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Abstract

We introduce a pair of statistics, maj and sh, on Dyck paths and show that they
are equidistributed. Then we prove that this maj is equivalent to the statistics ls

and rb on non-crossing partitions. Based on non-crossing partitions, we give the
most obvious q-analogue of the Narayana numbers and the Catalan numbers.

1 Introduction and Notation

A Dyck path of length 2n is a path in N × N from (0, 0) to (2n, 0) using steps U = (1, 1)
and D = (1,−1), which never goes below the x-axis. The U steps and D steps are called
up steps and down steps respectively. The set of all Dyck paths of length 2n is denoted
by Dn. It is well known that the cardinality of the set Dn is the n-th Catalan number

Cn =
1

n + 1

(

2n

n

)

.

It will be convenient to code a Dyck path w in the letters {Ui}
∞

i=1 ∪{Di}
∞

i=1 by letting
Ui and Dj stand for the i-th up step and the j-th down step in w, respectively.

If DiUj (resp., UiDj) are two successive letters in w, then we call the subword DiUj

(resp., UiDj) a valley (resp., peak). Meanwhile if Ui−1UiDj (or Di−1DiUj) are three
successive letters in w, then we call Ui−1UiDj (or Di−1DiUj) a skew hook.

The set of Dyck paths of length 2n with k valleys will be denoted by Dn,k. It is well
known that the cardinality of Dn,k is given by the Narayana number

1

n

(

n

k + 1

)(

n

k

)

.

the electronic journal of combinatorics 18 (2011), #P83 1



Definition 1.1 Let w be any Dyck path of length 2n, then the descent set of w is

D(w) := {i|DiUj forms a valley in w}.

For a given Dyck path w, we define the statistic maj(w) by

maj(w) :=
∑

i∈D(w)

i.

The maj defined on Dyck paths here is different from that defined in [4]. To distinguish
these two majors, we use Maj to denote the one defined in [4].

Definition 1.2 Let w be any Dyck path of length 2n, then the skew hook set of w is

H(w) := {j|Ui−1UiDj is a skew hook of w} ∪ {i|Di−1DiUj is a skew hook of w}.

For a given Dyck path w, we define the statistic sh(w) by

sh(w) :=
∑

i∈H(w)

i.

Example 1.3 Let w be the Dyck path in Figure 1, then maj(w) = 2 + 4 = 6 and
sh(w) = 1 + 2 + 3 + 4 = 10.
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Figure 1: maj(w) and sh(w).

A partition of [n] := {1, 2, . . . , n} is a collection of disjoint nonempty subsets of [n],
called blocks, whose union is [n]. We denote by Πn the set of all partitions of [n] =
{1, 2, . . . , n}. A standard way of writing a partition π with k blocks is π = B1/B2/ · · ·/Bk,
where the blocks are ordered in the increasing order of their minimum elements and within
each block, the elements are written in the numerical order. When appropriate, we will
emphasize that Bi is a block of the partition π by writing Bi(π).

A partition π = B1/B2/ · · · /Bk of [n] is non-crossing if whenever a quadruple of
elements 1 ≤ a < b < c < d ≤ n satisfies a, c ∈ Bi and b, d ∈ Bj for some 1 ≤ i, j ≤ k,
then in fact i = j; thus, the blocks do not “cross”.

The set of all non-crossing partitions of [n] will be denoted by NC(n), and the set of
non-crossing partitions of [n] into k blocks will be denoted by NC(n, k).

A partition π ∈ Πn may be represented via its restricted growth function [5] (“RG
function”), w : [n] → [n], w(i) = the index of the block of π which contains i. In this
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paper the restricted growth function associated with π ∈ Πn will be the word w =
w1w2 · · ·wn, where wi = w(i).

Given a partition π = B1/B2/ · · · /Bk of [n], let w = w1w2 · · ·wn be its restricted
growth function. Simion [7] defined two statistics on partitions:

ls(π) :=

n
∑

i=1

#{wj|wj < wi, j < i},

and

rb(π) :=
n

∑

i=1

#{wj|wj > wi, j > i}.

For example, if n = 9 and π = 1 5 7/2 6/3 4/8 9, then w = 1 2 3 3 1 2 1 4 4, and
ls(π) = 0+1+2+2+0+1+0+3+3 = 12, and rb(π) = 3+2+1+1+2+1+1+0+0 = 11.

Here we list some known results about the statistics ls and rb which are very useful
in our later proof. For the details, please see [7].

Lemma 1.4 Let π = B1/B2/ · · · /Bk be any partition of [n]. Then

ls(π) =

k
∑

i=1

(i − 1)|Bi|.

Lemma 1.5 Let π = B1/B2/ · · · /Bk be a non-crossing partition of [n]. Then

rb(π) =
k

∑

i=1

(mi(π) − 1),

where mi(π) = min{a : a ∈ Bi}.

The q-analogue for integer n ≥ 1 is [n] = 1+ q + · · ·+ qn−1, and [n]! = [n][n− 1] · · · [1]
for n ≥ 1 with [0]! = 1. The q-binomial coefficient is

[

n

k

]

=
[n]!

[k]![n − k]!
.

The rest of this paper is organized as follows. In Section 2, we prove that the statistics
maj and sh are equally distributed on Dyck paths. In Section 3, we construct two bijections
between Dyck paths and non-crossing partitions which respectively send the major index
on Dyck paths to the ls index and rb index of the corresponding non-crossing partitions.
The objective of Section 4 is to give the most obvious q-analogue of the Narayana numbers
and the Catalan numbers using the statistics ls and rb on non-crossing partitions.
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2 Equidistribution of maj and sh

First of all, we point out that the two statistics maj and sh have the same distribution
over Dn, which can be derived from the bijection given by Benchekroun and Moszkowski
[2]. For a better understanding of the equidistribution of maj and sh, we give an itera-
tive construction of the bijection, which is constructed recursively by Benchekroun and
Moszkowski.

Theorem 2.1 There is a bijection ρ : Dn → Dn such that maj(w) = sh(ρ(w)) for every

w ∈ Dn.

Proof. Let w be a Dyck path in Dn, we want to construct a Dyck path ρ(w) with
maj(w) = sh(ρ(w)).

We process each down step except the last one, from left to right, as follows (an
overline denotes the down step currently being processed).

• If D is immediately preceded by a D in the current path, then we do nothing: the
updated path is the same as the current one.

• If D is preceded by a U in the current path, there are two cases:

1. If D is followed by a U , interchange this U and D, i.e., UDU → UUD;

2. If D is followed by a D, let k denote the length of the run of Us preceding D.
If k = 1, then we do nothing; if k > 1, interchange D and the second U (left
to right) in the run, thus UkDD → UDUk−1D.

Note that processing D does not disturb the later Ds. Now we prove that maj(w) =
sh(ρ(w)). Assume that D is the i-th down step. (1) If D is immediately preceded by a
D and followed by a U , then i ∈ D(w). Now if we do nothing, then i ∈ H(ρ(w)); If D
is immediately preceded by a D and followed by a D, then i 6∈ D(w). If we do nothing,
then i 6∈ H(ρ(w)). (2) If D is immediately preceded by a U and followed by a U , then
i ∈ D(w). In this case, we change UDU to UUD, which implies that i ∈ H(ρ(w)). (3) If
D is immediately preceded by a U and followed by a D, then i 6∈ D(w) but i may belong
to H(w), which depends on the length k of the run of Us preceding D. If k = 1, then
i 6∈ H(w). If we do nothing, then i 6∈ H(ρ(w)); If k > 1, then i ∈ H(w). In this case we
change UkDD to UDUk−1D, which ensures that i 6∈ H(ρ(w)).

Now we can see that the above process has ensured that maj(w) = sh(ρ(w)).
Finally we define the inverse of ρ. For the inverse, we begin from the (n − 1)-st down

step and proceed as follows.

• If D is preceded by a D in the current path, we do nothing.

• If D is preceded by a U in the current path, let k denote the length of the run of
Us preceding the current D. There are two cases:
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1. If k > 1, then we interchange D and the first U from right to left in the run,
thus UkD → Uk−1DU ;

2. If k = 1 and D is followed by a D, then we do nothing. If k = 1 and D is
followed by a U , assume that the length of the run of Us following D is t, then
we interchange D and the last U in the run, i.e., UDU tD → U t+1DD.

Again note that processing D does not disturb the former Ds and it is easy to check
that the above algorithm is the inverse of ρ.

As a corollary of Theorem 2.1, we have

Corollary 2.2 For each n > 0, we have
∑

w∈Dn

tv(w)qmaj(w) =
∑

w∈Dn

th(w)qsh(w),

where v(w) (resp., h(w)) denotes the number of valleys (resp., skew hooks) of w.

Example 2.3 Here we give a Dyck path w ∈ D6 and its corresponding Dyck path
ρ(w) in Figure 2. The process is as follows: UDU3D2U2D3 → U2DU2DDU2D3 →
U2DUDUDU2D3 → U2DUDUUDUDDD → U2DUDUUDUDDD.

q q q

q q q q

q q q q

q q

1
3

maj(w) = 1 + 3 = 4
q q

q q q q

q q q q q

q q

1
3

sh(ρ(w)) = 1 + 3 = 4

-

Figure 2: Illustration of Theorem 2.1

3 Statistics on Non-crossing Partitions

In this section we present an investigation of the relations between the statistics ls, rb on
NC(n, k + 1) and the statistic maj on Dn,k.

First we recall the well known bijection between Dyck paths and non-crossing parti-
tions [6, 8]. For a given non-crossing partition π ∈ NC(n, k), arrange the blocks of π
in increasing order of their maximal elements. Let mi (1 ≤ i ≤ k) be these k maximal
elements and let hi (1 ≤ i ≤ k) be the corresponding block sizes. We assume that m0 = 0.
Then the pairs (mi −mi−1, hi)

k
i=1 determine a Dyck path of length 2n as follows: for each

i, we first put mi −mi−1 up steps and then we put hi down steps to follow these up steps
immediately. For the inverse mapping, we label the up steps of the Dyck path by enumer-
ating them from left to right (so that the k-th up step is labeled k). Next assign to each
down step the same label of its matching up step. The numbers assigned on a maximal
sequence of continuous down steps form a block of the desired non-crossing partition. We
give an example illustrated in Figure 3.

In the rest of this paper, representing a Dyck path as a non-crossing partition means
the bijection described above.
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Figure 3: The corresponding non-crossing partition is 1 4/2/3/5/6 8/7.

3.1 Bijection between rb and maj

Now we prove that the statistic rb on non-crossing partitions is equivalent to the statistic
maj defined on Dyck paths.

Definition 3.1 A non-crossing partition π ∈ NC(n) is primitive if 1 and n belong to the

same block of π.

Definition 3.2 A primitive Dyck path is one that returns the path to the x-axis exactly

once.

We can represent non-crossing partitions graphically, plotting 1, 2, . . . , n on a horizon-
tal line and joining successive elements of the same block by arcs. For example, we can
represent π = 1 8/2 4/3/5 7/6 as follows:

r r r r r r r r

1 2 3 4 5 6 7 8

The least (resp., greatest) element of a block is called a left-hand (resp., right-hand)
endpoint. If the size of a block is one, then the unique element of this block is called a
singleton. Here we note that a singleton can be viewed as a left-hand endpoint and also
can be viewed as a right-hand endpoint.

We denote li(π) (resp., ri(π)) the i-th left-hand endpoint (resp., right-hand endpoint)
of the partition π. Let bi(π) denote the size of the block containing the element ri. Hence in
the partition mentioned above, we have l1(π) = 1, l2(π) = 2, l3(π) = 3, l4(π) = 5, l5(π) = 6;
r1(π) = 3, r2(π) = 4, r3(π) = 6, r4(π) = 7, r5(π) = 8; and b1(π) = 1, b2(π) = 2, b3(π) =
1, b4(π) = 2, b5(π) = 2.

Lemma 3.3 Assume π ∈ NC(n, k) and n > 1. The following conditions are equivalent:

(a) π is primitive;

(b) 1 = l1(π) < l2(π) < · · · < lk(π) < n, 1 < r1(π) < r2(π) < · · · < rk(π) = n, where

1 ≤ k ≤ n − 1, and ri(π) ≥ li+1(π) for 1 ≤ i ≤ k − 1;

(c) 1 ≤ k ≤ n − 1 and b1(π) + · · ·+ bi(π) < ri(π) for each i < k.
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Proof. (a) ⇒ (b) and (c): if π has n blocks, then every element of [n] consists a block by
itself, so 1 and n can not lie in the same block. Hence the number of blocks must be less
than n, that is, k < n. For any partition π, we always have

1 = l1(π) < l2(π) < · · · < lk(π) and r1(π) < r2(π) < · · · < rk(π) = n.

If lk(π) = n, then n is a singleton. If r1(π) = 1, then 1 is a singleton. Hence if π is
primitive, we must have

1 = l1(π) < l2(π) < · · · < lk(π) < n and 1 < r1(π) < r2(π) < · · · < rk(π) = n.

We now prove that ri(π) ≥ li+1(π) and b1(π) + · · · + bi(π) < ri(π) for every i < k.
Assume that t is the least i such that ri(π) < li+1(π), then there are t left-hand endpoints
and t right-hand endpoints in the interval between 1 and rt. Since π is a partition, for
every right-hand endpoint, there exists a left-hand endpoint to be matched with it. The
condition

r1(π) ≥ l2(π), r2(π) ≥ l3(π), . . . , rt−1(π) ≥ lt(π) and rt(π) < lt+1(π)

and t is the least i such that ri(π) < li+1(π) ensures that 1 is in the same block with rt(π),
which contradicts with the fact that π is primitive.

It is easy to see that b1(π) + · · · + bi(π) ≤ ri(π) for every i < k. We claim that for
a primitive partition, the equality can not hold. If there exists some i such that b1(π) +
· · · + bi(π) = ri(π), assume that the least such i is t, then the elements {1, 2, . . . , rt(π)}
have formed a primitive partition of [rt(π)].

(b) ⇒ (a): r1(π) > 1 (resp., lk(π) < n) shows that 1 (resp., n) is not a singleton. We
assume that the greatest element of the block containing 1 is rs(π). If π is not primitive,
then rs(π) < n = rk(π) and s < k. Since π is non-crossing, then rs(π) + 1 must be a
left-hand point and rs(π) + 1 = ls+1(π), which yields that rs(π) < ls+1(π).

(c) ⇒ (a): We also assume that the greatest element of the block containing 1 is rs(π).
If π is not primitive, then rs(π) < n = rk(π) and s < k; and b1(π) + · · · + bs(π) = rs(π),
which yields a contradiction.

Remark. (I) If we have a date set {li, ri} for 1 ≤ i ≤ k and k < n such that

1 = l1 < l2 < · · · < lk < n, 1 < r1 < r2 < · · · < rk = n and ri ≥ li+1 for 1 ≤ i ≤ k − 1,

we can uniquely construct a partition π such that π ∈ NC(n, k) and li(π) = li and
ri(π) = ri for 1 ≤ i ≤ k as follows.

We first parenthesize the sequence 1, 2, . . . , n by placing a left (resp., right) parenthesis
before every li (resp., after every ri) for 1 ≤ i ≤ k. Then create a block of π for each
of the consecutive strings inside “lowest level” parenthesis pairs (i.e., parentheses which
pair each other and enclose no others). Now remove these lowest level parenthesis pairs
and all the numbers they enclose, and continue with the remaining parenthesization.
Clearly the partition π yielded above is non-crossing and has k blocks. Since ri ≥ li+1 for
1 ≤ i ≤ k − 1, there are k left parentheses before the (k − 1)-st right parenthesis, hence
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the left parenthesis before 1 must be paired with the right parenthesis after n, i.e., 1 and
n belong to the same block, which means that the partition π is primitive.

(II) If we have a date set {ri, bi} for 1 ≤ i ≤ k and k < n such that

1 < r1 < r2 < · · · < rk = n and b1 + · · ·+ bi < ri for 1 ≤ i ≤ k − 1,

we can also uniquely construct a partition π such that π ∈ NC(n, k), ri(π) = ri and
bi(π) = bi for 1 ≤ i ≤ k as follows.

We first plot 1, 2, . . . , n on the horizontal line, then start from the number r1 and
count successively b1 numbers from right to left, so we get a block of π with r1 being its
greatest element and size of b1. We delete these selected b1 numbers and start from the
number r2 and choose b2 rightmost unselected numbers before r2 to form another block
of π. By iterating this process, we get k blocks of π and clearly π is non-crossing. Since
b1 + · · · + bi < ri for 1 ≤ i ≤ k − 1, after we create the (k − 1)-st block of π, 1 must
have not been selected, hence 1 and n will be put together to form the k-th block, which
means that π is primitive.

Theorem 3.4 There is a bijection γ : NC(n, k+1) → Dn,k such that if π ∈ NC(n, k+1),
then rb(π) = maj(γ(π)).

Proof. If a non-crossing partition π has only one block of size n, i.e., π = {1, 2, . . . , n},
then we define γ(π) = U1U2 · · ·UnD1D2 · · ·Dn. This case is trivial.

Now we consider the nontrivial cases.
We first define our bijection γ between the set of primitive non-crossing partitions and

the set of primitive Dyck paths.
Assume that π ∈ NC(n, k + 1). We let r̄1 = r1(π), r̄2 = r2(π), . . . , r̄k = rk(π) and

b̄1 = l2(π) − 1, b̄2 = l3(π) − l2(π), b̄3 = l4(π) − l3(π), . . . , b̄k = lk+1(π) − lk(π). Since π is
primitive, from Lemma 3.3 we know that ri(π) ≥ li+1(π) for 1 ≤ i ≤ k which implies that

b̄1 + b̄2 + · · ·+ b̄i = li+1(π) − 1 < li+1(π) ≤ ri(π) = r̄i for 1 ≤ i ≤ k.

From the case (II) in the remark before Theorem 3.4, we know that there exists a unique
non-crossing partition π̄ satisfying that

r1(π̄) = r̄1, r2(π̄) = r̄2, . . . , rk+1(π̄) = r̄k+1 and b1(π̄) = b̄1, b2(π̄) = b̄2, . . . , bk+1(π̄) = b̄k+1.

Finally we represent π̄ as a Dyck path, which is the desired Dyck path γ(π).
Given a primitive Dyck path w ∈ Dn,k, we can associate it with a non-crossing partition

π̄ ∈ NC(n, k + 1). From the bijection between Dyck paths and non-crossing partitions
constructed in [6], we know that π̄ is primitive. We let

r1 = r1(π̄), r2 = r2(π̄), . . . , rk(π) = rk(π̄)

and
l2 = b1(π̄) + 1, l3 = b2(π̄) + l2(π), . . . , lk+1 = bk(π̄) + lk(π).
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From the primitiveness of π̄ we can derive that

b1(π̄) + b2(π̄) + · · · + bi(π̄) < ri(π̄) for 1 ≤ i ≤ k,

which shows that

li+1 − 1 = (l2 − 1) + (l3 − l2) + · · · + (li+1 − li) < ri(π̄) = ri for 1 ≤ i ≤ k,

that is, li+1 ≤ ri for each 1 ≤ i ≤ k. From the case (I) in the remark before Theorem 3.4,
we know that there exists a unique non-crossing partition π such that

l1(π) = l1, l2(π) = l2, . . . , lk+1(π) = lk+1

and
r1(π) = r1, r2(π) = r2, . . . , rk+1(π) = rk+1.

Since

rb(π) =
k+1
∑

i=1

(mi(π) − 1)

=
k+1
∑

i=2

(li(π) − 1)

= b1(π̄) + (b1(π̄) + b2(π̄)) + (b1(π̄) + b2(π̄) + b3(π̄)) + · · ·
+ (b1(π̄) + b2(π̄) + b3(π̄) + · · ·+ bk(π̄))

= maj(γ(π)),

so rb(π) = maj(γ(π)).
If the non-crossing partition is not primitive, then we can represent it as the union of

several primitive non-crossing partitions and each such primitive non-crossing partition
corresponds to a primitive Dyck path. By concatenating these Dyck paths in the order
of those primitive non-crossing partitions, we get a Dyck path. It is straightforward to
check that this is the desired Dyck path.

Example 3.5 Let π = 1 8/2 4/3/5 7/6, we have known that w(π) = 1 2 3 2 4 5 4 1 and
rb(π) = 12. We construct a non-crossing partition π̄ and its corresponding Dyck path
γ(π) satisfying maj(γ(π)) = 12 in Figure 4.

3.2 Bijection between ls and maj

For the statistic ls, the bijection between NC(n, k + 1) and Dn,k is relatively simple and
elegant.

Theorem 3.6 There is a bijection η : NC(n, k+1) → Dn,k such that if π ∈ NC(n, k+1),
then there is a Dyck path η(π) ∈ Dn,k satisfying ls(π) = maj(η(π)).
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r r r r r r r r

1 2 3 4 5 6 7 8
π̄

r

r r r r r r

r r r r r r

r r

r r

1 2 4 5

maj(γ(π)) = 1 + 2 + 4 + 5 = 12

Figure 4: The bijection γ(π).

Proof. For π ∈ NC(n, k + 1), we change i to n + 1 − i, then we get a partition π̄. It is
easy to see that π̄ is also a non-crossing partition in NC(n, k + 1). We associate π̄ with
the corresponding Dyck path, then we get the desired Dyck path η(π). It is obviously
that η is invertible. So we only have to show that ls(π) = maj(η(π)). We can derive that

maj(η(π)) =
∑

i∈D(η(π))

i =

k
∑

i=1

(k + 1 − i)bi(π̄)

=

k
∑

i=1

(k + 1 − i)|Bk+2−i(π)| =

k
∑

i=1

(k + 2 − i − 1)|Bk+2−i(π)|

=

k+1
∑

i=2

(i − 1)|Bi(π)| =

k+1
∑

i=1

(i − 1)|Bi(π)| = ls(π),

where bi(π) denotes the size of the block containing the i-th right-hand endpoint of π.

4 q-Narayana Numbers and q-Catalan Numbers

In [4], Fürlinger and Hofbauer gave the most obvious q-analogue of the Narayana numbers
and the Catalan numbers based on Dyck paths. Also there are many other research
articles devoted to the q-analogues of the Narayana numbers and the Catalan numbers.
For example, see [3] for q-analogue of the Narayana numbers with other statistics on Dyck
paths, and Andrews [1] produced some simple q-analogues of the Catalan numbers related
to the theory of partitions.

Using the statistic Maj on Dyck paths, Fürlinger and Hofbauer [4] gave the q-analogue
of the Narayana numbers and the Catalan numbers:

∑

w∈Dn,k

qMaj(w) =
1

[n]

[

n

k + 1

][

n

k

]

qk2+k,

∑

w∈Dn

qMaj(w) =
1

[n + 1]

[

2n

n

]

.
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In this section, we will give the same q-analogue of the Narayana numbers and the
Catalan numbers using the statistics ls, rb on non-crossing partitions.

For the convenience of reader, we give a short description of two statistics α and β
defined in [4, Section 5]. If i ∈ D(w), let α(i) denote the number of up steps before Di and
β(i) denote the number of down steps before Di and including Di. For w ∈ Dn, Fürlinger
and Hofbauer [4] defined

α(w) :=
∑

i∈D(w)

α(i) and β(w) :=
∑

i∈D(w)

β(i).

In fact, our maj defined on Dyck paths is equivalent to β. Under the bijection η, the
statistic ls defined on non-crossing partitions is also equivalent to β. Our goal of this
section is to find another statistic, which is equivalent to α.

Lemma 4.1 Given π ∈ NC(n) and let bk(π) denote the number of blocks of π, then

(bk(π) − 1)n − rb(π) is equivalent to α.

Proof. Given a non-crossing partition π ∈ NC(n, k), i.e., π has exactly k blocks, represent
it as π = B1/B2/ · · · /Bk. Under the bijection η, we get another non-crossing partition
π̄ = B̄1/B̄2/ · · ·/B̄k. If we associate π̄ with a Dyck path w, clearly there are exactly k
peaks and k − 1 valleys on w. From the bijection between non-crossing partition π̄ and
Dyck path w, we know that

k
∑

i=1

Mi(π̄) − n = α(w),

where Mi(π̄) = max{a : a ∈ B̄i}. Furthermore, under the bijection η, we get

k
∑

i=1

Mi(π̄) =

k
∑

i=1

(n + 1 − mi(π)),

where mi(π) = min{a : a ∈ Bi}. And now we can have

α(w) =
k

∑

i=1

Mi(π̄) − n =
k

∑

i=1

(n + 1 − mi(π)) − n

=
k

∑

i=2

(n + 1 − mi(π)) =
k

∑

i=2

{n − (mi(π) − 1)}

= (k − 1)n −
k

∑

i=2

(mi(π) − 1) = (k − 1)n −
k

∑

i=1

(mi(π) − 1)

= (k − 1)n − rb(π) = (bk(π) − 1)n − rb(π).

From the above analysis we can also derive a q-Narayana distribution on non-crossing
partitions.
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Theorem 4.2
∑

π∈NC(n,k)

q(k−1)n+ls(π)−rb(π) =
1

[n]

[

n

k

][

n

k − 1

]

qk2
−k.

Proof. As we know the bijection η between π ∈ NC(n, k) and w ∈ Dn,k−1 transforms the
statistic ls(π) to statistic β(w) and (k − 1)n − rb(π) to α(w), thus

(k − 1)n + ls(π) − rb(π) = α(w) + β(w) = Maj(w).

Invoking identity (4.1) in [4, Section 4], we obtain the following identity:

∑

π∈NC(n,k)

q(k−1)n+ls(π)−rb(π) =
1

[n]

[

n

k

][

n

k − 1

]

qk2
−k.

This completes the proof.

Summing over k from 1 to n yields the q-analogue of the Catalan numbers.

Corollary 4.3
∑

π∈NC(n)

q(bk(π)−1)n+ls(π)−rb(π) =
1

[n + 1]

[

2n

n

]

.
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