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Abstract

For a graph G, its rth power is constructed by placing an edge between two
vertices if they are within distance r of each other. In this note we study the amount
of edges added to a graph by taking its rth power. In particular we obtain that,
for r ≥ 3, either the rth power is complete or “many” new edges are added. In this
direction, Hegarty showed that there is a constant ǫ > 0 such e(G3) ≥ (1 + ǫ)e(G).
We extend this result in two directions. We give an alternative proof of Hegarty’s
result with an improved constant of ǫ = 1

6 . We also show that for general r,
e(Gr) ≥

(⌈

r
3

⌉

− 1
)

e(G).

1 Introduction

This note addresses some questions raised by P. Hegarty in [4]. In that paper he studied
results about graphs inspired by the Cauchy-Davenport Theorem.

All graphs in this paper are simple and loopless. For two vertices u, v ∈ V (G), denote
the length of the shortest path between them by d(u, v). For v ∈ V (G), define its ith
neighborhood as Ni(v) = {u ∈ V (G) : d(u, v) = i}. The rth power of a graph G,
denoted Gr, is constructed from G by adding an edge between two vertices x and y when
they are within distance r in G. Define the diameter of G, diam(G), as the minimal
r such that Gr is complete (alternatively, the maximal distance between two vertices).
Denote the number of edges of G by e(G). For v ∈ V (G) and a set of vertices S, define
er(v, S) = |{u ∈ S : d(v, u) ≤ r}|.

The Cayley graph of a subset A ⊆ Zp is constructed on the vertex set Zp. For two
distinct vertices x, y ∈ Zp, we define xy to be an edge whenever x − y ∈ A or y − x ∈ A.
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The following is a consequence of the Cauchy-Davenport Theorem (usually stated in the
language of additive number theory [1, 2]).

Theorem 1. Let p be a prime, A a subset of Zp, and G the Cayley graph of A. Then for
any integer r < diam(G):

e(Gr) ≥ r e(G).

If we take A to be the arithmetic progression {a, 2a, . . . , ka}, then equality holds in
this theorem for all r < diam(G). We might look for analogues of Theorem 1 for more
general graphs G. In particular since these Cayley graphs are always regular and (when
p is prime) connected, we might focus on regular, connected G. In [4] Hegarty proved the
following theorem:

Theorem 2. Suppose G is a regular, connected graph with diam(G) ≥ 3. Then we have

e(G3) ≥ (1 + ǫ) e(G),

with ǫ ≈ 0.087

In other words, the cube of G retains the original edges of G and gains a positive
proportion of new ones. In Section 3 we prove this theorem with an improved constant
of ǫ = 1

6
. Since we announced this note, DeVos and Thomassé [3] further improved the

constant in Theorem 2 to ǫ = 3
4
. They also show that the constant cannot be improved

further by exhibiting a sequence of regular graphs Gn, such that e(Gr

n
)

e(Gn)
→ 7

4
as n → ∞.

Theorem 2 leads to the question of how the growth behaves for other powers of the
G. Note that Theorem 2 cannot be used recursively to obtain such a result – since the
cube of a regular graph is not necessarily regular. In [4] it was shown that no equivalent
of Theorem 2 exists with G3 replaced by G2, and it was asked what happens for higher
powers. In this note we address that question.

2 Main Result

We prove the following theorem:

Theorem 3. Suppose G is a regular, connected graph, and r ≤ diam(G). Then we have:

e(Gr) ≥
(⌈r

3

⌉

− 1
)

e(G).

Proof. Let the degree of each vertex be d. Fix some v with Ndiam(G)(v) nonempty.
Consider any vertex u ∈ V (G). Then for any j satisfying d(u, v) − r < j ≤ d(u, v),

there is a wj ∈ Nj(v) such that d(u, wj) < r. For such a wj, all vertices x ∈ N1(wj) have
d(u, x) ≤ r. All such x are contained in Nj−1(v) ∪ Nj(v) ∪ Nj+1(v), hence

er(u, Nj−1(v) ∪ Nj(v) ∪ Nj+1(v)) ≥ d. (1)
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Note that each j ∈ {d(u, v) − 3, d(u, v) − 6, . . . , d(u, v) − 3
(⌈

1
3
min{d(u, v), r}

⌉

− 1
)

}
satisfies d(u, v) − r < j ≤ d(u, v). Summing the bound (1) over all these j, noting that
any edge is counted at most once, we obtain

er(u, N0(v) ∪ · · · ∪ Nd(u,v)−2(v)) ≥

⌈

1

3
min{d(u, v), r}

⌉

d − d.

Now we sum this over all u ∈ G. Note that since the edges counted above go from
some Ni(v) to Nj(v) with j < i, each edge is counted at most once. Also we haven’t yet
counted any of the original edges of G, so we might as well add them. Hence

e(Gr) ≥
∑

u∈G

er(u, N0(v) ∪ · · · ∪ Nd(u,v)−2(v)) + e(G)

≥
∑

u∈G

⌈

1

3
min{d(u, v), r}

⌉

d − |V (G)|d + e(G)

=
∑

u∈G

⌈

1

3
min{d(u, v), r}

⌉

d − e(G). (2)

Obviously there was nothing particularly special about v. We can get a similar ex-
presssion using v′ ∈ Ndiam(G)(v), namely

e(Gr) ≥
∑

u∈G

⌈

1

3
min{d(u, v′), r}

⌉

d − e(G). (3)

Averaging (2) and (3) we get

e(Gr) ≥
1

2

∑

u∈G

(⌈

1

3
min{d(u, v), r}

⌉

+

⌈

1

3
min{d(u, v′), r}

⌉)

d − e(G). (4)

Note that for any u ∈ V (G) we have
⌈

1

3
min{d(u, v), r}

⌉

+

⌈

1

3
min{d(u, v′), r}

⌉

≥
⌈r

3

⌉

. (5)

This is because d(u, v) + d(u, v′) ≥ d(v, v′) = diam(G) ≥ r. Putting the bound (5) into
the sum (4) we obtain

e(Gr) ≥
|V (G)|d

2

⌈r

3

⌉

− e(G) =
⌈r

3

⌉

e(G) − e(G).

Thus the theorem is proven.

3 Cubes

Note that for r ≤ 6 the bounds in Theorem 3 are trivial. In particular it says nothing
about the increase in the number of edges of the cube of a regular, connected graph.
Such an increase was already demonstrated by Hegarty in Theorem 2. Here we give an
alternative proof of that theorem, yielding a slightly better constant.
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Theorem 4. Suppose G is a regular, connected graph with diam(G) ≥ 3. Then we have

e(G3) ≥

(

1 +
1

6

)

e(G).

Proof. Let the degree of each vertex be d. Note that as G is regular, and not complete,
every v ∈ V (G) will have a non-neighbour in G. Together with connectedness this implies
that each v ∈ V (G) has at least one new neighbour in G2. This implies the theorem for
d ≤ 6. For the remainder of the proof, we assume that d > 6. The proof rests on the
following colouring of the edges of G: For an edge uv in G, colour

uv red if |N1(u) ∩ N1(v)| >
2

3
d,

uv blue if |N1(u) ∩ N1(v)| ≤
2

3
d.

Notice that if uv is a blue edge, then there are at least 4
3
d − 1 neighbours of u in

G2. This is because u will be connected to everything in N1(u) ∪ N1(v) except itself,
and |N1(u) ∪ N1(v)| ≥ 4

3
d for uv blue. If, in addition, we have some x connected to

u by an edge (of any colour), then x will be at distance at most 3 from everything in
N1(u) ∪ N1(v) \ {x}. Hence x will have at least 4

3
d − 1 neighbours in G3.

Partition the vertices of G as follows:
B = {v ∈ V (G) : v has a blue edge coming out of it},
R = {v ∈ V (G) : v /∈ B and there is a u ∈ B such that uv is an edge},
S = V (G) \ (B ∪ R).

By the above argument, if v is in B ∪ R, then e3(v, V (G)) ≥ 4
3
d − 1. Recall that each

u ∈ S will have at least one new neighbour in G2, giving e3(u, V (G)) ≥ d + 1. Summing
these two bounds over all vertices in G, noting that any edge is counted twice, gives

2e(G3) ≥

(

4

3
d − 1

)

|B ∪ R| + (d + 1)|S|

=

(

4

3
d − 1

)

|B ∪ R| + (d + 1) (|V (G)| − |B ∪ R|)

=
7

6
d|V (G)| +

1

3

(

|B ∪ R| −
1

2
|V (G)|

)

(d − 6)

=
7

3
e(G) +

1

3

(

|B ∪ R| −
1

2
|V (G)|

)

(d − 6) .

Recall that we are considering the case when d > 6. Thus to prove that e(G3) ≥ 7
6
e(G),

it suffices to show that |B∪R| ≥ 1
2
|V (G)|. To this end we shall demonstrate that |S| ≤ |R|.

First however we need a proposition helping us to find blue edges in G.

Proposition 5. For any v ∈ V (G) there is some b ∈ B such that d(v, b) ≤ 2.
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Proof. Suppose d(v, u) = 3. Then there are vertices x and y such that {v, x, y, u} forms a
path between u and v. We will show that one of the edges vx, xy or yu is blue. This will
prove the proposition assuming that there are any blue edges to begin with. However, it
also shows the existence of blue edges because diam(G) ≥ 3.

So, suppose that the edges vx and uy are red. Then we have |N1(v) ∩ N1(x)| > 2
3
d,

and |N1(u) ∩ N1(y)| > 2
3
d. Using this and N1(u) ∩ N1(v) = ∅ gives

|N1(x) ∪ N1(y)| ≥ |(N1(x) ∪ N1(y)) ∩ N1(v)| + |(N1(x) ∪ N1(y)) ∩ N1(u)|

≥ |N1(x) ∩ N1(v)| + |N1(y) ∩ N1(u)|

>
4

3
d.

Therefore |N1(x) ∩ N1(y)| = 2d − |N1(x) ∪ N1(y)| ≤ 2
3
d. Hence xy is blue, proving the

proposition.

Now we will show that |S| ≤ |R|. Suppose r ∈ R. By the definition of R, there
is a b ∈ B such that rb is an edge. This edge is neccesarily red as r /∈ B. Using
N1(b) ⊆ B ∪ R,we have |N1(r) ∩ (B ∪ R)| ≥ |N1(r) ∩ N1(b)| > 2

3
d. Hence

|N1(r) ∩ S| ≤
1

3
d. (6)

Suppose s ∈ S. Proposition 5 implies that there is some r ∈ R such that sr is an edge.
Since sr is red, we have |N1(s) ∩ N1(r)| > 2

3
d. Using this, the fact that N1(s) ⊆ R ∪ S,

and (6), gives

|N1(s) ∩ R| ≥ |N1(s) ∩ N1(r) ∩ R|

= |N1(s) ∩ N1(r)| − |N1(s) ∩ N1(r) ∩ S|

≥ |N1(s) ∩ N1(r)| − |N1(r) ∩ S|

>
1

3
d. (7)

Double-counting the edges between S and R using the bounds (6) and (7) gives a
contradiction unless |S| ≤ |R|. Therefore |B ∪ R| ≥ 1

2
|V (G)| as required.

4 Discussion

Theorem 3 answers the question of giving a lower bound on the number of edges that are
gained by taking higher powers of a graph. We obtain growth that is linear with r – just
as in Theorem 1.

• The constant
⌈

1
3
r
⌉

in Theorem 3 cannot be improved to something of the form λr
with λ > 1

3
. To see this, consider the following sequence of graphs Hr(d) as d tends

to infinity:
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Figure 1: The graph H6(8).

Take disjoint sets of vertices N0, ..., Nr, with |Ni| = d − 1 if i ≡ 0 (mod 3) and
|Ni| = 2 otherwise. Add all the edges within each set and also between neighboring
ones. So if u ∈ Ni, v ∈ Nj, then uv is an edge whenever |i − j| ≤ 1 (see Figure 1).

The number of edges in Hr(d) is at least the number of edges in the larger classes
which is

⌈

1
3
(r + 1)

⌉ (

d−1
2

)

.

The rth power Hr(d)r has less than
(

|V (G)|
2

)

edges which is less than
(

⌈ 1

3
(r+1)⌉(d+3)

2

)

.
Therefore,

lim sup
d→∞

e(Hr(d)r)

e(Hr(d))
≤ lim

d→∞

(

⌈ 1

3
(r+1)⌉(d+3)

2

)

⌈

1
3
(r + 1)

⌉ (

d−1
2

) =

⌈

1

3
(r + 1)

⌉

.

The graphs Hr(d) are not regular, but if r 6≡ 2 (mod 3), it is possible to remove
a small (less than |V (G)|) number of edges from the graphs and make them d-
regular without losing connectedness (any cycle passing through all the vertices in
N1 ∪ ... ∪ Nr−1 would work). Call these new graphs Ĥr(d). By the same argument
as before we have

lim sup
d→∞

e(Ĥr(d)r)

e(Ĥr(d))
≤

⌈

1

3
(r + 1)

⌉

.

If r ≡ 2 (mod 3), a similar trick can be performed, but we’d need to start with
|Ni| = d − 1 if i ≡ 1 (mod 3) and |Ni| = 2 otherwise.

So the factor of 1
3

cannot be improved for regular graphs. All these examples are
inspired by one given in [4] to show that for any ǫ there are regular graphs G with
e(G2) < (1 + ǫ)e(G).

• All the questions from this paper and [4] could be asked for directed graphs. In
particular one can define directed Cayley graphs for a set A ⊆ Zp by letting xy be
a directed edge whenever x− y ∈ A. Then the Cauchy-Davenport Theorem implies
an identical version of Theorem 1 for directed Cayley graphs. In this setting it is
easy to show that there is growth even for the square of an out-regular oriented
graph D (a directed graph where for a pair of vertices u and v, uv and vu are not
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both edges). In particular, we have

e(D2) ≥
3

2
e(D). (8)

This occurs because every vertex v has |Nout
2 (v)| ≥ 1

2
|Nout

1 (v)| in an out-regular
oriented graph. It’s easy to see that this is best possible for such graphs. One can
construct out-regular oriented graphs with an arbitrarily large proportion of vertices
v satisfying |Nout

2 (v)| = 1
2
|Nout

1 (v)|.

However if we insist on both in and out-degrees to be constant, (8) no longer seems
tight. Such graphs are always Eulerian. In [5] there is a conjecture attributed to
Jackson and Seymour that if an oriented graph D is Eulerian, then e(D2) ≥ 2 e(D)
holds. If this conjecture were proved, it would be an actual generalization of the
directed version of Theorem 1, as opposed to the mere analogues proved above.
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