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Abstract

We give a q-analogue of some binomial coefficient identities of Y. Sun [Electron.
J. Combin. 17 (2010), #N20] as follows:

⌊n/2⌋
∑

k=0

[

m + k

k

]

q2

[

m + 1

n − 2k

]

q

q(
n−2k

2 ) =

[

m + n

n

]

q

,

⌊n/4⌋
∑

k=0

[

m + k

k

]

q4

[

m + 1

n − 4k

]

q

q(
n−4k

2 ) =

⌊n/2⌋
∑

k=0

(−1)k
[

m + k

k

]

q2

[

m + n − 2k

n − 2k

]

q

,

where
[n
k

]

q
stands for the q-binomial coefficient. We provide two proofs, one of

which is combinatorial via partitions.

1 Introduction

Using the Lagrange inversion formula, Mansour and Sun [2] obtained the following two
binomial coefficient identities:
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In the same way, Sun [3] derived the following binomial coefficient identities
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It is not hard to see that both (1.1) and (1.2) are special cases of (1.3), and (1.4) is
the a = 0 case of (1.5). A bijective proof of (1.1) and (1.3) using binary trees and colored
ternary trees has been given by Sun [3] himself. Using the same model, Yan [4] presented
an involutive proof of (1.4) and (1.5), answering a question of Sun.

Multiplying both sides of (1.3) by n+ a and letting m = n+ a− 1, we may write it as
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while letting m = n + a, we may write (1.5) as
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The purpose of this paper is to give a q-analogue of (1.6) and (1.7) as follows:
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where the q-binomial coefficient
[

x
k

]

q
is defined by
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We shall give two proofs of (1.8) and (1.9). One is combinatorial and the other algebraic.

the electronic journal of combinatorics 18 (2011), #P78 2



2 Bijective proof of (1.8)

Recall that a partition λ is defined as a finite sequence of nonnegative integers (λ1, λ2,
. . . , λr) in decreasing order λ1 > λ2 > · · · > λr. A nonzero λi is called a part of λ. The
number of parts of λ, denoted by ℓ(λ), is called the length of λ. Write |λ| =

∑m
i=1 λi,

called the weight of λ. The sets of all partitions and partitions into distinct parts are
denoted by P and D respectively. For two partitions λ and µ, let λ ∪ µ be the partition
obtained by putting all parts of λ and µ together in decreasing order.

It is well known that (see, for example, [1, Theorem 3.1])
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where k = ℓ(λ). Let

A = {λ ∈ P : λ1 6 m + 1 and ℓ(λ) = n},

B = {(λ, µ) ∈ P × D : λ1, µ1 6 m + 1 and 2ℓ(λ) + ℓ(µ) = n}.

We shall construct a weight-preserving bijection φ from A to B. For any λ ∈ A , we
associate it with a pair (λ, µ) as follows: If λi appears r times in λ, then we let λi appear
⌊r/2⌋ times in λ and r−2⌊r/2⌋ times in µ. For example, if λ = (7, 5, 5, 4, 4, 4, 4, 2, 2, 2, 1),
then λ = (5, 4, 4, 2) and µ = (7, 2, 1). Clearly, (λ, µ) ∈ B and |λ| = 2|λ| + |µ|. It is easy
to see that φ : λ 7→ (λ, µ) is a bijection. This proves that

∑

λ∈A

q|λ| =
∑

(λ,µ)∈B
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Namely, the identity (1.8) holds.
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3 Involutive proof of (1.9)

It is easy to see that

qn
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Let

U = {(λ, µ) ∈ P × P : λ1, µ1 6 m + 1 and 2ℓ(λ) + ℓ(µ) = n},

V = {(λ, µ) ∈ U : each λi appears an even number of times and µ ∈ D}.

We shall construct an involution θ on the set U \ V with the properties that θ preserves
2|λ| + |µ| and reverses the sign (−1)ℓ(λ).

For any (λ, µ) ∈ U \ V , notice that either some λi appears an odd number of times
in λ, or some µj is repeated in µ, or both are true. Choose the largest such λi and µj if
they exist, denoted by λi0 and µj0 respectively. Define
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{
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For example, if λ = (5, 5, 4, 4, 4, 3, 3, 3, 1, 1) and µ = (5, 3, 2, 2, 1), then

θ(λ, µ) = ((5, 5, 4, 4, 3, 3, 3, 1, 1), (5, 4, 4, 3, 2, 2, 1)).

It is easy to see that θ is an involution on U \V with the desired properties. This proves
that
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where λ = τ ∪ τ . Combining (3.1)–(3.3), we complete the proof of (1.9).
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4 Generating function proof of (1.8) and (1.9)

Recall that the q-shifted factorial is defined by
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By the q-binomial theorem (see, for example, [1, Theorem 3.3]), we may expand (4.1) and
(4.2) respectively as follows:
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Comparing the coefficients of zn in both sides of (4.3) and (4.4), we obtain (1.8) and (1.9)
respectively.

Finally, we give the following special cases of (1.8):
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When q = 1, the identities (4.5) and (4.6) reduce to (1.1) and (1.2) respectively.
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