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Abstract

A closed knight’s tour of a chessboard uses legal moves of the knight to visit every

square exactly once and return to its starting position. In 1991 Schwenk completely

classified the m × n rectangular chessboards that admit a closed knight’s tour. In

honor of the upcoming twentieth anniversary of the publication of Schwenk’s paper,

this article extends his result by classifying the i × j × k rectangular prisms that

admit a closed knight’s tour.

1 Introduction

The closed knight’s tour of a chessboard is a classic problem in mathematics. Can the
knight use legal moves to visit every square on the board and return to its starting
position? The two dimensional movement of the knight makes its tour an intriguing
problem which is trivial for other chess pieces. Euler presents solutions for the 8×8 board
in a 1759 paper [4]. Martin Gardner discusses the knight’s tour on rectangular boards and
other mathematical problems involving the knight in his October 1967 column in Scientific
American [5]. Papers exist analyzing the closed knight’s tour on variant chessboards such
as the cylinder [12], the torus [13], the sphere [1], the exterior of the cube [9] and the
interior of the cube [3]. Donald Knuth generalizes the study of the {1, 2}-knight on a
rectangular board to the {r, s}-leaper on a rectangular board [8]. Across the Board: The

Mathematics of Chessboard Problems by John Watkins is an indispensable collection of
knight’s tour results as well as many other mathematically themed chessboard problems
[11].

Generalizing away from the chessboard, the closed knight’s tour is a subset of the
well known problem of the existence of Hamiltonian cycles in graphs. Despite the prior
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appearance of a paper [7] by Thomas Kirkman posing the general question, this cycle’s
name originates from mathematician William Rowen Hamilton and his Icosian game of
the late 1850’s. Photographs of the actual game can be viewed at http://puzzlemuseum.
com/month/picm02/200207icosian.htm, as hosted by The Puzzle Museum. Hamilton’s
Icosian game challenged players to visit every city on the board exactly once and return
home.

Many results about closed knight’s tours for rectangular boards had appeared in the
literature throughout the years but no complete characterization of the solution was known
until 1991. It was then that Schwenk completely answered the question: Which rectan-
gular chessboards have a closed knight’s tour [10]?

Theorem 1 (Schwenk) An m × n chessboard with m ≤ n has a closed knight’s tour

unless one or more of the following three conditions hold:

(a) m and n are both odd;
(b) m ∈ {1, 2, 4} ;
(c) m = 3 and n ∈ {4, 6, 8} .

To honor the twentieth anniversary of Schwenk’s Theorem, we extend the result to
i × j × k rectangular prisms for integers i, j, k ≥ 2.

Theorem 2 An i × j × k chessboard for integers i, j, k ≥ 2 has a closed knight’s tour

unless, without loss of generality, one or more of the following three conditions hold:

(a) i, j and k are all odd;
(b) i = j = 2;
(c) i = 2 and j = k = 3.

To begin, consider two views of a closed knight’s tour on the 2 × 5 × 6 board. When
presenting a board for the first time, we will always display the slices as in Figure 1.
Note that this three dimensional tour is not just a combination of two copies of a closed
knight’s tour of the 5 × 6 board.

Figure 1: Slices of the
2 × 5 × 6 board

Figure 2: The
3-D view of the
2 × 5 × 6 board
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For the two-dimensional case the existence or non-existence of the m×n board clearly
settles the question for the n × m board after a 90-degree rotation either clockwise or
counterclockwise. The same holds true in three dimensions, although more options for
rotations exist.

2 Boards without Tours

We first proceed by showing that the boards that satisfy at least one of the conditions
of Theorem 2 do not contain a closed knight’s tour. Parity conditions on i, j and k

immediately dictate a necessary condition. A closed knight’s tour does not exist on the
i× j × k rectangular prism for i, j, k ≡ 1 mod 2. The moves of the knight alternate color
on the chessboard as shown in Figure 3 by the a − b, c − d and e − f moves. Thus,
the knight’s graph is bipartite. A closed knight’s tour is an alternating cycle of black
and white cells. Clearly, the number of white cells must equal the number of black cells.
However, if i, j and k are all odd then the number of cells on the board is odd and the
number of black cells cannot equal the number of white cells. Thus, no closed knight’s
tour exists on the i × j × k chessboard when i, j and k are all odd.

Figure 3: Knight moves on the 4 × 5 × 5 board

It is a necessary condition that at least one of i, j and k be even. It is almost a
sufficient condition as well. Almost, but not quite. A closed knight’s tour does not exist
on the 2× j × 2 board. The labeling of the cells in the 2× j × 2 board of Figure 4 shows
that the knight’s moves on the board are constrained. A knight can only move to and
from cells of the same label. The knight’s graph on the 2× j × 2 board is a disconnected
graph. For the 3 × 3 × 2 board, isolated vertices exist in the knight’s graph as shown by
the shaded cells in Figure 5. Naturally, a Hamiltonian cycle cannot exist in a disconnected
graph or one with isolated vertices.
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Figure 4: The 2 × j × 2 rectangular
prism

Figure 5: The
3 × 3 × 2

Rectangular
Prism

3 General Method to Create Tours

We now prove the existence of a closed knight’s tour for all other boards by constructing
a tour for each board. Proof of the existence of a closed knight’s tour for all other boards
will be constructive and use the strong form of induction. As a gentle introduction to
the reader we’ll begin with examples of the three types of constructions we employ for
the i× j × k boards. We will use multiple copies of a closed knight’s tour on a 2 × 4 × 4
board to illustrate the process. Figure 6 shows the two layers of the 2×4×4 board while
Figure 7 illustrates the 2 × 4 × 4 board in three dimensions.

Figure 6: A 2 × 4 × 4
closed knight’s tour

Figure 7:
The 3-D

view of the
2 × 4 × 4

board

The constructions in our proof begin with two closed knight’s tours on two boards
sharing at least two common parameters. We place the boards adjacent to each other to
create a larger board. By selectively deleting key edges and creating new edges, we create
a single closed knight’s tour that traverses the new larger board. We use three methods
to extend boards that share a common parameter: vertical stacking, horizontal stacking
and front stacking. In vertical stacking, we place copies of the 2 × 4 × 4 board on top of
each other as shown in Figure 8 to create a 2×4×8 board. We now want to combine the
two disjoint closed knight’s tours into one tour that tours every cell of the new 2 × 4 × 8
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board exactly once. We achieve this by deleting the 3− 4 edge on the top 2× 4× 4 board
and the 8 − 9 edge on the bottom 2 × 4 × 4 board and then creating the 3 − 8 and 4 − 9
edges to connect the previously disjoint tours into one single closed knight’s tour for the
2 × 4 × 8 board.

Figure 8:
Vertical

stacking of
two copies of
the 2 × 4 × 4

board

Figure 9:
Horizontal

stacking of two
copies of the

2 × 4 × 4 board

Figure 10: Front
stacking of two
copies of the

2 × 4 × 4 board

Next we proceed with horizontal stacking of two copies of the 2×4×4 board to create
a 2 × 8 × 4 board as illustrated in Figure 9. Delete the 25 − 26 edge of the left 2 × 4 × 4
board and the 27 − 28 edge of the right 2 × 4 × 4 board. Now create the 25 − 28 and
26 − 27 edges.

Finally we front stack two copies of the 2 × 4 × 4 board to create a 4 × 4 × 4 board.
Delete the 10 − 11 edge of the front 2 × 4 × 4 board and the 14 − 15 edge of the back
2 × 4 × 4 board. Now create the 10 − 15 and 11 − 14 edges.

Using strong induction and the 2 × 4 × 4 board, it is possible to construct a closed
knight’s tour on the i × j × k for i ≡ 0 mod 2 and j, k ≡ 0 mod 4. If only a closed
knight’s tour existed for the 2× 2× 2 board, our task would be much simpler! This clean
and relatively simple example using only the 2 × 4 × 4 board encompasses the range of
techniques that constitute our entire proof. Many different boards will be required for
the complete proof for all the possible values of i, j and k.

4 Boards with Tours

Using the technique demonstrated in the previous section, we need to show how to con-
struct a tour for all other boards not forbidden by Theorem 2. This forthcoming process
will be very detailed but conceptually no harder than what we have already done. Since
not all three values for i, j and k can be odd we will without loss of generality assume that
i ≡ 0 mod 2. We will continue to utilize the 2 × 4 × 4 board and introduce new boards
as needed. We have already created a tour for any i × j × k board where i ≡ 0 mod 2
and j, k ≡ 0 mod 4. Now we construct a tour for the other three values of k mod 4 while
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fixing i ≡ 0 mod 2 and j ≡ 0 mod 4. Figure 11 presents the 2 × 4 × 5 base board for
constructing the tours where k ≡ 1 mod 4. From here on out, we provide the details of
the three stacking methods via tables to conserve space.

Figure 11: A
2 × 4 × 5 closed

knight’s tour

Figure 12:
Vertical

stacking of the
2× 4× 5 board

below the
2× 4× 4 board

of Figure 6

Figure 13:
Horizontal stacking
of two copies of the

2 × 4 × 5 board

Delete edges Create edges
Vertical 3 − 4 top board, 39 − 40 bottom board 3 − 39, 4 − 40
Horizontal 31 − 32 left board, 37 − 38 right board 31 − 38, 32 − 37
Front 10 − 11 front board, 16 − 17 back board 10 − 17, 11 − 16

For k ≡ 2 mod 4, Figure 14 provides the 2 × 4 × 6 base board.

Figure 14: A
2 × 4 × 6 closed

knight’s tour

Figure 15:
Vertical

stacking of the
2× 4× 6 board

below the
2× 4× 4 board

of Figure 6

Figure 16:
Horizontal stacking
of two copies of the

2 × 4 × 6 board
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Delete edges Create edges
Vertical 3 − 4 top board, 36 − 37 bottom board 3 − 36, 4 − 37
Horizontal 30 − 31 left board, 28 − 29 right board 28 − 31, 29 − 30
Front 29 − 30 front board, 39 − 40 back board 29 − 40, 30 − 39

And finally, a 2 × 4 × 3 base board for k ≡ 3 mod 4.

Figure 17: A
2 × 4 × 3 closed

knight’s tour

Figure 18:
Vertical stacking
of the 2 × 4 × 3
board below the

2 × 4 × 4 board of
Figure 6

Figure 19: Horizontal
stacking of two copies
of the 2 × 4 × 3 board

Delete edges Create edges
Vertical 3 − 4 top board, 11 − 12 bottom board 3 − 12, 4 − 11
Horizontal 4 − 5 left board, 20 − 21 right board 4 − 21, 5 − 20
Front 7 − 8 front board, 5 − 6 back board 5 − 8, 6 − 7

At this point we have constructed a closed knight’s tour for any i × j × k board for
i ≡ 0 mod 2, j ≡ 0 mod 4 and k > 2. Next we cover the case of i ≡ 0 mod 2,
j ≡ 1 mod 4 and k > 2. We will extend these boards in three dimensions using our usual
techniques. Previously we’ve used the 2 × 4 × 4 board of Figure 6 in the inductive step.
Now we use the 2 × 4 × 5 board from Figure 11 in the inductive step. We begin with a
2 × 5 × 5 base board.
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Figure 20: A
2 × 5 × 5 closed

knight’s tour

Figure 21:
Vertical

stacking of
the 2 × 5 × 5
board below
the 2 × 5 × 4

board of
Figure 11

Figure 22:
Horizontal

stacking of the
2 × 5 × 5 board

and the
2 × 5 × 4 board

of Figure 11

Delete edges Create edges
Vertical 4 − 5 top board, 20 − 21 bottom board 4 − 21, 5 − 20
Horizontal 47 − 48 left board, 8 − 9 right board 8 − 48, 9 − 47
Front 43 − 44 front board, 49 − 50 back board 43 − 50, 44 − 49

Next, we create the 2 × 5 × 6 base board and its extensions.

Figure 23: A
2 × 5 × 6 closed

knight’s tour

Figure 24:
Vertical stacking
of the 2 × 5 × 6
board below the
rotated 2× 5× 4

board of
Figure 11

Figure 25: Horizontal
stacking of the

2 × 5 × 6 board and
the 2× 4× 6 board of

Figure 14
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Delete edges Create edges
Vertical 11 − 12 top board, 2 − 3 bottom board 2 − 11, 3 − 12
Horizontal 37 − 38 left board, 33 − 34 right board 33 − 38, 34 − 37
Front 57 − 58 front board, 59 − 60 back board 57 − 60, 58 − 59

Once more for the 2 × 5 × 3 board.

Figure 26: A
2 × 5 × 3 closed

knight’s tour

Figure 27: Vertical
stacking of the
2 × 5 × 3 board

below the rotated
2 × 4 × 5 board of

Figure 11

Figure 28:
Horizontal stacking

of the 2 × 5 × 3
board and the

2 × 4 × 3 board of
Figure 17

Delete edges Create edges
Vertical 17 − 18 top board, 14 − 15 bottom board 14 − 17, 15 − 18
Horizontal 23 − 24 left board, 20 − 21 right board 20 − 23, 21 − 24
Front 27 − 28 front board, 29 − 30 back board 27 − 30, 28 − 29

There is no need for a 2 × 5 × 4 board for the case of i ≡ 0 mod 2, j ≡ 1 mod 4
and k ≡ 0 mod 4 as that case is covered by a rotation of the board created for the
i ≡ 0 mod 2, j ≡ 0 mod 4 and k ≡ 1 mod 4 case.

Continuing with our strategy, we proceed to create a closed knight’s tour on all i×j×k

boards for i ≡ 0 mod 2, j ≡ 2 mod 4 and k > 2. We begin with a 2 × 6 × 6 base board
(since no 2 × 2 × k tour exists) and use the 2 × 4 × 6 board of Figure 14 to extend.
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Figure 29: A
2 × 6 × 6 closed

knight’s tour

Figure 30:
Vertical

stacking of the
2 × 6 × 6 board

below the
rotated

2 × 4 × 6 board
of Figure 14

Figure 31:
Horizontal

stacking of the
2 × 6 × 6 board

and the 2 × 4 × 6
board of Figure 14

Delete edges Create edges
Vertical 43 − 44 top board, 15 − 16 bottom board 15 − 43, 16 − 44
Horizontal 29 − 30 left board, 4 − 5 right board 4 − 29, 5 − 30
Front 22 − 23 front board, 32 − 33 back board 22 − 33, 23 − 32

Once again for the 2 × 6 × 3 board.

Figure 32: A 2 × 6 × 3
closed knight’s tour

Figure 33: Vertical
stacking of the
2 × 6 × 3 board

below the 2 × 6 × 4
board of Figure 14

Figure 34: Horizontal
stacking of the

2 × 6 × 3 board and
the 2 × 4 × 3 board of

Figure 17

Delete edges Create edges
Vertical 9 − 10 top board, 11 − 12 bottom board 9 − 12, 10 − 11
Horizontal 26 − 27 left board, 20 − 21 right board 20 − 26, 21 − 27
Front 22 − 23 front board, 18 − 19 back board 18 − 23, 19 − 22
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Now on to the i × j × k boards for i ≡ 0 mod 2, j ≡ 3 mod 4 and k > 2. The
non-existence of a 2 × 3 × 3 board forces us to use a 2 × 7 × 3 closed knight’s tour as a
base case. To extend it in three dimensions, we vertically stack it with a 2× 7× 4 board.
This extension is a 90-degree rotation of the 2×4×7 board which appeared in Figure 18.
For clarity, we renumber the cells of the board from Figure 18 with labels 1 through 56
to create the board in Figure 36.

Figure 35: A 2 × 7 × 3
closed knight’s tour
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Figure 36: A 2 × 7 × 4
closed knight’s tour

Figure 37: Vertical
stacking of the
2 × 7 × 3 board

below the 2× 7× 4
board of Figure 36

Figure 38:
Horizontal stacking

of the 2 × 7 × 3
board and the

2 × 4 × 3 board of
Figure 17

Delete edges Create edges
Vertical 20 − 21 top board, 7 − 8 bottom board 7 − 20, 8 − 21
Horizontal 13 − 14 left board, 20 − 21 right board 13 − 21, 14 − 20
Front 12 − 13 front board, 14 − 15 back board 12 − 15,13 − 14

We have almost demonstrated how to create all 2× j × k boards that permit a closed
knight’s tour according to Theorem 2. At first glance it seems that we have covered all
permitted combinations of i, j and k. However, the non-existence of the 2 × 3 × 3 board
prevented us from creating one particular case of boards; all i× 3× 3 where i ≡ 0 mod 2.
Constructing the 4× 3× 3 and 6 × 3 × 3 base boards and presenting the method to let i

assume any even value allows us to complete the proof of Theorem 2. We can create all
i × 3 × 3 boards where i ≡ 0 mod 4 with Figure 39.
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Figure 39: Slices of a 4 × 3 × 3 closed
knight’s tour

Delete edges Create edges
Front 9 − 10 front board, 28 − 29 back board 9 − 28, 10 − 29

For i× 3× 3 boards where i ≡ 2 mod 4 we begin with Figure 40 and continually front
stack Figure 39.

Figure 40: Slices of a 6 × 3 × 3 closed knight’s tour

Delete edges Create edges
Front 21 − 22 front board, 28 − 29 back board 21 − 29, 22 − 28

5 Future Work

One could pursue an increase in the number of dimensions with a 1−2 knight by searching
for closed knight’s tours in four dimensions. Once we move to n ≥ 4 dimensions we lose
the ability to easily visualize the geometry of a closed knight’s tour. One approach would
use vectors of length n to represent the cells of the board. A legal move of the knight from
one square to another square would change two of the vector coordinates from the initial
square. One coordinate would change by ±1 and the other by ±2. A very ambitious
project would be to find a general classification for the existence of a closed knight’s tour
in the n dimensional cube where Theorems 1 and 2 in this paper are just the specific cases
for n = 2, 3.

Another option explores the nature of the move of the knight [9]. On the two dimen-
sional board, the knight’s move incorporates both directions in the x−y plane. One could
argue that the move of the knight on the three dimensional board should incorporate all
three directions in the x − y − z plane. How should the knight move in the three dimen-
sional board? Perhaps, the obvious variant piece is a 1− 2− 3 knight. Unfortunately, the
move of the 1−2−3 knight in the three-dimensional board is not bipartite. Such a move
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would leave the knight locked into one color like the bishop. See [2] for an example of a
tour of the cube of side n = 6 with two 1 − 2− 3 knights, one for the black cells and one
for the white cells.

Instead of a linear change in the number of cells the knight moves, let’s consider an
exponential change and use a 1 − 2 − 4 knight in a three dimensional board. This move
has an advantage over the 1 − 2 − 3 knight since the graph of the 1 − 2 − 4 knight is
bipartite. As a teaser, in Figure 41, we leave you with a 1 − 2 − 4 closed knight’s tour of
the cube of side 8, the smallest cube that admits such a tour.

Figure 41: A 1 − 2 − 4 closed knight’s tour of the cube of
side 8
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