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Abstract

The present paper shows that any sequence of integers laying along a finite ray

in any Pascal-pyramid is log-concave, consequently unimodal. Further, we describe

an algorithm which provides the plateaus of the diagonal sequences locating on layer

n of the regular Pascal pyramid.

1 Introduction

Let r ≥ 2 denote an integer, and consider the map p : N
r → N,

(x1, . . . , xr) 7→
(

x1 + · · · + xr

x1, . . . , xr

)

=
(x1 + · · ·+ xr)!

x1! · · ·xr!
.

Clearly, the map p provides the number of the ways of splitting a set of x = x1+· · ·+xr

distinguishable objects into pairwisely disjoint subsets Si with cardinality xi (i = 1, . . . , r),
therefore

(
x1 + · · ·+ xr

x1, . . . , xr

)

=

(
x1 + · · ·+ xr

x1

)(
x2 + · · ·+ xr

x2

)

· · ·
(

xr−1 + xr

xr−1

)(
xr

xr

)

(1)
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holds with the usual binomial coefficients on the right hand side. When r = 2, the map
returns the regular binomial coefficients in the Pascal triangle. We obtain the regular
Pascal pyramid if r = 3. For the cases r ≥ 4 we will refer as generalized Pascal pyramids.

The main purpose of this paper is to investigate the question of unimodality in Pascal
pyramids. It has already been shown that the elements laying along any ray in the Pascal
triangle form unimodal sequence (see [2]). Scrutinies were made to reveal the localization
of certain rays’ modes (for instance, see [5, 3, 1]). Here, in the first part we prove, similarly
to Pascal triangle, that any ray crosses any Pascal pyramid is puncturing elements of an
unimodal sequence. Later we concentrate only on the 3D case, where r = 3, and consider
the elements

(
x1+x2+x3

x1,x2,x3

)
to specify certain modes when n = x1 + x2 + x3 is fixed. More

precisely, we describe the peaks and plateaus of the so called diagonal sequences on level
n in the pyramid. Figure 2 shows the first few levels of Pascal pyramid.

Figure 1: nth level of Pascal pyramid

Let ω denote a positive integer or the infinity. A real sequence {ak}ω
k=0 is unimodal if

there exist a non-negative integer λ such that the subsequence {ak}λ
k=0 increases, while

{ak}ω
k=λ decreases. When λ = 0 then the sequence is monotone decreasing. Therefore it

is also natural to consider a monotone increasing sequence as unimodal with λ = ω, even
if ω = ∞.

If a0 ≤ a1 ≤ · · · ≤ am−1 < am = · · · = aM > aM+1 ≥ aM+2 ≥ · · · then the integers
m, . . . , M are called the modes of the sequence. In case of m = M , we talk about peak,
otherwise the set of modes is called plateau.

A non-negative real sequence {ak} is logarithmically concave (log-concave or LC for
short) if

a2
k ≥ ak−1ak+1

holds for any k ≥ 1.
By Theorem 1, log-concavity provides an opportunity to show unimodality. In the

proof of Theorem 5 we use it together with Theorem 2.
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Theorem 1 A log-concave sequence {ak} with no internal zeros is also unimodal (see,
for instance, [4]).

Theorem 2 The sequence of binomial coefficients located along a ray is log-concave (see
[2]).

Now we recall an other important result, due to Wang and Yeh [6], which we can
compose a log-concave sequence from initial log-concave sequences by.

Theorem 3 If m sequences {U (1)
k }, . . . , {U (m)

k } are all log-concave, then so is the sequence

Un =
∑

(
n

k1, . . . , km

)

U
(1)
k1

· · ·U (m)
km

, n ∈ N,

where the sum is over all non-negative integers k1, . . . , km such that k1 + · · · + km = n.

In order to prepare the proof of Theorem 5, let introduce the notation of rays in
generalized Pascal pyramids. As usual, a lattice ray in the domain Dp of the function
p is given by two grid points ~x = (x1, . . . , xr) ∈ Dp and ~y = (y1, . . . , yr) ∈ Dp, thus we
consider the sequence

s~x,~y(k) =

{( ∑r

i=1 xi + k
∑r

i=1 αi

x1 + kα1, . . . , xr + kαr

)}

k

with k ∈ N, where αi = yi − xi, (i = 1, . . . , r).
We also need a combinatorial argument to extend the Vandermonde identity

(
n

ν

)

=
∑

i

(
k

i

)(
n − k

ν − i

)

linked to the Pascal triangle as follows.

Theorem 4 Given the non-negative integers n ≥ k, n1, . . . , nr such that n1+· · ·+nr = n.
Then (

n

n1, . . . , nr

)

=
∑

k1,...,kr

(
k

k1, . . . , kr

)(
n − k

n1 − k1, . . . , nr − kr

)

(2)

holds, where k1 + · · · + kr = k is satisfied on all possible manners while summing.

Proof: Suppose that we have n students, k and n − k girls and boys, respectively.
Assume that they have r levels of studies (for example, first year, second year, etc.). We
would like to distribute n students such that ni of them are in level i. To get the number
of all choices, we should only sum over all different possibilities to choose ki girls and
ni − ki boys to each level i.
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2 Results and proofs

Using the notation above, the principal result of this work is

Theorem 5 The sequence

s~x,~y(k) =

{( ∑r

i=1 xi + k
∑r

i=1 αi

x1 + kα1, . . . , xr + kαr

)}

k

, k = 0, 1, 2, . . . (3)

is unimodal.

Proof: An immediate consequence of Theorem 4 if one applies the decomposition in
(1) to s~x,~y(k) of (3) is

( ∑r

i=1 xi + k
∑r

i=1 αi

x1 + kα1, . . . , xr + kαr

)

=
∑

k1,...,kr

k1+···+kr=k

(
k

k1, . . . , kr

)

· U (1)
k1

· U (2)
k2

· · ·U (r−1)
kr−1

· U (r)
kr

, (4)

where

U
(1)
k1

=

(∑r

i=1 xi + k
∑r

i=1 αi − k

x1 + kα1 − k1

)

U
(2)
k2

=

(∑r

i=2 xi + k
∑r

i=2 αi − (k − k1)

x2 + kα2 − k2

)

...

U
(r−1)
kr−1

=

(∑r

i=r−1 xi + k
∑r

i=r−1 αi −
(
k −

∑r−2
i=1 ki

)

xr−1 + kαr−1 − kr−1

)

U
(r)
kr

=

(
xr + kαr − kr

xr + kαr − kr

)

= 1.

Each sequence {U (i)
ki
} consists of certain binomial coefficients laying on a ray, hence by

Theorem 2, it is log-concave. Now, applying Theorem 3, it follows that the sequence
s~x,~y(k) is log-concave. Thus, by Theorem 1, the proof is complete.

Put n = qr + ̺, 0 ≤ ̺ < r, where n and r ≤ n are fixed positive integers. We even
remark, that the maximum value

max
n1+···+nr=n

(
n

n1, n2, . . . , nr

)

=

(
n

q + 1, . . . , q + 1
︸ ︷︷ ︸

̺ times

, q, . . . , q
︸ ︷︷ ︸

r−̺ times

)

.

In the sequel, we consider the regular Pascal pyramid, where r = 3. Let n ∈ N be
fixed, and n = k1 + k2 + k3. In this case we will determine a sort of ray’s peak and
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plateau in the pyramid. Obviously, there are finitely many non-negative integer triples
(k1, k2, k3) = (k1, k2, n − k1 − k2) satisfying the condition above.

Now, put k1 = n−t (with 0 ≤ t ≤ n), k2 = k, consequently we have k3 = n−k1−k2 =
t − k, further

(
n

k1, k2, n − k1 − k2

)

=

(
n

n − t, k, t − k

)

=

(
n

n − t

)(
t

k

)

=

(
n

t

)(
t

k

)

hold.
It can be interpreted as the kth element of the tth row on the nth layer of the Pascal

pyramid. Clearly, 0 ≤ k ≤ t ≤ n. Therefore if someone takes the first n rows of the
Pascal triangle, and for each non negative integer t ≤ n, multiplies the tth row in it by
the binomial coefficient

(
n

t

)
then the nth layer in the Pascal pyramid is obtained.

Figure 2: Pascal pyramid

It is well known that if t is even, then the tth row of the Pascal triangle has a peak at
t/2, otherwise (when t is odd) there is a plateau with the two elements ⌊t/2⌋ and ⌈t/2⌉.
The situation is the same in the nth level of the Pascal pyramid, since each row here is
a constant multiple of the corresponding row of the Pascal triangle (to see level n, look
at Figure 1). The so called diagonal sequences have more interests. We refer to Tanny
and Zuker [5], who showed in the ordinary Pascal triangle that

(
n−k

k

)
(k = 0, . . . , ⌊n/2⌋)

is unimodal, and the authors describe the peaks and the plateaus with two elements,
the elements in which the monotonicity changes. Analogously, for any 2 ≤ t ≤ n, we
investigate the diagonal sequence

dt(k) =

(
n

t − k

)(
t − k

k

)

, 0 ≤ k ≤ t

of the nth level of the Pascal pyramid.

In the forthcoming part we deal with the peaks and plateaus of diagonal sequences
dt(k) defined above. The first result classifies the possible cases, then we show how to
determine the plateaus.
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Theorem 6 Given the positive integers 2 ≤ t ≤ n, and put

κ =
(n + 3t) −

√

(n + 3t)2 − 12(t2 − n − 1)

6
.

Then κ is a real number. If t <
√

n + 1 then κ < 0 and the sequence dt(k) is strictly
monotone decreasing. If κ is non-negative integer, then dt(k) has a plateau with the two
elements κ and κ + 1. Finally, if κ is a non-integer positive real number, then dt(k)
possesses a peak at ⌈κ⌉.

Proof: The condition dt(k) ≤ dt(k + 1) is equivalent to

0 ≤ 3k2 − (n + 3t)k + (t2 − n − 1). (5)

Since 2 ≤ t ≤ n, the discriminant D = (n + 3t)2 − 12(t2 − n − 1) of the equation

0 = 3k2 − (n + 3t)k + (t2 − n − 1) (6)

is larger then (4t)2 − 12(t2 − n − 1) = 4t2 + 12n + 12 > 0. Thus (6) has two distinct real
roots:

κ± =
(n + 3t) ±

√
D

6
.

Applying again t ≤ n, it is obvious, that for the larger one, say

κ+ =
(n + 3t) +

√

(n + 3t)2 − 12(t2 − n − 1)

6
≥ (4t) +

√
4t2 + 12t + 12

6
> t

hold, and we arrived at a contradiction since κ ≤ t should be satisfied (because 0 ≤ k ≤ t
from dt(k)). Put κ = κ−. The reader readily can show that κ < 0 holds if and only if
t <

√
n + 1. Thus the further parts of the theorem are obvious.

Now, we turn our attention to the question of modes with two elements. Plateau of
the sequence dt(k) exists if and only if

κ =
(n + 3t) −

√
D

6

is an integer satisfying 0 ≤ κ ≤ t/2−1. Hence D necessarily must be a square, that is D =
u2 holds for a suitable non-negative integer u. Note, that D = (n+3t+6)2−12(t+1)(t+2),
so we obtain

(n + 3t + 6 − u)(n + 3t + 6 + u) = 12(t + 1)(t + 2). (7)

Put a− = n + 3t + 6 − u and a+ = n + 3t + 6 + u. Since both a− and a+ are of the
same parity and a−a+ is even, a− and a+ must both be even. Thus a−/2 and a+/2 are
integers, one of them is divisible by 3. Set h1, h2 ∈ N such that h1h2 = 3 and a−/2h1 ∈ N,
a+/2h2 ∈ N. Clearly,

a−

2h1
· a+

2h2
= (t + 1)(t + 2). (8)
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All the solutions of (8) can be represented as t+1 = s1s2, t+2 = s3s4 and a−/2h1 = s1s3,
a+/2h2 = s2s4 for suitable positive integers si, i = 1, . . . , 4. It follows, that

u = −h1s1s3 + h2s2s4,

n = h1s1s3 + h2s2s4 − 3s3s4,

t = s3s4 − 2 = s1s2 − 1,

further

κ =
h1s1s3

3
− 1.

Assume now, that s1 and s2 are given, and then determine all positive divisor pairs
(s3, s4) such that s3s4 = s1s2 + 1. Then the parameters si and h1, h2 generate u, n, t and
κ as above. If the conditions

√
n + 1 ≤ t ≤ n, 0 ≤ κ ≤ t/2 − 1 and u ≥ 0 hold then a

plateau is provided by

(
n

t − κ

)(
t − κ

κ

)

=

(
n

t − κ − 1

)(
t − κ − 1

κ + 1

)

.

In this manner, all plateaus can be obtained. Observe, that by (7), 3 | n implies 3 | u,
hence both a− and a+ are also divisible by 3. Therefore, to avoid the repetition in
producing the plateaus, we must omit exactly one of the cases (h1, h2) = (1, 3) and
(h1, h2) = (3, 1).

Experimental observations on plateaus

s1 s2 s3 s4 h1 h2 n t κ u dt(κ)
1 4 1 5 3 1 8 3 0 17 56
2 4 3 3 1 3 15 7 1 30 30030
3 1 1 4 1 3 3 2 0 9 3
3 2 1 7 1 3 24 5 0 39 42504
3 3 1 10 1 3 63 8 0 87 3872894697
3 3 2 5 1 3 21 8 1 39 813960
3 4 1 13 1 3 120 11 0 153 1160681786387760
3 4 1 13 3 1 22 11 2 43 17907120
4 4 1 17 3 1 29 15 3 56 11417105700

Table 1: Plateaus with small s1 and s2

As a demonstration of the procedure, Table 1 presents the plateaus and their para-
meters when s1, s2 ≤ 4.

A class of the plateaus can be explicitly given by (s1, s2, s3, s4) = (3ν, 1, 1, 3ν + 1) and
(h1, h2) = (1, 3), further by

(n, t, κ) = (3ν, 3ν − 1, ν − 1), ν = 1, 2, . . . . (9)
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n 8 10 15 15 17 21 22 24 24 25 28 29 29 31 34 35 36 36 38

t 3 6 4 7 10 8 11 5 14 19 9 15 20 18 13 6 10 19 22

κ 0 1 0 1 2 1 2 0 3 5 1 3 5 4 2 0 1 4 5

Table 2: Plateaus with n ≤ 40 appearing no in (9)

The method described above provides the triples (n, t, κ) in no ascendent order of
layers n. We collected here, in Table 2 the levels n ≤ 40 containing plateaus given no by
(9). (Here s1, s2 ≤ 23.)

Note, that the levels

n = 0, 1, 2, 4, 5, 7, 11, 13, 14, 16, 19, 20, 23, 26, 32, 37, 40, . . .

of the pyramid do not contain plateaus of diagonal sequences.
It is worth noting, that level n = 15 is the first layer with 3 diagonal plateaus (see

Figure 3); n = 66 is the first with 5; n = 99 is the first with 7; n = 372 is the first with
11 diagonal plateaus.

Figure 3: 15th level of regular Pascal pyramid
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