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Abstract

A graph is called integral, if its adjacency eigenvalues are integers. In this paper
we determine integral quartic Cayley graphs on finite abelian groups. As a side
result we show that there are exactly 27 connected integral Cayley graphs up to 11
vertices.

1 Introduction and Results

A graph is called integral if all the eigenvalues of its adjacency matrix are integers. The
notion of integral graphs was first introduced by Harary and Schwenk in 1974 [13].

It is known that the number of non-isomorphic k-regular integral graphs is finite (See
e.g. [10]). Bussemaker and Cvetković [8] and independently Schwenk [20], proved that
there are exactly 13 connected cubic integral graphs. It is shown in [4] and [5] that there
are exactly 263 connected integral graphs on up to 11 vertices.

Radosavljević and Simić in [19] determined all thirteen nonregular nonbipartite con-
nected integral graphs with maximum degree four. Stevanović [22] determined all con-
nected 4-regular integral graphs avoiding ±3 in the spectrum. A survey of results on
integral graphs may be found in [6].

Omidi [17] identified integral graphs with at most two cycles with no eigenvalues 0.
Sander [18] proved that Sudoku graphs are integral. In [2] it is shown that the total
number of adjacency matrices of integral graphs with n vertices is less than or equal to

2
n(n−1)

2
−

n

400 for a sufficiently large n. Let G be a non-trivial group with the identity element
1 and let S be a non-empty subset of G \ {1} such that S = S−1 := {s−1|s ∈ S}. The
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Cayley graph of G with respect to S which is denoted by Γ(S : G) is the graph with
vertex set G and two vertices a and b are adjacent if ab−1 ∈ S.

Klotz and Sander [15] proved that Γ(Un : Zn) is integral, where Zn is the cyclic group
of order n and Un is the subset of all elements of Zn of order n. W. So [21] characterizes
integral graphs among circulant graphs. In [1] we determined integral cubic Cayley graphs.

In this paper we study integral quartic Cayley graphs on finite abelian groups. Our
main results are the following.

Theorem 1.1 Let G be an abelian group such that Γ(S : G) is integral, 4-regular and
connected for some S ⊆ G. Then

|G| ∈ {5, 6, 8, 9, 10, 12, 16, 18, 20, 24, 25, 32, 36, 40, 48, 50, 60, 64, 72, 80, 96, 100, 120, 144}.

As a side result, we show that

Theorem 1.2 There are exactly 27 connected integral Cayley graphs up to 11 vertices.

2 Preliminaries

First we give some facts that are needed in the next section. Let n be a positive integer.
Then B(1, n) denotes the set {j | 1 ≤ j < n, (j, n) = 1}. Let ω = e

2πi

n and

C(r, n) =
∑

j∈B(1,n)

ωjr, 0 ≤ r ≤ n − 1. (2.1)

The function C(r, n) is a Ramanujan sum. For integers r and n, (n > 0), Ramanujan
sums have only integral values (See [16] and [23]).

First we give some facts that are needed in the next section.

Lemma 2.1 Let ω = e
πi

n , where i2 = −1. Then

i)
2n−1∑

j=1

ωj = −1.

ii) If l is even, then
n−1∑

j=1

ωlj = −1.

iii) If l is odd, then

n−1∑

j=1

ωlj + ω−lj = 0.

Proof. The proof is straightforward. �

Lemma 2.2 Let G be a finite group and a ∈ G. If χ is a linear character of G and
o(a) = 2, then χ(a) = ±1.
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Proof. We know that each linear character is a homomorphism. So (χ(a))2 = χ(a2) =
χ(1) = 1. Hence χ(a) = ±1.

Lemma 2.3 [3] Let G be a finite group of order n whose irreducible characters (over
C) are χ1, . . . , χh with respective degree n1, . . . , nh. Then the spectrum of the Cayley
graph Γ(S : G) can be arranged as Λ = {λijk | i = 1, . . . , h; j, k = 1, . . . , ni} such that
λij1 = . . . = λijni

(this common value will be denoted by λij), and

λt
i1 + . . . + λt

ini
=

∑

s1,...,st∈S

ρi(Π
t
l=1sl) (2.2)

for any natural number t.

Lemma 2.4 [14] Let Cn be the cyclic group generated by a of order n. Then the irre-
ducible characters of Cn are ρj(a

k) = ωjk, where j, k = 0, 1, . . . , n − 1.

Lemma 2.5 [14] Let G = Cn1×· · ·×Cnr
and Cni

= 〈ai〉, so that for any i, j ∈ {1, . . . , r},

(ni, nj) 6= 1. If ωt = e
2πi

nt , then n1 · · ·nr irreducible characters of G are

ρ
l1...lr

(ak1
1 , . . . , akr

r ) = ωl1k1
1 ωl2k2

2 · · ·ωlrkr

r (2.3)

where li = 0, 1, . . . , ni − 1 and i = 1, 2, . . . , r.

Lemma 2.6 (Lemma 2.6 of [1]) Let G be a group and G = 〈S〉, where S = S−1 and
1 /∈ S. If a ∈ S and o(a) = m > 2, then Γ(S : G) has the cycle with m vertices as a
subgraph.

Lemma 2.7 (Lemma 2.7 of [1]) Let G = 〈S〉 be a group, |G| = n, |S| = 2, S = S−1 6∋
1. Then Γ(S : G) is an integral graph if and only if n ∈ {3, 4, 6}.

Lemma 2.8 (Lemma 2.9 of [1]) Let G be the cyclic group 〈a〉, |G| = n > 3 and let S
be a generating set of G such that |S| = 3, S = S−1 and 1 6∈ S. Then Γ(S : G) is an
integral graph if and only if n ∈ {4, 6}.

Lemma 2.9 Let G1 and G2 be two non-trivial abelian groups and G = G1 × G2 such
that Γ(S : G) is integral, G = 〈S〉, S = S−1 6∋ 1 and |S| = 4. If S1 = {s1 | (s1, g2) ∈
S for some g2 ∈ G2} \ {1}, then Γ(S1 : G1) is a connected integral graph.

Proof. Since S generates G and S = S−1 6∋ 1 with four elements, S1 generates G1,
S1 = S−1

1 6∋ 1 and |S1| ∈ {1, 2, 3, 4}. It is easy to see that if |S1| = 1, then |G1| = 2 and
so Γ(S1 : G1) is the complete graph K2 with two vertices which is an integral graph.
Let χ0 and ρ0 be the trivial irreducible characters of G1 and G2, respectively. Let λi0 and
λi be the eigenvalues of Γ(S : G) and Γ(S1 : G1) corresponding to irreducible characters
of χi × ρ0 and χi, respectively. By Lemma 2.3,

λi0 =
∑

(g1,g2)∈S

(χi × ρ0)(g1, g2).
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We have the following cases:
Case 1: If |S1| = 4, then λi0 = λi. It follows that Γ(S1 : G1) is an integral graph.
Case 2: Let |S1| = 3 and suppose that

S = {(a, x), (a−1, x−1), (b, y), (b, y−1)} or S = {(a, x), (a−1, x−1), (b, y), (1, y−1)},

where o(b) = 2. Then λi0 = λi +χi(b) or λi0 = λi +1, respectively. Since 2 | χi(b)−χi(1),
χi(b) is integer and So Γ(S1 : G1) is an integral graph.
Case 3: Let |S1| = 2 and S = {(a, x), (a−1, x−1), (1, y), (1, y−1)}. Then λi0 = λi + 2 and
so Γ(S1 : G1) is an integral graph.
Case 4: Let |S1| = 2 and S = {(a, x), (a−1, x−1), (a, y), (a−1, y−1)}. Then G1 is a cyclic
group and

λi0 = 2
∑

s1∈S1

χi(s1) = 2λi.

Since λi0 ∈ {−4,±3,±2,±1, 0} (i 6= 0), λ1 and λ2 ∈ {−2,±3/2,±1,±1/2, 0}. By Lemmas
2.3 and 2.4, λ1 = 2 cos(2π

n
) and λ2 = 2 cos 2(2π

n
), where |G1| = n. By using cos 2x =

2 cos2 x − 1 we conclude that λ2
1 = λ2 + 2. Hence (λ1, λ2) ∈ {(0,−2), (−1,−1), (1,−1)}.

If (λ1, λ2) = (1,−1), then cos(2π
n

) = 1
2
. So n = 6. By [1, Lemma 2.7], Γ(S1 : G1) is an

integral graph.
If (λ1, λ2) = (0,−2), then cos(2π

n
) = 0. So n = 4. By [1, Lemma 2.7] Γ(S1 : G1) is an

integral graph.
If (λ1, λ2) = (−1,−1), then cos(2π

n
) = −1

2
. So n = 3. By [1, Lemma 2.7], Γ(S1 : G1) is an

integral graph. �

Lemma 2.10 (Lemma 2.11 of [1]) Let G be a finite non-cyclic abelian group and let
G = 〈S〉, where |S| = 3, S = S−1 and 1 6∈ S. Then Γ(S : G) is an integral graph if and
only if |G| ∈ {4, 8, 12}.

Theorem 2.11 (Theorem 1.1 of [1]) There are exactly seven connected cubic integral
Cayley graphs. In particular, for a finite group G and a subset S = S−1 6∋ 1 with three
elements, Γ(S : G) is integral graph if and only if G is isomorphic to one the following
groups: C2

2 , C4, C6, S3, C3
2 , C2 × C4, D8, C2 × C6, D12, A4, S4, D8 × C3, D6 × C4 or

A4 × C2.

We denote as usual the complete graph on n vertices by Kn and the complete bipartite
graph with parts of sizes m and n by Km,n.

Lemma 2.12 There are exactly 40 connected, regular, integral graphs up to 10 vertices.

Proof. By [4], connected, regular, integral graphs are of type Γi (i = 1, . . . , 40), where
Γ1 = K1, Γ2 = K2, Γ3 = K3, Γ4 = K4, Γ5 = K2,2, Γ6 = K5, Γ7 = K7 and connected,
regular, integral graphs with 6, 8, 9 and 10 vertices are displayed in tables 1, 2, 3 and 4
respectively. Graphs in these tables are represented in the form

Γi a12a13a23a14a24a34 · · ·a1na2n · · ·a(n−1)n,
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where Γi is the name of the corresponding integral graph and

a12a13a23a14a24a34 · · ·a1na2n · · ·a(n−1)n,

is the upper diagonal part of its adjacency matrix [aij ]n×n of the graph Γi. Also spectra
of these graphs are displayed in tables 5, 6, 7 and 8 respectively. �

Lemma 2.13 Let G = 〈a〉 be a finite cyclic group of order n > 4 and let S be a generating
set of G such that |S| = 4, S = S−1 and 1 6∈ S. Then there exist two relatively prime,
positive integers r, s < n/2 (r 6= s) such that S = {ar, a−r, as, a−s}.

Proof. Since G is cyclic, G has at most one element of order 2. Therefore S cannot contain
elements of order 2 as |S| = 4 and S = S−1. Since a−ℓ = an−ℓ for any integer ℓ, it follows
that there exist two positive integers r, s < n/2 (r 6= s) such that S = {ar, a−r, as, a−s}.
Since S generates G, gcd(r, s) = 1. This completes the proof. �

Lemma 2.14 Let G = 〈a〉 be a finite cyclic group of order n > 4 and let S be a generating
set of G such that |S| = 4, S = S−1 and 1 6∈ S. Then Γ(S : G) is integral if and only if
one the following holds:

1. n = 5 and S = {a, a−1, a2, a−2};

2. n = 6 and S = {a, a−1, a2, a−2};

3. n = 8 and S = {a, a−1, a3, a−3};

4. n = 10 and S = {a, a−1, a3, a−3};

5. n = 12 and S = {a, a−1, a5, a−5};

6. n = 12 and S = {a2, a−2, a3, a−3};

7. n = 12 and S = {a4, a−4, a3, a−3}.

Proof. We need So’s theorem [21, Theorem 7.1] and some knowledge about Euler’s
totient function ϕ:

ϕ(n) = 2 ⇐⇒ n ∈ {3, 4, 6}, ϕ(n) = 4 ⇐⇒ n ∈ {5, 8, 10, 12}.

Let Γ = Γ(S : G). According to So’s theorem [21, Theorem 7.1] we have to consider two
main cases.
Case 1. Γ is a unitary Cayley graph.
Then the degree of regularity of Γ is ϕ(n) = 4, which implies n ∈ {5, 8, 10, 12}. This gives
graphs (1), (3), (4), (5) in the list of Lemma 2.14.
Case 2. It follows from Lemma 2.13 that there are proper divisors r, s of n, 1 ≤ r < s <
n/2, such that

S = {ar, as, a−r, a−s}, ϕ(
n

r
) = 2, ϕ(

n

s
) = 2 and gcd(r, s) = 1.
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This means that there is an integer k such that n = krs and

n

r
= ks,

n

s
= kr ∈ {3, 4, 6}; k, r, s ∈ {1, 2, 3, 4, 6}.

We distinguish two subcases:
Case 2.1. r = 1.
Then we have n

r
= n ∈ {3, 4, 6}, which implies n = 6.

Now n
s

= 6
s
∈ {3, 4, 6} implies s = 2. This gives graph (2).

Case 2.2. r ≥ 2.
In this case only two subcases remain: r = 2, s = 3 and r = 3, s = 4. This leads to
graphs (6) and (7) of the list.
To show that the determined graphs are not isomorphic, we need only care for the graphs
on 12 vertices, i.e. graphs (5), (6), (7).
Graph (5) as a unitary Cayley graph of even order is bipartite, while (6) and (7) are not
bipartite. Graph (7) contains a triangle. Graph (6) contains a circuit of length 5, but no
triangle. �

Corollary 2.15 Let G = 〈a〉 be a finite cyclic group of even order n > 4. Let S1 =
{ar, a−r, as, a−s} and S2 = {ar, a−r, as, a−s, an/2}, where r, s < n/2 (r 6= s), St = S−1

t 6∋ 1
and G = 〈St〉 for t = 1, 2. Then Γ(S1 : G) is an integral graph if and only if Γ(S2 : G) is
an integral graph.

Proof. Let λj and µj j ∈ {0, 1, 2, . . . , n − 1} be the eigenvalues of Γ(S1 : G) and
Γ(S2 : G), respectively. By Lemmas 2.3 and 2.4, λj = ωjr + ω−jr + ωjs + ω−js and
µj = ωjr +ω−jr +ωjs +ω−js +(−1)j for j ∈ {0, 1, 2, . . . , n−1}. This completes the proof.
�

Corollary 2.16 Let G = 〈a〉 be a finite cyclic group of order even n > 4 and let S be a
generating set of G such that |S| = 5, S = S−1 and 1 6∈ S. Then Γ(S : G) is an integral
graph if and only if one the following holds:

1. n = 6 and S = {a, a−1, a2, a−2, a3};

2. n = 8 and S = {a, a−1, a3, a−3, a4};

3. n = 10 and S = {a, a−1, a3, a−3, a5};

4. n = 12 and S = {a, a−1, a5, a−5, a6};

5. n = 12 and S = {a2, a−2, a3, a−3, a6};

6. n = 12 and S = {a4, a−4, a3, a−3, a6}.

Proof. Note that an/2 ∈ S. Now Lemmas 2.13 and 2.14 complete the proof. �

The following result follows from [21, Theorem 7.1].
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Theorem 2.17 (Theorem 7.1 of [21]) Let G be a finite group of order prime p > 1.
Then Γ(S : G) is an integral graph if and only if |S| = p − 1, where S = S−1 6∋ 1 and
G = 〈S〉.

Definition 2.18 A group G is called Cayley simple if Γ(S : G) is not integral, where
G = 〈S〉, 1 /∈ S = S−1 and S 6= G \ {1}.

So by Theorem 2.17, we have

Corollary 2.19 Any finite group of prime order is Cayley simple.

Let us to put forward the following questions.

Question 2.20 Which finite groups are Cayley simple?

Question 2.21 Is any finite simple group, Cayley simple?

Lemma 2.22 There are exactly five connected, integral Cayley graphs with ten vertices.

Proof. We show that the graphs Γ26, Γ27, Γ35, Γ36 and Γ37 are Cayley graphs and others
are not (See table 4).
By table 8, |S| ∈ {3, 4, 5, 6, 7, 8, 9}. By Theorem 2.11, the graphs Γ38, Γ39 and Γ40 are not
Cayley graphs.
It is clear that if G is a finite group of order 10 and |S| = 9, then Γ(S : G) is the complete
graph K10 and so Γ(S : G) = Γ26. Let G be a finite group of order 10. Then G is
isomorphic to C10 or D10. So we have the following two cases:
Case 1: Let G = C10 = 〈a〉.
If |S| = 4 and S = {a, a3, a7, a9}, then by easy calculations, one can see Γ(S : C10) is an
integral graph with the spectrum [−4,−14, 14, 4]. Hence Γ(S : C10) = Γ37.
Let |S| = 5. It is clear that a5 ∈ S. If S = {a, a3, a5, a7, a9}, then by a straightforward
computation, one can see that Γ(S : C10) is an integral graph with the spectrum [−5, 08, 5].
Thus Γ(S : C10) = Γ36.
Let Γ(S : C10) = Γ35. By table 8, |S| = 5 and so a5 ∈ S. It is clear that S 6=
{a, a3, a5, a7, a9}. By Lemmas 2.2 and 2.3, Γ(S \ {a5} : C10) is an integral graph and
so Γ(S \ {a5} : C10) = Γ37. If χ is the irreducible character of C10 corresponding to the
eigenvalue 3 in graph Γ(S : C10) = Γ35, then by Lemmas 2.2 and 2.3, the eigenvalue of
Γ(S \ {a5} : C10) corresponding to χ is 2 or 4, which is impossible. Therefore Γ35 is not a
Cayley graph of C10.
If |S| = 6, then a5 /∈ S and so there is exactly one integer r (1 ≤ r ≤ 4) such that ar /∈ S.
Without loss of generality we can assume r = 4 so that S = {a, a2, a3, a7, a8, a9}. Then
by a straightforward computation Γ(S : C10) is not an integral graph. Thus the graphs
Γ30, Γ31, Γ32, Γ33 and Γ34 are not Cayley graphs of C10.
If |S| = 7, then a5 ∈ S and so there is exactly one integer r ∈ {1, 2, 3, 4} such that ar /∈ S.
Without loss of generality we can assume r = 4 so that S = {a, a2, a3, a5, a7, a8, a9}. Then
by a straightforward computation Γ(S : C10) is not an integral graph. Thus the graphs
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Γ28 and Γ29 are not Cayley graphs of C10.
If |S| = 8, then a5 /∈ S and so S = G\{1, a5}. Now easy calculations show that Γ(S : C10)
is an integral graph with the spectrum [−24, 05, 8]. Therefore Γ(S : C10) = Γ27.
Case 2: Let G = D10 = 〈a, b | a5 = b2 = 1, (ab)2 = 1〉.
If |S| = 4 and S = {b, ab, a2b, a3b}, then by a straightforward computation, Γ(S : D10) is
an integral graph with the the spectrum [−4,−14, 14, 4]. Therefore Γ(S : C10) = Γ37.
If S1 = {b, ab, a2b, a3b, a4b} and S2 = {a, a2, a3, a4, b}, then Γ(S1 : D10) and Γ(S2 : D10)
are integral graphs with the spectra [−5, 08, 5] and [−24, 04, 3, 5], respectively. Thus Γ(S1 :
D10) = Γ36 and Γ(S2 : D10) = Γ35.
Let |S| = 6. Since D10 has exactly two linear characters, it follows from Lemma 2.3 that
Γ(S : D10) has exactly two simple eigenvalues. So the graphs Γ30, Γ31 and Γ34 are not
Cayley graphs of D10. Since |S| = 6, S ∩ 〈a〉 = 〈a〉 or |S ∩ 〈a〉| = 2. Suppose λ be the
eigenvalue of Γ(S : D10) corresponding to the linear character χ3 of D10. Then by Lemma
2.3, λ = 2 if S∩〈a〉 = 〈a〉 and λ = −2 if |S∩〈a〉| = 2. On the contrary, let Γ(S : D10) = Γ32

or Γ(S : D10) = Γ33. Since Spec(Γ32) = [−25, 14, 6] and Spec(Γ33) = [−3,−23, 02, 13, 6],
|S ∩ 〈a〉| = 2. Now if λ11 and λ12 are the eigenvalues of Γ(S : D10) corresponding to
χ1, then by Lemma 2.3 and using the character table of D10, λ11 + λ12 = 4 cos(2π

5
) or

4 cos(4π
5

). But the latter is not an integer, which is a contradiction. Hence Γ32 and Γ33

are not Cayley graphs of D10.
Let |S| = 7 and Γ(S : D10) = Γ28. Since λ = −3 is a simple eigenvalue of Γ(S : D10) = Γ28,
it follows from Lemma 2.3 and the character table of D10 that {b, ab, a2b, a3b, a4b} ⊆ S.
Thus S = {a, a−1, b, ab, a2b, a3b, a4b} or {a2, a−2, b, ab, a2b, a3b, a4b}. By easy calculations
one finds that Γ(S : D10) = Γ28 is not integral graph, a contradiction. Therefore Γ28 is
not a Cayley graph of D10.
Let |S| = 7 and Γ(S : D10) = Γ29. Since λ = 1 is a simple eigenvalue of Γ(S : D10) = Γ29,
it follows from Lemma 2.3 and the character table of D10 that S ∩ 〈a〉 = 〈a〉. If λk1 and
λk2 are the eigenvalues of Γ(S : D10) corresponding to χk for k ∈ {1, 2}, then Lemma
2.3 and the character table of D10 implies that λ11 + λ12 = λ21 + λ22 = −2. Since the
multiplicity 0 as an eigenvalue of Γ(S : D10) = Γ29 is 4, λ11 = 0, λ12 = −2, λ21 = 0 and
λ22 = −2 or λ11 = −2, λ12 = 0, λ21 = −2 and λ22 = 0 (Each one, two times). This shows
that −2 is an eigenvalue of Γ29, which is impossible. Therefore Γ29 is not a Cayley graph
of D10.
Therefore there are exactly five connected, integral Cayley graphs with 10 vertices. �

Lemma 2.23 There are exactly three connected, integral Cayley graphs with nine vertices.

Proof. We show that the graphs Γ19, Γ21 and Γ24 are Cayley graphs and others are not
(See table 3). It follows from table 7 that |S| ∈ {4, 6, 8}. Clearly if G is a finite group of
order nine and |S| = 8, then Γ(S : G) is the complete graph K9 and so Γ(S : G) = Γ19.

Let G be a finite group of order 9. Then G is isomorphic to C9 or C2
3 . We distinguish

the following two cases:
Case 1: Let G = C9 = 〈a〉. If |S| = 4, then by Lemma 2.14, Γ(S : C9) is not an

integral graph. Since the graphs Γ22, Γ23, Γ24 and Γ25 are 4-regular integral graphs with
9 vertices, they are not Cayley graphs of C9.
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Let Γ(S : C9) be an integral graph and λ be the eigenvalue Γ(S : C9) corresponding

to the irreducible character χ(aj) = ωj, where |S| = 6 and ω = e
2πi

9 . Since λ and
8∑

j=1

ωj

are integers and ωr + ω−r (r 6= 3) is not an integer, it follows from Lemma 2.3 that
S = {a, a2, a4, a5, a7, a8}. By an easy calculation one can see that Γ(S : C9) is an integral
graph with the spectrum [−32, 06, 6]. Thus Γ(S : C9) = Γ21. This shows that Γ20 is not a
Cayley graph of C9.

Case 2: Let G = C2
3 = 〈b〉 × 〈b〉. It is clear that ω + ω2 = ω2 + ω4 = −1, where

ω = e
2πi

3 .
If |S| = 4, then by Lemmas 2.3 and 2.5, all eigenvalues of Γ(S : C2

3 ) are in {−2, 1, 4}.
Therefore Γ22, Γ23 and Γ25 are not Cayley graphs of C2

3 . If

S = {(b, 1), (b2, 1), (1, b), (1, b2)},

then by a straightforward computation one can see that Γ(S : C2
3 ) is an integral graph

with the spectrum [−24, 14, 4]. Hence Γ(S : C2
3) = Γ24.

If |S| = 6, then by Lemmas 2.3 and 2.5, all the eigenvalues of Γ(S : C2
3) are in

{−3, 0, 6}. Thus Γ20 is not a Cayley graph of C2
3 . If

S = {(b, 1), (b2, 1), (1, b), (1, b2), (b, b), (b2, b2)},

then Γ(S : C2
3) is an integral graph with the spectrum [−32, 06, 6] and so Γ(S : C2

3) = Γ21.
Therefore, the graphs Γ19, Γ21 and Γ24 are the only Cayley graphs with nine vertices. This
completes the proof. �

Lemma 2.24 There are exactly six connected, integral Cayley graphs with eight vertices.

Proof. There are exactly six connected, regular integral graphs with eight vertices (See
table 2). We show that these graphs are Cayley graphs. Clearly if |S| = 7, then Γ(S : G)
is the complete graph K8 and so Γ(S : G) = Γ13.

Suppose G = C8 = 〈a〉 and

S1 = {a, a3, a5, a7}, S2 = {a, a3, a4, a5, a7}, S3 = {a, a2, a3, a5, a6, a7}.

Then Γ(S1 : C8), Γ(S2 : C8) and Γ(S3 : C8) are integral graphs with the spectra [−4, 06, 4],
[−3,−14, 12, 5] and [−23, 04, 6], respectively. Thus Γ(S1 : C8) = Γ17, Γ(S2 : C8) = Γ15 and
Γ(S3 : C8) = Γ14.

Let G = D8 = 〈a, b | a4 = b2 = 1, (ab)2 = 1〉, S1 = {a, a3, b} and S2 = {a, a2, a3, b}.
Then Γ(S1 : D8) and Γ(S2 : D8) are integral graphs with the spectra [−3,−13, 13, 3] and
[−23, 03, 2, 4], respectively. Hence Γ(S1 : D8) = Γ18 and Γ(S2 : D8) = Γ16.
Hence all of the connected, regular integral graphs with eight vertices are Cayley graphs.
This completes the proof. �
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3 Proofs of Main Results

In this section we prove our main results.
Proof of Theorem 1.1. Let Γ(S : G) be integral. If G is a cyclic group, then by Lemma
2.14, n ∈ {5, 6, 8, 10, 12}. Let G be a finite abelian group, which is not cyclic. Suppose
all of the elements of S are of order two. Then |G| = 8 or 16. Otherwise since S = S−1

and 1 /∈ S, the proof falls naturally into two parts.

i) There are exactly two elements of order two in S. Thus G is isomorphic to Cm×C2
2 .

Let S1 = {s1 ∈ Cm | ∃x ∈ C2
2 , (s1, x) ∈ S} \ {1}. Since Γ(S : G) is an integral

graph, by Lemma 2.9, Γ(S1 : Cm) is an integral graph. By Lemmas 2.7, 2.8 and
2.14, m ∈ {3, 4, 5, 6, 8, 10, 12}. Hence n ∈ {12, 16, 20, 24, 32, 40, 48}.

ii) There is no elements of order two in S. Thus G is isomorphic to Cm1 × Cm2 ,
where (m1, m2) 6= 1. Let S1 = {s1 ∈ Cm1 | ∃x ∈ Cm2 , (s1, x) ∈ S} \ {1} and
S2 = {s2 ∈ Cm2 | ∃x ∈ Cm1 , (x, s2) ∈ S} \ {1}. By Lemma 2.9, Γ(S1 : Cm1) and
Γ(S2 : Cm2) are integral graphs. It follows from Lemmas 2.7, 2.8 and 2.14 that
m1, m2 ∈ {3, 4, 5, 6, 8, 10, 12}. Since (m1, m2) 6= 1, we have:
n ∈ {9, 16, 18, 24, 25, 32, 36, 40, 48, 50, 60, 64, 72, 80, 96, 100, 120, 144}. �

Proof of Theorem 1.2. It is easy to see that the graphs Γi (1 ≤ i ≤ 8) are Cayley
graphs.
Let G = C6 = 〈a〉, S1 = {a, a5}, S2 = {a, a3, a5}, S3 = {a2, a3, a4} and S4 = {a, a2, a4, a5}.
Then Γ(S1 : C6), Γ(S2 : C6), Γ(S3 : C6) and Γ(S4 : C6) are integral with the spectra
[−2,−12, 12, 2], [−3, 04, 3], [−22, 02, 1, 3], and [−22, 03, 4], respectively. Thus Γ(S1 : C6) =
Γ9, Γ(S2 : C6) = Γ10, Γ(S2 : C6) = Γ11 and Γ(S3 : C6) = Γ12. Hence all of the connected,
regular integral graphs up to seven vertices are Cayley graphs. In other words there are
exactly 12 connected, integral Cayley graphs up to seven vertices.
It follows from Lemmas 2.22, 2.23, 2.24 and Theorems 2.17 and 1.1, there are exactly 27
connected, integral Cayley graphs up to 11 vertices. �

Table 1: Connected regular graphs with 6 vertices

Γ8 1 11 111 1111 11111
Γ9 1 01 001 0001 10001
Γ10 1 01 101 0101 10101
Γ11 1 11 001 0101 10011
Γ12 1 11 011 1011 11011
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Table 2: Connected regular graphs with 8 vertices

Γ13 1 11 111 1111 11111 111111 1111111
Γ14 1 10 011 1111 11110 111111 1111110
Γ15 1 10 110 1010 01111 111110 0111110
Γ16 1 10 010 1010 01110 101110 0101110
Γ17 1 10 100 1000 01111 011110 0111100
Γ18 1 10 010 0010 00011 100110 0110010

Table 3: Connected regular graphs with 9 vertices

Γ19 1 11 111 1111 11111 111111 1111111 11111111
Γ20 1 10 101 0110 01011 111111 1111110 11111100
Γ21 1 11 110 1100 10111 101110 0111111 01111110
Γ22 1 00 001 1100 00110 100111 0110110 11110000
Γ23 1 00 001 0011 11001 110010 0011011 11110000
Γ24 1 11 100 1001 01010 010011 0011010 00101011
Γ25 1 11 100 0010 01000 010111 0011110 10011100

Table 4: Connected regular graphs with 10 vertices

Γ26 1 11 111 1111 11111 111111 1111111 11111111 111111111
Γ27 1 11 111 1111 11110 111011 1101111 10111111 011111111
Γ28 1 00 001 1111 11111 111110 1111101 11110110 111101011
Γ29 1 00 001 1111 11110 111111 1111110 11110011 111111001
Γ30 1 11 111 1100 11001 001101 0011101 00111111 110011110
Γ31 1 11 000 0001 00011 111111 1111110 11111100 111111000
Γ32 1 11 110 1101 10110 101011 0111010 01101011 000111111
Γ33 1 00 110 1011 01110 111011 1110001 10111101 011111010
Γ34 1 10 010 0010 00011 111111 1111110 11111100 111111000
Γ35 1 10 101 1011 10111 011000 0101001 01001011 010001111
Γ36 1 10 100 1000 10000 011111 0111110 01111100 011111000
Γ37 1 10 100 1000 01110 011010 0101100 00111000 000001111
Γ38 0 10 010 1010 01010 001100 0000110 00000011 110000001
Γ39 0 00 000 1100 00111 001100 0011000 11000010 110000010
Γ40 1 10 100 0100 01000 001010 0010010 00011001 000101100
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Spectra of connected, regular, integral graphs with 6, 8, 9 and 10 vertices:

Table 5: Spectra of connected regular graphs with 6 vertices

Γ8 5 −15

Γ9 2 12 −12 −2
Γ10 3 04 −3
Γ11 3 1 02 −22

Γ12 4 03 −22

Table 6: Spectra of connected regular graphs with 8 vertices

Γ13 7 −17

Γ14 6 04 −23

Γ15 5 12 −14 −3
Γ16 4 2 03 −23

Γ17 4 06 −4
Γ18 3 13 −13 −3

Table 7: Spectra of connected regular graphs with 9 vertices

Γ19 8 −18

Γ20 6 1 04 −22 −3
Γ21 6 06 −32

Γ22 4 2 12 −12 −23

Γ23 4 2 1 02 −12 −2 −3
Γ24 4 14 −24

Γ25 4 13 02 −22 −3
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Table 8: Spectra of connected regular graphs with 10 vertices

Γ26 9 −19

Γ27 8 05 −24

Γ28 7 12 02 −12 −22 −3
Γ29 7 1 04 −12 −32

Γ30 6 2 1 02 −12 −22 −3
Γ31 6 2 03 −14 −4
Γ32 6 14 −25

Γ33 6 13 02 −23 −3
Γ34 6 12 03 −12 −2 −4
Γ35 5 3 04 −24

Γ36 5 08 −5
Γ37 4 14 −14 −4
Γ38 3 2 13 −12 −23

Γ39 3 2 12 02 −12 −2 −3
Γ40 3 15 −24

Character Table of D2n, n = 2m + 1 odd
1 ar b

χj 2 ωjr + ω−jr 0
χm+1 1 1 −1
χm+2 1 1 1

ω = e
2πi

n , 1 ≤ j ≤ m and 1 ≤ r ≤ m
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