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Abstract

We give a g-analogue of some binomial coefficient identities of Y. Sun [Electron.
J. Combin. 17 (2010), #N20] as follows:
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where [Z]q stands for the g-binomial coefficient. We provide two proofs, one of
which is combinatorial via partitions.

1 Introduction

Using the Lagrange inversion formula, Mansour and Sun [2] obtained the following two
binomial coefficient identities:
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In the same way, Sun [3] derived the following binomial coefficient identities
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It is not hard to see that both (1.1) and (1.2) are special cases of (1.3), and (1.4) is
the a = 0 case of (1.5). A bijective proof of (1.1) and (1.3) using binary trees and colored
ternary trees has been given by Sun [3] himself. Using the same model, Yan [4] presented
an involutive proof of (1.4) and (1.5), answering a question of Sun.

Multiplying both sides of (1.3) by n+ a and letting m = n+ a — 1, we may write it as
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The purpose of this paper is to give a g-analogue of (1.6) and (1.7) as follows:
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where the g-binomial coefficient [i]q is defined by
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We shall give two proofs of (1.8) and (1.9). One is combinatorial and the other algebraic.
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2 Bijective proof of (1.8)

Recall that a partition X\ is defined as a finite sequence of nonnegative integers (A1, Az,
.., Ar) in decreasing order A\ > Ay > -+ > \.. A nonzero J; is called a part of \. The
number of parts of A, denoted by ¢(\), is called the length of A\. Write [A| = >, A,
called the weight of A\. The sets of all partitions and partitions into distinct parts are
denoted by & and Z respectively. For two partitions A and p, let A U p be the partition
obtained by putting all parts of A and u together in decreasing order.
It is well known that (see, for example, [1, Theorem 3.1])
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where k = £(\). Let

o ={r e Z: N\ <m+1and {(\) =n},
B={(A\p) € PXxXD: A\,p <m+1and 20(\) +{(n) = n}.

We shall construct a weight-preserving bijection ¢ from o7 to 4. For any A € o/, we
associate it with a pair (), i) as follows: If \; appears r times in A, then we let )\; appear
|7/2] times in X\ and 7 —2[r /2] times in p. For example, if A = (7,5,5,4,4,4,4,2,2,2,1),
then A\ = (5,4,4,2) and p = (7,2,1). Clearly, (A, 1) € Z and || = 2|A| + |u|. Tt is easy
to see that ¢ : A+ (\, i) is a bijection. This proves that
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Namely, the identity (1.8) holds.
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3 Involutive proof of (1.9)

It is easy to see that
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U ={(\p) e PxP:A\,up <m+1and 20(\)+l(u) =n},
¥V = {(\, u) € % : each \; appears an even number of times and pu € Z}.

We shall construct an involution 6 on the set % \ ¥ with the properties that 6 preserves
2|\ + || and reverses the sign (—1) ™).

For any (A, ) € % \ 7, notice that either some \; appears an odd number of times
in A, or some ji; is repeated in g, or both are true. Choose the largest such A; and p; if
they exist, denoted by A;, and p;, respectively. Define
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For example, if A = (5,5,4,4,4,3,3,3,1,1) and pu = (5,3,2,2,1), then
OO\ 1) = ((5,5,4,4,3,3,3,1,1), (5,4,4,3,2,2,1)).

It is easy to see that  is an involution on % \ ¥ with the desired properties. This proves
that
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where A = 7 U 7. Combining (3.1)—(3.3), we complete the proof of (1.9).
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4 Generating function proof of (1.8) and (1.9)

Recall that the g-shifted factorial is defined by
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By the g-binomial theorem (see, for example, [1, Theorem 3.3]), we may expand (4.1) and
(4.2) respectively as follows:
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Comparing the coefficients of 2" in both sides of (4.3) and (4.4), we obtain (1.8) and (1.9)
respectively.
Finally, we give the following special cases of (1.8):
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When ¢ = 1, the identities (4.5) and (4.6) reduce to (1.1) and (1.2) respectively.
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