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Abstract

A connected k-chromatic graph G is said to be double-critical if for all edges uv
of G the graph G− u− v is (k− 2)-colourable. A longstanding conjecture of Erdős
and Lovász states that the complete graphs are the only double-critical graphs.
Kawarabayashi, Pedersen and Toft [Electron. J. Combin., 17(1): Research Paper
87, 2010] proved that every double-critical k-chromatic graph with k ≤ 7 contains
a Kk minor. It remains unknown whether an arbitrary double-critical 8-chromatic
graph contains a K8 minor, but in this paper we prove that any double-critical
8-chromatic contains a minor isomorphic to K8 with at most one edge missing.
In addition, we observe that any double-critical 8-chromatic graph with minimum
degree different from 10 and 11 contains a K8 minor.

1 Introduction, motivation and main results

At the very center of the theory of graph colouring is Hadwiger’s Conjecture which dates
back to 1942. It states that every k-chromatic graph1 contains a Kk minor.

Conjecture 1.1 (Hadwiger [10]). If G is a k-chromatic graph, then G contains a Kk

minor.

Hadwiger [10] showed that the conjecture holds for k ≤ 4, the case k = 4 being the first
non-trivial instance of the conjecture. Later, several short and elegant proofs for the case
k = 4 were found; see, for instance, [30]. The case k = 5 was studied independently by
Wagner [31], who proved that the case k = 5 is equivalent to the Four Colour Problem. In

1All graphs considered in this paper are undirected, simple, and finite. The reader is referred to
Section 2 for basic graph-theoretic terminology and notation.
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the early 1960s, Dirac [7] and Wagner [32], independently, proved that every 5-chromatic
graph G contains a K−

5 minor. Here K−
k with k ∈ N denotes the complete k-graph

with one edge missing. The case k = 5 of Hadwiger’s Conjecture was finally settled in
the affirmative with Appel and Haken’s proof of the Four Colour Theorem [1, 2]. An
improved proof was subsequently published in 1997 by Robertson et al. [25]. In 1964,
Dirac [8] proved that every 6-chromatic graph contains a K−

6 minor. (See [29, p. 257]
for a short version of Dirac’s proof.) In 1993, Robertson, Seymour and Thomas [24]
proved, using the Four Colour Theorem, that every 6-chromatic graph contains a K6

minor. Thus, Hadwiger’s Conjecture has been settled in the affirmative for each k ≤ 6,
but remains unsettled for all k ≥ 7. In the early 1970s, Jakobsen [11, 12, 13] proved that
for k = 7, 8, and 9 every k-chromatic graph contains a minor isomorphic to K−−

7 , K−
7 ,

and K7, respectively, and these results seem to be the best obtained so far in support
of Hadwiger’s Conjecture for the cases k = 7, 8, and 9. Here K−−

7 denotes a complete
7-graph with two edges missing; there are two non-isomorphic complete 7-graphs with
two edges missing. The reader is referred to [14, 30] for a thorough survey of Hadwiger’s
Conjecture and related conjectures.

Another longstanding conjecture in the theory of graph colouring is the so-called
Erdős-Lovász Tihany Conjecture which dates back to 1966. This conjecture states, in an
interesting special case, that the complete graphs are the only double-critical graphs [9].
A connected k-chromatic graph G is double-critical if for all edges uv of G the graph
G− u− v is (k − 2)-colourable.

Conjecture 1.2 (Erdős & Lovász [9]). If G is a double-critical k-chromatic graph, then
G is isomorphic to Kk.

Conjecture 1.2, which we call the Double-Critical Graph Conjecture, is settled in the
affirmative for all k ≤ 5, but remains unsettled for all k ≥ 6 [22, 27, 28]. As a relaxed
version of the Double-Critical Graph Conjecture the following conjecture was posed in [17].

Conjecture 1.3 (Kawarabayashi et al. [17]). If G is a double-critical k-chromatic graph,
then G contains a Kk minor.

Conjecture 1.3 is, of course, also a relaxed version of Hadwiger’s Conjecture, and so we
call it the Double-Critical Hadwiger Conjecture; in [17], it was settled in the affirmative
for k ∈ {6, 7} (without use of the Four Colour Theorem) but it remains open for all k ≥ 8.
Very little seems to be known about complete minors in 8-chromatic graphs. The best
result so far in the direction of proving Hadwiger’s Conjecture for 8-chromatic graphs
seems to be a theorem published in 1970 by Jakobsen [11]; the theorem states that every
8-chromatic graph contains a K−

7 minor. In this paper we prove that every double-critical
8-chromatic graph contains a K−

8 minor. The proof of this result is surprisingly compli-
cated and uses a number of deep results by other authors.

Our main results are as follows.

Theorem 1.4. Every double-critical 8-chromatic graph with minimum degree different
from 10 and 11 contains a K8 minor.
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Theorem 1.5. Every double-critical 8-chromatic graph contains a K−
8 minor.

The proofs of Theorem 1.4 and Theorem 1.5 are presented in Section 3 and Section 5,
respectively. Our proofs do not rely on the Four Colour Theorem but they do rely on the
two following deep results.

Theorem 1.6 ((i) Song [26]; (ii) Jørgensen [15]). Suppose G is a graph on at least eight
vertices.

(i) If G has more than d(11n(G)− 35)/2e edges, then G contains a K−
8 minor, and

(ii) if G has more than 6n(G)− 20 edges, then G contains a K8 minor.

2 Preliminaries and notation

We shall use standard graph-theoretic terminology and notation as defined in [4, 6] with
a few additions. Given any graph G, V (G) denotes the vertex set of G and E(G) denotes
the edge set of G, while G denotes the complement of G. The order of a graph G, that
is, the number of vertices in G, is denoted n(G), and any graph on n vertices is called
an n-graph. A vertex of degree k in a graph G is said to be a k-vertex (of G). We write
G ' H to indicate that the graphs G and H are isomorphic. Given two graphs H and G,
the complete join of G and H, denoted G + H, is the graph obtained from two disjoint
copies of H and G by joining each vertex of the copy of G to each vertex of the copy
of H. For every positive integer k and graph G, kG denotes the graph

∑k
i=1 G. Given

any edge-transitive graph G, any graph, which can be obtained from G by removing one
edge, is denoted G−. Given any subset X of the vertex set V (G) of a graph G, we let
G[X] denote the subgraph of G induced by the vertices of X. The set of vertices of G
adjacent to v is called the neighbourhood of v (in G), and it is denoted NG(v) or N(v).
The set N(v) ∪ {v} is called the closed neighbourhood of v (in G), and it is denoted
NG[v] or N [v]. The induced graph G[N(v)] is referred to as the neighbourhood graph of
v with respect to G, and it is denoted Gv. Given two graphs G and H, we say that H
is a minor of G or that G has an H minor if there is a collection {Vh | h ∈ V (H)} of
non-empty disjoint subsets of V (G) such that the induced graph G[Vh] is connected for
each h ∈ V (H), and for any two adjacent vertices h1 and h2 in H there is at least one
edge in G joining some vertex of Vh1 to some vertex of Vh2 . The sets Vh are called the
branch sets of the minor H of G. We may write H ≤ G or G ≥ H, if G contains an H
minor. In [17], a number of basic results on double-critical graphs were determined. We
will make repeated use of these results and so, for ease of reference, they are restated here.

In the remaining part of this section, we let G denote a non-complete double-critical
k-chromatic graph with k ≥ 6. Given any edge xy ∈ E(G), define

A(x, y) := N(x) \N [y]

B(x, y) := N(x) ∩N(y)

C(x, y) := N(y) \N [x]
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Proposition 2.1 ([17]).

(i) G does not contain a complete (k − 1)-graph as a subgraph,

(ii) G has minimum degree at least k + 1, and

(iii) for all edges xy ∈ E(G) and all (k − 2)-colourings of G − x − y, the set B(x, y) of
common neighbours of x and y in G contains vertices from every colour class, in
particular, |B(x, y)| ≥ k − 2.

Proposition 2.2. If G[A(x, y)] is a complete graph for some edge xy ∈ E(G), then there
is a matching of the vertices of A(x, y) to the vertices of B(x, y) in Gx.

Proof. Suppose G[A(x, y)] is a complete graph for some edge xy ∈ E(G), and let G−x−y
be coloured properly in the colours 1, 2, . . . , k−3, and k−2. The colours applied to A(x, y)
are all distinct, and so we may assume A(x, y) = {a1, . . . , ap} where vertex ai is coloured i
for each ai ∈ A(x, y). According to Proposition 2.1 (iii), each of the colours 1, 2, . . . , k−3,
and k − 2 appear at least once on a vertex of B(x, y), say B(x, y) = {b1, . . . , bq} with
vertex bi being coloured i for each i ≤ k − 2. Now {a1b1, a2b2, . . . , apbp} is a matching of
the vertices of A(x, y) to vertices of B(x, y) in Gx.

Proposition 2.3 ([17]). If the set A(x, y) is non-empty for some edge xy ∈ E(G), then
δ(G[A(x, y)]) ≥ 1, that is, the induced subgraph G[A(x, y)] contains no isolated vertices.
By symmetry, δ(G[C(x, y)]) ≥ 1, if C(x, y) is non-empty.

Thus, by Proposition 2.3, if y is a vertex which has degree 2 in Gx then the two
neighbours of y in Gx must be non-adjacent in Gx. In particular, no component of Gx is
a triangle.

Proposition 2.4 ([17]).

(i) For any vertex x of G not joined to all other vertices of G, χ(Gx) ≤ k − 3;

(ii) if x is a vertex of degree k + 1 in G, then the complement Gx consists of isolated
vertices (possibly none) and cycles (at least one), where the length of each cycle is
at least 5, and

(iii) G is 6-connected.

3 Minimum degree 9 and K8 minors

Proposition 3.1. If G is a double-critical 8-chromatic graph with a vertex x of degree 9,
then Gx ' C8 + K1 or Gx ' C9.
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Proof. Suppose G is a double-critical 8-chromatic graph with a vertex x of degree 9.
Now, according to Proposition 2.4 (ii), Gx consists of isolated vertices and cycles (at
least one cycle) of length at least 5. Since Gx consists of only nine vertices, it follows
that Gx consists of exactly one cycle, whose length we denote by j, and some isolated
vertices. If j ∈ {5, 6}, then G[N [x]] is easily seen to contain K7 as a subgraph, contrary to
Proposition 2.1 (i). Suppose j = 7. Moreover, suppose that the vertex x is not adjacent
to all other vertices of G. Then, according to Proposition 2.4 (i), χ(Gx) ≤ 5. However,
the graph Gx, which is isomorphic to C7 + K2, is easily seen not be 5-colourable. Thus,
the vertex x is adjacent to all other vertices of G, and so G is isomorphic to C7 + K3.
However, the graph C7 + K3 is easily seen to be 7-colourable, a contradiction. Thus, we
must have j ≥ 8, and so the desired result follows immediately.

Proposition 3.1 implies that any double-critical 8-chromatic graph with a vertex of
degree 9 contains K−

6 as a subgraph.

Proposition 3.2. Every double-critical 8-chromatic graph with minimum degree 9 con-
tains a K8 minor.

Proof. Suppose G is a double-critical 8-chromatic graph with minimum degree 9, and let
x denote a vertex of G of degree 9. As in the proof of Proposition 3.1, it follows that
G−N [x] contains at least one vertex. Let z denote a vertex of G−N [x]. According to
Proposition 3.1, there are two cases to consider: either Gx ' C8 + K1 or Gx ' C9. It
is easy to find a K7 minor in C8 + K1, and so we need only consider the case where Gx

is isomorphic to C9. Let the vertices of the 9-cycle Gx be labelled cyclically v0v1v2 . . . v8.
By Proposition 2.4 (iii), G is 6-connected. Now, according to Menger’s Theorem (see,
for instance, [4, Theorem 9.1]), there is a collection C of six internally vertex-disjoint
(x, z)-paths in G. Obviously, each path P ∈ C contains a vertex from V (Gx), and we
may assume that each of the paths P ∈ C contains exactly one vertex from V (Gx). The
fact that there are nine vertices in V (Gx) and six vertex-disjoint (x, z)-paths in C going
through V (Gx) implies the existence of a pair of vertices vi and vi+1 (modulo 9) such
that there are (x, z)-paths Qi, Qi+1 ∈ C going through vi and vi+1, respectively. We may,
by symmetry, assume i = 0. We contract the (v0, v1)-path (Q0 ∪ Q1) − x in G to an

edge between v0 and v1. The resulting graph contains the graph H := C−
9 + K1 as a

subgraph (here C9 = v0v1 . . . v8 and v0v1 is the ‘missing edge’ of C−
9 ). The graph H can

be contracted to K8 by contracting the edges v2v6 and v4v8. Thus, G ≥ K8, as desired.

Proof of Theorem 1.4. Suppose G is a non-complete double-critical 8-chromatic graph.
Then, according to Proposition 2.1 (ii), δ(G) ≥ 9. If δ(G) ≥ 12, then |E(G)| ≥ 6n(G)
and so, by Theorem 1.6 (ii), G ≥ K8. If δ(G) = 9, then the desired result follows from
Proposition 3.2.

4 Minimum degree 10 and K8 minors

Observation 4.1. If G is a double-critical 8-chromatic graph with minimum degree 10,
then ∆(Gx) ≤ 3 for every vertex x ∈ V (G) with deg(x, G) = 10.
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Proof. Suppose G is a double-critical 8-chromatic graph with minimum degree 10 and
∆(Gx) ≥ 4. Let y denote a vertex which has degree at least 4 in Gx. Then |A(x, y)| ≥ 4
and, according to Proposition 2.1 (iii), |B(x, y)| ≥ 6. Thus, deg(x, G) ≥ |A(x, y)| +
|B(x, y)|+ 1 ≥ 11, which contradicts the assumption deg(x, G) = 10.

Proposition 4.2. Suppose G is a double-critical 8-chromatic graph with minimum degree
10, and suppose G contains a vertex x of degree 10 such that ∆(Gx) ≤ 2. Then G contains
a K8 minor.

Proof. Suppose G is a double-critical 8-chromatic graph with minimum degree 10, and
suppose G contains a vertex x of degree 10 such that ∆(Gx) ≤ 2.

If ∆(Gx) = 0, then Gx ' K10, a contradiction. According to Proposition 2.3, no
vertex of Gx has degree exactly 1. Hence, ∆(Gx) = 2, and so the graph Gx consists
of cycles (at least one) and possibly some isolated vertices. According to the remark
after Proposition 2.3, the cycles of Gx all have length at least 4. If Gx has at least five
isolated vertices, then it is easy to see that Gx contains K7 as a subgraph. If Gx has
exactly four isolated vertices then Gx ' K4 + C6 and Gx ⊃ K7. If Gx has exactly three
isolated vertices, then Gx ' K3 + C7. If Gx has exactly two isolated vertices, then Gx is
isomorphic to either K2 + 2C4, or K2 + C8. If Gx has exactly one isolated vertex, then
Gx is isomorphic to either K1 + C4 + C5, or K1 + C9. If Gx has no isolated vertices, then
Gx is isomorphic to either C4 + C6, 2C5, or C10. In each case it is easy to exhibit a K7

minor in Gx, and so G ≥ K8.

5 Minimum degree 10 and K−
8 minors

In this section, we shall apply the following result of Mader.

Theorem 5.1 (Mader [19]). Every graph with minimum degree at least 5 contains K−
6

or the icosahedral graph as a minor. In particular, every graph with minimum degree at
least 5 and at most 11 vertices contains a K−

6 minor.

A proof of Theorem 5.1 may also be found in [3, p. 373].

Proposition 5.2. Suppose G is a double-critical 8-chromatic graph with minimum degree
10. If G contains a vertex x of degree 10 such that Gx contains at least one vertex of
degree 9 in Gx, then G contains a K−

8 minor.

Proof. Suppose G is a double-critical 8-chromatic graph with minimum degree 10 and a
vertex x ∈ V (G) with deg(x, G) = 10 such that a vertex of V (Gx), say v, has degree 9 in
Gx. According to Observation 4.1, ∆(Gx) ≤ 3 and so δ(Gx) = n(Gx) − 1 − ∆(Gx) ≥ 6.
Thus, the graph Gx − v has minimum degree at least 5 and exactly 9 vertices, and so it
follows from Theorem 5.1 that Gx − v contains a K−

6 minor. Such a K−
6 minor of Gx − v

along with the additional branch sets {x} and {v} constitute a K−
8 minor of G.
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Lemma 5.3. Suppose G is a graph with a vertex x of degree 10 such that Gx is connected
and cubic. Suppose, in addition, that there is a vertex z ∈ V (G) \ NG[x] such that G
contains at least six internally vertex-disjoint (x, z)-paths. Then G contains a K−

8 minor.

Proof. Suppose G is a graph with a vertex x of degree 10 such that Gx is connected and
cubic. Suppose, in addition, that there is a vertex z ∈ V (G) \NG[x] such that G contains
at least six internally vertex-disjoint (x, z)-paths.

There are exactly 21 non-isomorphic cubic graphs of order 10, see, for instance, [23].
These 21 non-isomorphic cubic graphs of order 10 are depicted in Appendix A; let these
graphs be denoted as in Appendix A. If Gx ' Gi, where i ∈ [19] \ {7, 8, 9, 12, 17}, then
the labelling of the vertices of the graph Gi indicates how Gi may be contracted to K−

7

or K7. The vertices labelled j ∈ [7] constitute the jth branch set of a K−
7 minor or K7

minor. If the branch sets only constitute a K−
7 minor, then it is because there is no edge

between the branch sets of vertices labelled 1 and 7. In these cases we obtain G ≥ K−
8 . In

v1 v2

v3

v4

v5

v6v7

v8

v9

v10

G7

(a) The graph G7.

v′1 v′2

v′3v′10

v′5v′8

v′7 v′6 G′
7

v′9 v′4

(b) The graph G′
7.

v2v1

v3

v9 v4

v5v8

v7 v6

v10

G8

(c) The graph G8.

Figure 1: The graphs G7, G′
7, and G8, which occur in the cases (i) and (ii) in the proof

of Lemma 5.3.

order to handle the cases Gx ' Gi, where i ∈ {7, 8, 9, 12, 17}, we use the assumption that
V (G) \NG[x] contains a vertex z such that G has a collection R of at least six internally
vertex-disjoint (x, z)-paths. We may assume that each of the paths in R contains exactly
one vertex from V (Gx).

(i) Suppose Gx ' G7 with the vertices of Gx labelled as shown in Figure 1 (a). Let
S denote the collection of the five 2-sets {v1, v6}, {v2, v7}, {v3, v9}, {v4, v8}, and
{v5, v10}. Since the 2-sets in S are pairwise disjoint and cover NG(x), it follows from
the pigeonhole principle that at least two of the internally vertex-disjoint (x, z)-
paths, say Q1 and Q2, of R go through the same 2-set S := {vi, vj} ∈ S.

Suppose S ∈ S \ {{v1, v6}}. By symmetry, we may assume S ∈ {{v2, v7}, {v3, v9}}.
In each case we contract the (vi, vj)-path (Q1∪Q2)−x into the edge vivj and obtain
a graph which has a K−

7 minor in the neighbourhood of x: If S = {v2, v7}, then
the branch sets {v1, v4}, {v2, v7}, {v3}, {v5}, {v6, v9}, {v8}, and {v10} form a K−

7

minor in Gx. If S = {v3, v9}, then the branch sets {v1, v8}, {v2, v10}, {v3}, {v4, v6},
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{v5}, {v7}, and {v9} form a K−
7 minor in Gx. In both cases we obtain G ≥ K−

8 , as
desired.

Hence, we may assume S = {v1, v6} and that R contains no such two paths going
through the same 2-set of S \ {{v1, v6}}. Since |R| ≥ 6, there is precisely one path
going through each of the sets S ′ ∈ S \ {{v1, v6}}. By symmetry of Gx, we may
assume that there is an (x, z)-path Q3 ∈ R going through the vertex v2 of NG(x).
Now, by contracting the (v2, z)-path Q3 − x and the (v6, z)-path Q2 − x into two
edges, and then contracting the (v1, z)-path Q1 − x into one vertex, we obtain a
graph G′ in which the neighbourhood graph G′

x of x contains the complement of the
G′

7, depicted in Figure 1 (b), as a subgraph. The branch sets {v′1}, {v′2}, {v′3, v′5},
{v′4, v′9}, {v′6}, {v′7, v′10}, and {v′8} constitute a K−

7 minor in G′
7, and so G ≥ K−

8 .

(ii) Suppose Gx ' G8 with the vertices of Gx labelled as shown in Figure 1 (c).
In this case we contract a path (P ∪ Q) − x with P, Q ∈ R into an edge e ∈
{v1v6, v2v8, v3v7, v4v10, v5v9} which is missing in Gx. By the symmetry of Gx, we
need only consider the cases e = v1v6 and e = v2v8. If e = v1v6, then the branch
sets {v1, v5}, {v2}, {v3, v9}, {v4, v7}, {v6}, {v8}, and {v10} constitute a K−

7 minor
in the neighbourhood of x. If e = v2v8, then the branch sets {v1, v9}, {v2}, {v3, v6},
{v4, v7}, {v5}, {v8}, and {v10} constitute a K−

7 minor in the neighbourhood of x. In
both cases we obtain G ≥ K−

8 .

(iii) Suppose Gx ' G9 with the vertices of Gx labelled as shown in Figure 2 (a).
As in case (ii), we contract a path (P ∪ Q) − x with P, Q ∈ R into an edge
e ∈ {v1v6, v2v10, v3v7, v4v8, v5v9}. By the symmetry of Gx, we need only consider
e ∈ {v1v6, v2v10, v3v7, v4v8}. If e = v1v6, then the branch sets {v1}, {v2, v5}, {v3},
{v4, v9}, {v6}, {v7, v10}, and {v8} constitute a K−

7 minor in the neighbourhood of
x. If e = v2v10, then the branch sets {v1, v8}, {v2}, {v3, v5}, {v4}, {v6, v9} {v7},
and {v10} constitute a K−

7 minor in the neighbourhood of x. If e = v3v7, then the
branch sets {v1, v8}, {v2, v6}, {v3}, {v4, v10}, {v5}, {v7}, and {v9} constitute a K−

7

minor in the neighbourhood of x. If e = v4v8, then the branch sets {v1}, {v2, v5},
{v3, v9}, {v4}, {v6}, {v7, v10}, and {v8} constitute a K−

7 minor in the neighbourhood
of x. In each case we obtain G ≥ K−

8 .

(iv) Suppose Gx ' G12 with the vertices of Gx labelled as in Figure 2 (b). Again, we con-
tract a path (P∪Q)−x with P, Q ∈ R into an edge e ∈ {v1v6, v2v4, v3v7, v5v9, v8v10}.
By the symmetry of Gx, we need only consider the cases e ∈ {v1v6, v2v4, v3v7}. If
e = v1v6, then the branch sets {v1}, {v2, v7}, {v3, v9}, {v4, v10}, {v5}, {v6}, and {v8}
constitute a K−

7 minor in the neighbourhood of x. If e = v2v4, then the branch
sets {v1, v5}, {v2}, {v3, v8}, {v4}, {v6}, {v7, v10}, and {v9} constitute a K−

7 minor
in the neighbourhood of x. If e = v3v7, then the branch sets {v1, v9}, {v2, v6}, {v3},
{v4, v8}, {v5}, {v7}, and {v10} constitute a K−

7 minor in the neighbourhood of x. In
each case we obtain G ≥ K−

8 .

(v) Suppose Gx ' G17 with the vertices of Gx labelled as shown in Figure 2 (c). The
graph G17 is the Petersen graph, and the complement of the Petersen graph does
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not contain a K7 minor. However, we may repeat the trick used in the previous
cases to obtain a K−

7 minor. We contract a path (P ∪Q)−x with P, Q ∈ R, into an
edge e ∈ {vivi+5 | i ∈ [5]}. By the symmetry of Gx, we may assume e = v1v6. Now,
the branch sets {v1}, {v2, v8}, {v3}, {v4, v10}, {v5, v9}, {v6}, and {v7} constitute a
K−

7 minor in the neighbourhood of x. Thus, G contains a K−
8 minor.

This completes the proof.

v2v1

v3

G9v6v7

v8

v9

v10

v5

v4

(a) The graph G9.

v6v7

v2

v5v8

v10

v1

v3

v9 v4

G12

(b) The graph G12.

v1

v4

v10 v7 v2v5

v8v9

G17
v3

v6

(c) The graph G17.

Figure 2: The graphs G9, G12, and G17, which occur in the cases (iii), (iv), and (v) in the
proof of Lemma 5.3.

Proposition 5.4. Suppose G is a double-critical 8-chromatic graph with minimum degree
10. If G contains a vertex x of degree 10 such that Gx contains no vertex of degree 9 in
Gx, then G contains a K−

8 minor.

Proof. Suppose G is a double-critical 8-chromatic graph with minimum degree 10, and
suppose G contains a vertex x of degree 10 such that Gx contains no vertex of degree 9
in Gx. Then it follows from Proposition 2.3 and Observation 4.1 that each vertex of Gx

has degree 2 or 3.
We first consider the case where Gx is disconnected. Since δ(Gx) ≥ 2, it follows that

any component of Gx contains at least three vertices. If Gx contains a component on
three vertices, then this component is a K3; this contradicts Proposition 2.3. Hence, each
component of Gx contains at least four vertices, and so, since n(Gx) = 10, it follows that
Gx contains precisely two components, say D1 and D2 with n(D1) ≤ n(D2). Suppose
n(D1) = 4. The fact that δ(Gx) ≥ 2 implies that D1 must contain a 4-cycle, and so it is
easy to see that D1 must be C4, K−

4 , or K4. This, however, contradicts Proposition 2.2 or
Proposition 2.3, and so we must have n(D1) = n(D2) = 5. Of course, if G′ is a subgraph
of G, and G′ contains an H minor, then G contains an H minor. Thus, it suffices to
consider the case where both D1 and D2 contain exactly one vertex of degree 2, in which
case both D1 and D2 are isomorphic to K4 with exactly one edge subdivided. In this case
it is very easy to find a K7 minor in Gx.

Suppose that Gx is connected, and let D denote Gx. If x is adjacent to all other
vertices of G, then n(G) = 11 and so, since δ(G) = 10, G ' K11, a contradiction. Thus,
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V (G)\NG[x] is non-empty. Let z denote a vertex of V (G)\NG[x]. By Proposition 2.4 (iii)
and Menger’s Theorem, there are six internally vertex-disjoint (x, z)-paths in G. If D is
cubic, then, according to Lemma 5.3, G ≥ K−

8 . Suppose that D is not cubic. We add
edges (possibly none) between pairs of non-adjacent 2-vertices of D to obtain a subcubic
graph D′, which contains no pair of non-adjacent 2-vertices. Suppose D′ is cubic. Then
G′ := G\(E(D′)\E(D)) satisfies the assumption of Lemma 5.3, that is, D′ is a connected
cubic 10-graph; G′ has six internally vertex-disjoint (x, z)-paths, since G has six internally
vertex-disjoint (x, z)-paths, and these may be chosen so that they do not contain any edge
of E(Gx). Thus, by Lemma 5.3, G′ ≥ K−

8 , which implies that the supergraph G of G′ has
a K−

8 minor.
Now, suppose D′ is not cubic. Then D′ is a connected subcubic 10-graph with min-

imum degree 2. Thus, since the number of odd degree vertices of any graph is even,
it follows that D′ contains at least two 2-vertices. Recall, that D′ contains no pair of
non-adjacent 2-vertices. This means that that D′ must contain exactly two 2-vertices
and that these must be neighbours. There are exactly 23 connected 10-graphs each with
two 2-vertices and eight 3-vertices, where the two 2-vertices are adjacent.2 These graphs,
denoted Ji (i ∈ [23]), are depicted in Appendix B. For each i ∈ [23], the labelling of
the vertices of the graph Ji indicates how Ji may be contracted to K−

7 or, even, K7; the
vertices labelled j ∈ [7] constitute the jth branch set of a K−

7 minor or K7 minor. If the
branch sets only constitute a K−

7 minor, then it is because there is no edge between the
branch sets labelled 1 and 7. This completes the proof.

Proof of Theorem 1.5. Let G denote a double-critical 8-chromatic graph. By Theorem 1.4,
we may assume δ(G) ∈ {10, 11}. If δ(G) = 11, then |E(G)| ≥ 11n(G)/2 and so, by The-
orem 1.6 (i), G ≥ K−

8 . Suppose δ(G) = 10, and let x denote a vertex of degree 10 in G.
If Gx contains at least one vertex of degree 9, then the desired conclusion follows from
Proposition 5.2. On the other hand, if Gx contains no vertex of degree 9, then the desired
conclusion follows from Proposition 5.4. This completes the proof.

6 More open problems

The Double-Critical Graph Conjecture is still open for 6-chromatic graphs. To settle this
instance of the conjecture in the affirmative, it would, by Proposition 2.1 (i), suffice to
prove that any double-critical 6-chromatic graph contains K5 as a subgraph; however, we
cannot even prove that such a graph contains K4 as a subgraph.

Problem 6.1 (Matthias Kriesell3). Prove that every double-critical 6-chromatic graph
contains K4 as a subgraph.

2According to the computer program geng developed by Brendan McKay [21], there are 113 connected
graphs of order 10 each with two 2-vertices and eight 3-vertices – among these graphs exactly 23 have the
property that the two 2-vertices are adjacent. This latter fact was verified, independently, by inspection
by the author and by a computer program developed by Marco Chiarandini.

3Private communication to the author, Odense, September, 2008.
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H v3
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z

Figure 3: The subgraph H of G is a subdivision of K6. The six larger dots represent
the branch vertices of H, while the smaller dots represent subdividing vertices. The filled
straight lines represent edges in H, while the bold curves represent the paths Q1 − x,
Q2 − x, Q3 − x, Q4 − x, and Q5 − x.

In [17], it was proved that every double-critical 6-chromatic graph contains a K6

minor. A stronger result would be that every double-critical 6-chromatic graph contains
a subdivision of K6.

Problem 6.2. Prove that every double-critical 6-chromatic graph G contains a subdivision
of K6.

According to Observation 6.3, Problem 6.2 has a positive solution if G has minimum
degree at most 7.

Mader [20] proved a longstanding conjecture, known as Dirac’s Conjecture, which
states that any graph G with at least three vertices and at least 3n(G)− 5 edges contains
a subdivision of K5. Thus, in particular, every double-critical 6-chromatic graph contains
a subdivision of K5. Here we prove that every double-critical 6-chromatic graph with
minimum degree at most 7 contains a subdivision of K6.

Observation 6.3. Any double-critical 6-chromatic graph with minimum degree at most
7 contains a subdivision of K6.

Proof of Observation 6.3. Let G denote any double-critical 6-chromatic graph with min-
imum degree at most 7. If δ(G) ≤ 6, then, by Proposition 2.1 (ii), G ' K6. Hence
δ(G) = 7. Let x denote a vertex of degree 7 in G. If x is adjacent to all other vertices
of G, then, since δ(G) = 7, G ' K8, a contradiction. Hence G−N [x] is non-empty. Let
z denote a vertex of G − N [x]. According to Corollary 6.1 in [17], Gx is a 7-cycle C7

with, say, C7 = v1v2v3 . . . v7. By Proposition 2.4 (iii), G is 6-connected, and so there is a
collection C = {Q1, Q2, . . . , Q6} of six internally vertex (x, z)-paths in G. We may assume
that each path Qi ∈ C contains exactly one vertex from V (Gx). By the symmetry of Gx,
we may, without loss of generality, assume that V (Qi) ∩ V (Gx) = {vi} for each i ∈ [6].
Thus, in G, there is a K6-subdivision H with branch vertices v1, v2, v4, v5, x, and z. The
paths in H connecting the branch vertices of K6 are as indicated in Figure 3. Thus, G
contains a subdivision of K6.
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The following conjecture, known as the (k−1, 1) Minor Conjecture, is a relaxed version
of Hadwiger’s Conjecture.

Conjecture 6.4 (Chartrand, Geller & Hedetniemi [5]; Woodall [33]). Every k-chromatic
graph has either a Kk minor or a Kb k+1

2
c,d k+1

2
e minor.

Kawarabayashi and Toft [16] proved that every 7-chromatic graph contains K7 or K4,4

as a minor – thus, settling the case k = 7 of the (k − 1, 1) Minor Conjecture. This result
has inspired the following problem.

Problem 6.5. Prove that every double-critical 8-chromatic graph contains K8 or K4,5 as
a minor.

A natural generalisation of Problem 6.1 would be to ask for a linear function f such
that every double-critical k-chromatic graph has a clique of order f(k); if that problem is
too hard it might be worth considering the following problem.

Problem 6.6 (Sergey Norin4). Prove that there is a linear strictly increasing function f
such that every double-critical k-chromatic graph has a complete minor of order f(k).
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Appendix A

This section contains drawings of all non-isomorphic cubic graphs Gi (i ∈ [21]) of order
10. The drawings are copies of drawings found in [18]. Drawings of all non-isomorphic
cubic graphs of order at most 14 can be found in [23].

For i ∈ [19] \ {7, 8, 9, 12, 17}, the labelling of the vertices of the graph Gi indicates
how Gi may be contracted to K−

7 or, even, K7. The vertices labelled j ∈ [7] constitute
the jth branch set of a K−

7 minor or a K7 minor. If the branch sets only constitute a K−
7

minor, then it is because there is no edge between the branch sets of vertices labelled 1
and 7, respectively.
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Appendix B

This section depicts 23 graphs Ji (i ∈ [23]). The vertices of each graph Ji (i ∈ [23]) are
labelled with the integers 1 to 7 such that the vertices labelled j ∈ [7] constitute the jth
branch set of a K−

7 minor or a K7 minor. If the branch sets only constitute a K−
7 minor,

then it is because there is no edge between the branch sets of vertices labelled 1 and 7,
respectively.
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[9] P. Erdős. Problem 2. In Theory of Graphs (Proc. Colloq., Tihany, 1966), page 361.
Academic Press, New York, 1968.
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