A q-analogue of some binomial coefficient identities of Y. Sun

Victor J. W. Guo ${ }^{1}$ and Dan-Mei Yang ${ }^{2}$
Department of Mathematics, East China Normal University
Shanghai 200062, People's Republic of China
${ }^{1}$ jwguo@math.ecnu.edu.cn, ${ }^{2}$ plain_dan2004@126.com

Submitted: Dec 1, 2010; Accepted: Mar 24, 2011; Published: Mar 31, 2011
Mathematics Subject Classifications: 05A10, 05A17

Abstract

We give a q-analogue of some binomial coefficient identities of Y. Sun [Electron. J. Combin. 17 (2010), \#N20] as follows: $$
\begin{aligned} & \sum_{k=0}^{\lfloor n / 2\rfloor}\left[\begin{array}{c} m+k \\ k \end{array}\right]_{q^{2}}\left[\begin{array}{c} m+1 \\ n-2 k \end{array}\right]_{q} q^{\binom{n-2 k}{2}}=\left[\begin{array}{c} m+n \\ n \end{array}\right]_{q}, \\ & \left.\sum_{k=0}^{\lfloor n / 4\rfloor}\left[\begin{array}{c} m+k \\ k \end{array}\right]_{q^{4}}\left[\begin{array}{c} m+1 \\ n-4 k \end{array}\right]_{q} q^{(n-4 k}{ }^{2}\right)=\sum_{k=0}^{\lfloor n / 2\rfloor}(-1)^{k}\left[\begin{array}{c} m+k \\ k \end{array}\right]_{q^{2}}\left[\begin{array}{c} m+n-2 k \\ n-2 k \end{array}\right]_{q}, \end{aligned}
$$

where $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$ stands for the q-binomial coefficient. We provide two proofs, one of which is combinatorial via partitions.

1 Introduction

Using the Lagrange inversion formula, Mansour and Sun [2] obtained the following two binomial coefficient identities:

$$
\begin{align*}
\sum_{k=0}^{\lfloor n / 2\rfloor} \frac{1}{2 k+1}\binom{3 k}{k}\binom{n+k}{3 k} & =\frac{1}{n+1}\binom{2 n}{n}, \tag{1.1}\\
\sum_{k=0}^{\lfloor(n-1) / 2\rfloor} \frac{1}{2 k+1}\binom{3 k+1}{k+1}\binom{n+k}{3 k+1} & =\frac{1}{n+1}\binom{2 n}{n} \quad(n \geqslant 1) . \tag{1.2}
\end{align*}
$$

In the same way, Sun [3] derived the following binomial coefficient identities

$$
\begin{align*}
\sum_{k=0}^{\lfloor n / 2\rfloor} \frac{1}{3 k+a}\binom{3 k+a}{k}\binom{n+a+k-1}{n-2 k} & =\frac{1}{2 n+a}\binom{2 n+a}{n}, \tag{1.3}\\
\sum_{k=0}^{\lfloor n / 4\rfloor} \frac{1}{4 k+1}\binom{5 k}{k}\binom{n+k}{5 k} & =\sum_{k=0}^{\lfloor n / 2\rfloor} \frac{(-1)^{k}}{n+1}\binom{n+k}{k}\binom{2 n-2 k}{n}, \tag{1.4}\\
\sum_{k=0}^{\lfloor n / 4\rfloor} \frac{n+a+1}{4 k+a+1}\binom{5 k+a}{k}\binom{n+a+k}{5 k+a} & =\sum_{k=0}^{\lfloor n / 2\rfloor}(-1)^{k}\binom{n+a+k}{k}\binom{2 n+a-2 k}{n+a} . \tag{1.5}
\end{align*}
$$

It is not hard to see that both (1.1) and (1.2) are special cases of (1.3), and (1.4) is the $a=0$ case of (1.5). A bijective proof of (1.1) and (1.3) using binary trees and colored ternary trees has been given by Sun [3] himself. Using the same model, Yan [4] presented an involutive proof of (1.4) and (1.5), answering a question of Sun.

Multiplying both sides of (1.3) by $n+a$ and letting $m=n+a-1$, we may write it as

$$
\begin{equation*}
\sum_{k=0}^{\lfloor n / 2\rfloor}\binom{m+k}{k}\binom{m+1}{n-2 k}=\binom{m+n}{n}, \tag{1.6}
\end{equation*}
$$

while letting $m=n+a$, we may write (1.5) as

$$
\begin{equation*}
\sum_{k=0}^{\lfloor n / 4\rfloor}\binom{m+k}{k}\binom{m+1}{n-4 k}=\sum_{k=0}^{\lfloor n / 2\rfloor}(-1)^{k}\binom{m+k}{k}\binom{m+n-2 k}{m} . \tag{1.7}
\end{equation*}
$$

The purpose of this paper is to give a q-analogue of (1.6) and (1.7) as follows:

$$
\begin{align*}
& \sum_{k=0}^{\lfloor n / 2\rfloor}\left[\begin{array}{c}
m+k \\
k
\end{array}\right]_{q^{2}}\left[\begin{array}{c}
m+1 \\
n-2 k
\end{array}\right]_{q} q^{\left(\frac{n-2 k}{2}\right)}=\left[\begin{array}{c}
m+n \\
n
\end{array}\right]_{q} \tag{1.8}\\
& \sum_{k=0}^{\lfloor n / 4\rfloor}\left[\begin{array}{c}
m+k \\
k
\end{array}\right]_{q^{4}}\left[\begin{array}{c}
m+1 \\
n-4 k
\end{array}\right]_{q} q^{\left(\frac{n-4 k}{2}\right)}=\sum_{k=0}^{\lfloor n / 2\rfloor}(-1)^{k}\left[\begin{array}{c}
m+k \\
k
\end{array}\right]_{q^{2}}\left[\begin{array}{c}
m+n-2 k \\
n-2 k
\end{array}\right]_{q} \tag{1.9}
\end{align*}
$$

where the q-binomial coefficient $\left[\begin{array}{l}x \\ k\end{array}\right]_{q}$ is defined by

$$
\left[\begin{array}{l}
x \\
k
\end{array}\right]_{q}= \begin{cases}\prod_{i=1}^{k} \frac{1-q^{x-i+1}}{1-q^{i}}, & \text { if } k \geqslant 0 \\
0, & \text { if } k<0\end{cases}
$$

We shall give two proofs of (1.8) and (1.9). One is combinatorial and the other algebraic.

2 Bijective proof of (1.8)

Recall that a partition λ is defined as a finite sequence of nonnegative integers $\left(\lambda_{1}, \lambda_{2}\right.$, \ldots, λ_{r}) in decreasing order $\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{r}$. A nonzero λ_{i} is called a part of λ. The number of parts of λ, denoted by $\ell(\lambda)$, is called the length of λ. Write $|\lambda|=\sum_{i=1}^{m} \lambda_{i}$, called the weight of λ. The sets of all partitions and partitions into distinct parts are denoted by \mathscr{P} and \mathscr{D} respectively. For two partitions λ and μ, let $\lambda \cup \mu$ be the partition obtained by putting all parts of λ and μ together in decreasing order.

It is well known that (see, for example, [1, Theorem 3.1])

$$
\begin{aligned}
& \sum_{\substack{\lambda_{1} \leqslant m+1 \\
\ell(\lambda)=n}} q^{|\lambda|}=q^{n}\left[\begin{array}{c}
m+n \\
n
\end{array}\right]_{q}, \\
& \sum_{\substack{\lambda \in \mathscr{O} \\
\lambda_{1} \leqslant m+1 \\
\ell(\lambda)=n}} q^{|\lambda|}=\left[\begin{array}{c}
m+1 \\
n
\end{array}\right]_{q} q^{\binom{n+1}{2} .}
\end{aligned}
$$

Therefore,

$$
\sum_{\substack{\mu \in \mathscr{D} \\
\lambda_{1}, \mu_{1} \leq m+1 \\
2 \ell(\lambda)+\ell(\mu)=n}} q^{2|\lambda|+|\mu|}=q^{n} \sum_{k=0}^{\lfloor n / 2\rfloor}\left[\begin{array}{c}
m+k \\
k
\end{array}\right]_{q^{2}}\left[\begin{array}{c}
m+1 \\
n-2 k
\end{array}\right]_{q} q^{(n-2 k}{ }^{(n)},
$$

where $k=\ell(\lambda)$. Let

$$
\begin{aligned}
\mathscr{A} & =\left\{\lambda \in \mathscr{P}: \lambda_{1} \leqslant m+1 \text { and } \ell(\lambda)=n\right\}, \\
\mathscr{B} & =\left\{(\lambda, \mu) \in \mathscr{P} \times \mathscr{D}: \lambda_{1}, \mu_{1} \leqslant m+1 \text { and } 2 \ell(\lambda)+\ell(\mu)=n\right\} .
\end{aligned}
$$

We shall construct a weight-preserving bijection ϕ from \mathscr{A} to \mathscr{B}. For any $\lambda \in \mathscr{A}$, we associate it with a pair $(\bar{\lambda}, \mu)$ as follows: If λ_{i} appears r times in λ, then we let λ_{i} appear $\lfloor r / 2\rfloor$ times in $\bar{\lambda}$ and $r-2\lfloor r / 2\rfloor$ times in μ. For example, if $\lambda=(7,5,5,4,4,4,4,2,2,2,1)$, then $\bar{\lambda}=(5,4,4,2)$ and $\mu=(7,2,1)$. Clearly, $(\bar{\lambda}, \mu) \in \mathscr{B}$ and $|\lambda|=2|\bar{\lambda}|+|\mu|$. It is easy to see that $\phi: \lambda \mapsto(\bar{\lambda}, \mu)$ is a bijection. This proves that

$$
\sum_{\lambda \in \mathscr{A}} q^{|\lambda|}=\sum_{(\lambda, \mu) \in \mathscr{B}} q^{2|\lambda|+|\mu|}
$$

Namely, the identity (1.8) holds.

3 Involutive proof of (1.9)

It is easy to see that

$$
\begin{align*}
q^{n} \sum_{k=0}^{\lfloor n / 2\rfloor}(-1)^{k}\left[\begin{array}{c}
m+k \\
k
\end{array}\right]_{q^{2}}\left[\begin{array}{c}
m+n-2 k \\
n-2 k
\end{array}\right]_{q} & =\sum_{k=0}^{\lfloor n / 2\rfloor}(-1)^{k} \sum_{\substack{\lambda_{1} \leqslant m+1 \\
\ell(\lambda)=k}} q^{2|\lambda|} \sum_{\substack{\mu_{1} \leqslant m+1 \\
\ell(\mu)=n-2 k}} q^{|\mu|} \\
& =\sum_{\substack{\lambda_{1}, \mu_{1} \leqslant m+1 \\
2 \ell(\lambda)+\ell(\mu)=n}}(-1)^{\ell(\lambda)} q^{2|\lambda|+|\mu|}, \tag{3.1}
\end{align*}
$$

and

$$
q^{n} \sum_{k=0}^{\lfloor n / 4\rfloor}\left[\begin{array}{c}
m+k \tag{3.2}\\
k
\end{array}\right]_{q^{4}}\left[\begin{array}{c}
m+1 \\
n-4 k
\end{array}\right]_{q} q^{\left(n_{2}^{2 k}\right)}=\sum_{\substack{\mu \in \mathscr{O} \\
\lambda_{1}, \mu_{1} \leq m+1 \\
4 \ell(\lambda)+\ell(\mu)=n}} q^{4|\lambda|+|\mu|} .
$$

Let

$$
\begin{array}{r}
\mathscr{U}=\left\{(\lambda, \mu) \in \mathscr{P} \times \mathscr{P}: \lambda_{1}, \mu_{1} \leqslant m+1 \text { and } 2 \ell(\lambda)+\ell(\mu)=n\right\}, \\
\mathscr{V}=\left\{(\lambda, \mu) \in \mathscr{U}: \text { each } \lambda_{i} \text { appears an even number of times and } \mu \in \mathscr{D}\right\} .
\end{array}
$$

We shall construct an involution θ on the set $\mathscr{U} \backslash \mathscr{V}$ with the properties that θ preserves $2|\lambda|+|\mu|$ and reverses the sign $(-1)^{\ell(\lambda)}$.

For any $(\lambda, \mu) \in \mathscr{U} \backslash \mathscr{V}$, notice that either some λ_{i} appears an odd number of times in λ, or some μ_{j} is repeated in μ, or both are true. Choose the largest such λ_{i} and μ_{j} if they exist, denoted by $\lambda_{i_{0}}$ and $\mu_{j_{0}}$ respectively. Define

$$
\theta((\lambda, \mu))= \begin{cases}\left(\left(\lambda \backslash \lambda_{i_{0}}\right), \mu \cup\left(\lambda_{i_{0}}, \lambda_{i_{0}}\right)\right), & \text { if } \lambda_{i_{0}} \geqslant \mu_{j_{0}} \text { or } \mu \in \mathscr{D} \\ \left(\left(\lambda \cup \mu_{j_{0}}\right), \mu \backslash\left(\mu_{j_{0}}, \mu_{j_{0}}\right)\right), & \text { if } \lambda_{i_{0}}<\mu_{j_{0}} \text { or } \lambda_{i_{0}} \text { does not exist. }\end{cases}
$$

For example, if $\lambda=(5,5,4,4,4,3,3,3,1,1)$ and $\mu=(5,3,2,2,1)$, then

$$
\theta(\lambda, \mu)=((5,5,4,4,3,3,3,1,1),(5,4,4,3,2,2,1))
$$

It is easy to see that θ is an involution on $\mathscr{U} \backslash \mathscr{V}$ with the desired properties. This proves that

$$
\begin{align*}
\sum_{(\lambda, \mu) \in \mathscr{U}}(-1)^{\ell(\lambda)} q^{2|\lambda|+|\mu|} & =\sum_{\substack{(\lambda, \mu) \in \mathscr{V}}}(-1)^{\ell(\lambda)} q^{2|\lambda|+|\mu|} \\
& =\sum_{\substack{\mu \in \mathscr{O} \\
\tau_{1},, 1_{1} \leq m+1 \\
4 \ell(\tau)+\ell(\mu)=n}} q^{4|\tau|+|\mu|} \tag{3.3}
\end{align*}
$$

where $\lambda=\tau \cup \tau$. Combining (3.1)-(3.3), we complete the proof of (1.9).

4 Generating function proof of (1.8) and (1.9)

Recall that the q-shifted factorial is defined by

$$
(a ; q)_{0}=1, \quad(a ; q)_{n}=\prod_{k=0}^{n-1}\left(1-a q^{k}\right), n=1,2, \ldots
$$

Then we have

$$
\begin{align*}
& \frac{1}{\left(z^{2} ; q^{2}\right)_{m+1}}(-z ; q)_{m+1}=\frac{1}{(z ; q)_{m+1}}, \tag{4.1}\\
& \frac{1}{\left(z^{4} ; q^{4}\right)_{m+1}}(-z ; q)_{m+1}=\frac{1}{(z ; q)_{m+1}} \frac{1}{\left(-z^{2} ; q^{2}\right)_{m+1}} \tag{4.2}
\end{align*}
$$

By the q-binomial theorem (see, for example, [1, Theorem 3.3]), we may expand (4.1) and (4.2) respectively as follows:

$$
\begin{align*}
& \left(\sum_{k=0}^{\infty}\left[\begin{array}{c}
m+k \\
k
\end{array}\right]_{q^{2}} z^{2 k}\right)\left(\sum_{k=0}^{m+1}\left[\begin{array}{c}
m+1 \\
k
\end{array}\right]_{q} q^{\binom{k}{2}} z^{k}\right)=\sum_{k=0}^{\infty}\left[\begin{array}{c}
m+k \\
k
\end{array}\right]_{q} z^{k} \tag{4.3}\\
& \left(\sum_{k=0}^{\infty}\left[\begin{array}{c}
m+k \\
k
\end{array}\right]_{q^{4}} z^{4 k}\right)\left(\sum_{k=0}^{m+1}\left[\begin{array}{c}
m+1 \\
k
\end{array}\right]_{q} q^{\binom{k}{2}} z^{k}\right) \\
& =\left(\sum_{k=0}^{\infty}\left[\begin{array}{c}
m+k \\
k
\end{array}\right]_{q} z^{k}\right)\left(\sum_{k=0}^{\infty}\left[\begin{array}{c}
m+k \\
k
\end{array}\right]_{q^{2}}(-1)^{k} z^{2 k}\right) . \tag{4.4}
\end{align*}
$$

Comparing the coefficients of z^{n} in both sides of (4.3) and (4.4), we obtain (1.8) and (1.9) respectively.

Finally, we give the following special cases of (1.8):

$$
\begin{align*}
&\left.\sum_{k=0}^{\lfloor n / 2\rfloor}\left[\begin{array}{c}
n+k \\
k
\end{array}\right]_{q^{2}}\left[\begin{array}{c}
n+1 \\
2 k+1
\end{array}\right]_{q} q^{(n-2 k} 2^{2 k}\right)=\left[\begin{array}{c}
2 n \\
n
\end{array}\right]_{q}, \tag{4.5}\\
&\left.\sum_{k=0}^{\lfloor n / 2\rfloor}\left[\begin{array}{c}
n+k \\
k+1
\end{array}\right]_{q^{2}}\left[\begin{array}{c}
n \\
2 k+1
\end{array}\right]_{q} q^{(n-2 k-1}\right)=\left[\begin{array}{c}
2 n \\
n-1
\end{array}\right]_{q} . \tag{4.6}
\end{align*}
$$

When $q=1$, the identities (4.5) and (4.6) reduce to (1.1) and (1.2) respectively.
Acknowledgments. This work was partially supported by the Fundamental Research Funds for the Central Universities, Shanghai Rising-Star Program (\#09QA1401700), Shanghai Leading Academic Discipline Project (\#B407), and the National Science Foundation of China (\#10801054).

References

[1] G. E. Andrews, The Theory of Partitions, Cambridge University Press, Cambridge, 1998.
[2] T. Mansour and Y. Sun, Bell polynomials and k-generalized Dyck paths, Discrete Appl. Math. 156 (2008), 2279-2292.
[3] Y. Sun, A simple bijection between binary trees and colored ternary trees, Electron. J. Combin. 17 (2010), \#N20.
[4] S. H. F. Yan, Bijective proofs of identities from colored binary trees, Electron. J. Combin. 15 (2008), \#N20.

