n, k) from (43)
with a = s and b = 1− s equals Ss;1(n, k) in the notation used in the preceding sections.

Theorem 5.8. Let h = 1 and s ∈ N0. The generalized Stirling number Ss;1(n, k) is given
as the (n− k)-th s-rook number of the staircase board Jn,1, i.e.,

Ss;1(n, k) = r
(s)
n−k(Jn,1). (51)

Proof. In the situation considered, equation (43) can be written equivalently as

x(n,s) =

n
∑

k=0

Ss;1(n, k)x
(k,s−1),

since a = s and b = 1 − s. Comparing this with (50) shows the assertion.

Let us consider the special case s = 0 and h = 1. From Theorem 5.8, we obtain
S0;1(n, k) = r

(0)
n−k(Jn,1) = rn−k(Jn,1). Combining this with (9), it follows that S(n, k) =

rn−k(Jn,1), as already mentioned in (49). Now let s = 1 and h = 1. From Theorem 5.8,

we obtain S1;1(n, k) = r
(1)
n−k(Jn,1). Combining this with (14), it follows that

r
(1)
k (Jn,1) = c(n, n− k),

which is exactly1 the contents of [12, Theorem 3.1]. In the case s = 2 and h = 1, we can

use the explicit expression given in [12, Page 520] for r
(2)
k (Jn,1) to obtain immediately

S2;1(n, k) =

(

2n− k − 1

2n− 2k

)

(2n− 2k)!

(n− k)!2n−k
.

As a final point, we want to rewrite (7) using Theorem 5.8 and compare it to [40,
Theorem 7.1]. For this we first observe that we can write, for s ∈ N0 and h = 1,

(V U)n =

n
∑

k=0

r
(s)
n−k(Jn,1)V

s(n−k)+kUk =

n
∑

k=0

r
(s)
k (Jn,1)V

sk+n−kUn−k.

Switching to the notation used by Varvak [40], i.e., (U, V )  (D,U) (such that DU −
UD = Us), we obtain the following result.

1Note that there is a typo in the statement of Theorem 3.1 of [12]: It should be r
(1)
k (Jn,1) instead of

r
(i)
k (Jn,1).
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Proposition 5.9. Let w = (UD)n be the word of length 2n in the algebra generated by
D,U satisfying DU − UD = Us with s ∈ N0. It is composed of n D′s and n U ′s and one
has

(UD)n =

n
∑

k=0

r
(s)
k (Jn,1)U

sk+n−kDn−k,

where Jn,1 is the staircase Ferrers board associated to the word (UD)n.

Note that this gives a corrected version of [40, Theorem 7.1] for the particular words
w = (UD)n (in [40, Theorem 7.1], the summand sk in the exponent is missing).

6 Conclusion

In this paper, a thorough discussion of the family of generalized Stirling and Bell numbers
introduced recently has been given. For example, the recursion relation of the general-
ized Stirling numbers and explicit expressions are derived. Furthermore, a combinatorial
interpretation is given and it is shown that the generalized Stirling numbers can also be
defined as connection coefficients. An alternative interpretation of the generalized Stir-
ling numbers as s-rook numbers of staircase Ferrers boards has also been given. The
corresponding generalized Bell numbers are defined and many of their properties are de-
rived, for example, the recursion relation, the explicit form of the exponential generating
function and a Dobinski-like formula. It is interesting to note that a special case of these
considerations yields a Dobinski-like formula for the (unsigned) Lah numbers which seems
to be new.

Let us point out some interesting aspects which might warrant further consideration.
As a first point, the unimodality of the generalized Stirling numbers should be studied.
We conjecture that the sequence {Ss;1(n, k)}k=1,...,n of generalized Stirling numbers is
strictly monotone decreasing if h = 1, s ≥ 3 and for n ≥ 3. A second interesting point
would be to obtain a precise asymptotic expression for the generalized Bell numbers.
Finally, as a last point we would like to mention that one can define a q-deformed version
of the generalized Stirling numbers by (V U)n =

∑

k≥0 Ss;h(n, k|q)V s(n−k)+kUk, where the
variables U, V satisfy UV = qV U + hV s, generalizing the conventional case s = 0. It
is possible that these q-deformed generalized Stirling numbers - and the corresponding
q-deformed generalized Bell numbers - would also possess interesting properties.
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