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Abstract

For two given graphs G and Go, the Ramsey number (G, G2) is the smallest
integer n such that for any graph G of order n, either G contains G; or the comple-
ment of G contains G5. Let K, denote a complete graph of order m and K, — P5 a
complete graph of order n without two incident edges. In this paper, we prove that
r(K5 — P, K5) = 25 without help of computer algorithms.

1 Introduction

All graphs considered in this paper are simple graphs without loops. For two given graphs
G1 and G and a given integer n, let R(G1, G9; n) denote the set of all graphs G of order n,
such that G does not contain G4 and G does not contain Gy, where G is the complement
of G. The Ramsey number (G, Gs) is the smallest integer n such that R(Gq,Ga;n) is
empty.

The values of 7(G1, G) for all graphs G and G5 of order at most five up to the three
cases that Gy is one of the graphs K5 — P3, K5 — e and K5 and Gy = K5 are found in
11,3,5,6,7,8 9,10, 11, 12, 15, 16, 17, 18].

Kalbfleisch [13] proved that (K5 — P3, K5) > 25 and McKay and Radziszowski [15]
found 350904 graphs belonging to R(Ky, K5;24) C R(K5— Ps, K5;24), but there might be
more of them. Recently, Black, Leven and Radziszowski [2] proved that (K5 — Ps, K5) <
26 and Clavert, Schuster and Radziszowski [4] computed the main result of the present

paper.

*This research is supported by the Andalusian Government under project P06-FQM-01649.
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2 Main result

In this paper we find the value of r(K5 — P, K5) without help of computer algorithms.
The main result is the following:

Theorem 2.1 (K5 — P3, K5) = 25.

In order to prove Theorem 2.1, we proceed by reduction to the absurd. Suppose
that there exists a graph G € R(K; — P3, K5;25). Since (K4, K5) = 25 [15] we have
G contains K4. Let IC be the set of cliques of G of order 4, let K € K be such that
> wevi) Av) = max{}> cyxyd(v) : X € K} and let v, vz, v3 and vy be the vertices of
K. We may suppose without loss of generality that d(vy) > d(vy) > d(vs) > d(vy).

Let |A| denote the cardinality of the set A. If F' is a graph then V(F') denotes its
vertex set. The neighborhood Ng(v) of a vertex v is the set of vertices adjacent to v in
the graph F. If (G; is isomorphic to a subgraph of G5 then we use G; C G5 to denote it.
If A is a subset of V(F'), then F[A] is the subgraph induced by A. If v € V(F), dp(v) is
the degree of v in F'. The maximum and minimum degree of F' are denoted by A(F') and
d(F'), respectively.

Let d, V and N denote dg, V(G) and Ng, respectively.

If k is a positive integer, F' € R(K,, — P35, K,;k) and v € V(F) then F[Np(v)] €
R(Kp—1—Ps, K,y dp(v)) and F[Ng(v)] € R(K,;, — P3, Ky—1;k—1—dp(v)). Thus A(F) <
T’(Km_l — P3, Kn> — 1 and (S(F) Z k — T(Km - Pg, Kn—l)- Since T(K5 - P3,K4) =18 [7]
we have 6(G) > 7.

In the rest of the paper, i« and j are two different integers with 1 <1,5 < 4.

Let A; = N(v;) — V(K) and D = V(G) = V(K) — Up_, Ax. Ai N A; = 0, because in
otherwise GG should contain K5 — Ps. Hence {V (K), Ay, As, A3, Ay, D} is a partition of V.
Obviously, |A4;| = d(v;) —3 > 4.

If we A; or uw € D then |N(u) N A;|, the number of vertices belonging to A; adjacent
to u, is denoted by e;(u).

Let H; denote the graph G|V (G) — (A4; UV (K))] = G[Ng(v;)]. Clearly H; € R(K5 —

If ueV —-V(K)— D, g(u) will represent the integer k for which u € Ay. Also, if
u € D, we define g(u) = 0.

In order to prove Theorem 2.1, we need the following results:

Lemma 2.1 Let u € A; and w € D. Then d(u) — 9 < e;(u) < d(u) + |A;j| — 13 and
d(w) — 8 < e;(w) < d(w) + |A;] — 12.

PTOOf. Since Hj S R(K5—P3, K4, 21—‘AJ|>, T(K4—P3,K4) =9 [6] and T(K5—P3,K3) =9
7], we have dg,(u), dg;(w) < A(H;) < r(Ky — P3,Ky) — 1 = 8 and dg, (u), dg,(w) >
d(H;) > 21 — |Aj| — r(Ks — P35, K3) = 12 — |A;|. The results follow on noting that
d(u) = dg,(u) + e;(u) + 1 and d(w) = dg,(w) + e;(w).

Corollary 2.1 Let k be, with1 < k <4 andk # i, and letu € A;. Thene;(u)+4—|4;] <
er(u).
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Proof. The result is obtained from e;(u) < d(u) + |A4;] — 13 and d(u) — 9 < ex(u).
Corollary 2.2 The degree in G of every vertex of D is 10.

Proof. Let w € D. Since d(w) = dp(w) + 3_p_, ex(w), by Lemma 2.1, we have dp(w) +
4(d(w) — 8) < d(w) < dp(w) + S p_y(d(w) 4 |Ax| — 12). Thus 3d(w) > 48 — S0, |Ax| —
dp(w) > 48 =377, |Ax| = (|D| —1) = 28 and 3d(w) < 32—dp(w) < 32. As 28 < 3d(w) <
32, the result follows.

Lemma 2.2 The vertices of degree 7 or 8 in GG belong to K.

Proof. Let u € V(G) — V(K). On the one hand, if v € D then, by Corollary 2.2,
d(u) = 10, thus d(u) > 9. On the other hand, if u € A; then, by Lemma 2.1, d(u) =
Ltdapa ) (u)HDON ()| 4325 g e (1) < 1Al =1+ DI+ D20 () +[ Ay —13) =
3d(u) + Sr_, Ak + |D| — 39 = 3d(u) + 21 — 39. Therefore d(u) > 9.

Corollary 2.3 G has exactly one subgraph isomorphic to Ky.

Proof. Suppose, to the contrary, that there exists K’ € K — {K}. Since K5 — Py ¢ G,
we have |V(K)NV(K’)|] <1 and, by Lemma 2.2, there are at least three vertices in K’
with degree in G at least 9. Thus 3° cyyxnd(v) > 3-94+1-7=34. As 21 > S A =

Zizl(d(vk) — 3), we have Zizl d(vg) < 33, contradicting the definition of K.
Corollary 2.4 Letu €V — V(K), then K3 ¢ G[N(u)].

Proof. 1f there is a clique of order 3 in G[N(u)|, let uy, uy and us be its vertices.
G[{u,uy, us, usz}] is a subgraph of G different of K isomorphic to K}, contradicting Lemma
2.3.

Corollary 2.5 G[A;] € R(Kj, Ky; |Ail).

Proof. If K3 C G[A;], then let uy, uy and ugz be the vertices of a clique of order 3 of G[A;].
G[{u1,uz2,us,v;}] is a subgraph of G isomorphic to K, different from K, contradicting
Corollary 2.3.

If K, C G[A;], then let uy, ug, ug and uy be the four vertices of a clique of order 4 of

]. G[{u1,u2,u3,uy,v,}] is a subgraph of G isomorphic to K3, a contradiction. Thus
] € R(K3, Ky; | Ad]).

GlA;
GlA;
Corollary 2.6 H; € R(K4, Ky4;21 — |4;)).

Proof. K is not a subgraph of H;, thus, by Corollary 2.3, K, ¢ H;. Since H; € R(K;5 —
Py, K43 21 — |A;]) we have Ky ¢ H;, concluding the proof.

Lemma 2.3 D = (.
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Proof. Suppose, to the contrary, that there exists w € D. Let X = V(G) — V(K) —
N(w) — {w}. Since N(w) N V(K) = 0, and, by Corollary 2.2, |N(w)| = 10, we have
|X| =25—-4-10—1=10. As K is not a subgraph of G[X], by Corollary 2.3, K, ¢
G[X] = G[X] T(K3,K4) =9 [10], thus R(Kg,K4; 10) = @ and G[X] ¢ R(K37K4; 10),
hence K3 C G[X]. Let uj, up and uz be the vertices of a clique of order 3 of G[X] and
let k € {1,2,3,4} — {g(u1), g(uz), g(u3)}. Then G[{w, vk, u1, us, us}] C G is isomorphic to
K5, a contradiction.

Lemma 2.4 If @[Ai] contains a clique of order 3, with vertices wy, wy and ws, then
[(N(w1) = N(ws) — N(ws)) NV (H;)| < 2.

Proof. Let Y = (N(wi) — N(ws) — N(ws)) N V(H;). By Corollary 2.4, K3 € G[Y] C
G[N(wy)]. If Ky C G[Y] then let ujuy be an edge of G[Y] and let k& € {1,2,3,4} —
{i, 9(u1), g(uz)}. G[{wi, wa,us, us,vx}| is isomorphic to Ks, a contradiction. Thus Ky &
G[Y] and G[Y] € R(K3, Ky; |Y|). Therefore |(N(wy) — N(we) — N(ws)) NV (H,;)| = Y| <
T’(Kg,KQ) —1=2.

Lemma 2.5 If G[A;] contains two adjacent vertices wy and wq then |V (H;) N N(w;) N
N(ws)| < 3.

Proof. Let Y =V (H;) N N(wy) N N(wq). If Ky C G[Y] then let uy; and us be the vertices
of an edge of GY]. G[{wy, wa, u1,us}] is a subgraph of G isomorphic to K4 and different
from K, contradicting Corollary 2.3. Thus Ky ¢ G[Y].

By Corollary 2.6, K, ¢ G[Y] C H;. Thus G[Y] € R(Ky, Ky; |Y]) and [V (H;) NN (w;)N
N(wq)| = Y] < r(Ky, Ky) —1=3.

Lemma 2.6 Let u € A;, then the following statements are verified: dga,(u) < 3,
Zi:m# er(u) < 8 and d(u) < 11.

Proof. Suppose, to the contrary, that dga,(u) > 4. Let uy, ug, us and uy be four different
vertices belonging to Ngpa,)(u).

If Ky C G[{u1,us,us, us}|, then let u,, u, € {u1, us, us,us} be two adjacent vertices.
G[{up, uq, u,v;}] is a subgraph of G isomorphic to K, different from K, contradicting
Corollary 2.3. Thus Ky € G[{u1, ua, us, us}] and G[{u1, uz, uz, us}] C H; is isomorphic to
K, contradicting Corollary 2.6. Hence dga,(u) < 3.

By Corollary 2.4, K3 ¢ G[V(H;) N N(u)] € G[N(u)] and, by Corollary 2.6, K, ¢
G|V (H;) " N(u)] € H;. Therefore G[V(H;) N N(u)] € R(K3, Ky; |V (H;) N N(u)|) and
8 = r(Ka Ka) = 1> [V(H) O N@)| = Yy pn VA) 0 N@| = S0y ealu),
completing the second part of the proof.

Finally, by Lemma 2.1, d(u) — 9 < e;(u), thus 3d(u) — 27 < Zi:m# er(u) < 8 and
d(u) < 11.

Lemma 2.7 Let u € A;, then |A;| < 2d(u) + dgpa,(uw) — 17.
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Proof. By Lemma 2.1, e;(u) < d(u) — 13 4 |A;].  Therefore d(u) — dgpa(u) — 1 =
Zi:l,k;&i er(u) < 3d(u) — 39 + Zi:l,k;&i |Ax] = 3d(u) — 39 + (21 — [4]) and |A;] <
2d(u) + dG[Ai}(u) —17.

Corollary 2.7 Let u € A;, then dga(u) > 1 and if dgpa,(u) = 1 then |A;| = 4.

Proof. By Lemma 2.6, d(u) = 1+Zi:17k# ex(u)+dara)(u) < 9+dapa(u). If dgpay(u) =0
then d(u) < 9 and, by Lemma 2.7, |A;| < 1, contradicting |A;| > 4. If dga,)(u) = 1 then
d(u) <10 and, by Lemma 2.7, |A;| < 4, thus |A;| = 4.

Corollary 2.8 If |A;| =7 and u € A; then d(u) = 11.

Proof. By Lemmas 2.6 and 2.7, 7 = |4;| < 2d(u) + dgpa,(v) — 17 < 2d(u) + 3 — 17, thus
2d(u) > 21 and d(u) > 11. Since d(u) < 11, we conclude the proof.

In the rest of the paper if we assign the name W to an ordered set of vertices,
{wi,. .., up} C Ay, with p > 3, then [(N(ug) —i_; 1 N(us)) NV (H;)| will be denoted by
ag, |(N(un) VN (ug) = Uiy jonp N(ue)) NV (H;)| by bk, and [(N(up) O N (ug) 0N (w) —
Uizt ies N (i) NV (H;)| by cpp-

Lemma 2.8 If G[A;] contains a clique of order 3, with vertices uy, us and us, then
39 — 2|A2‘ < d(ul) + d(UQ) + d(U3) - dG[Ai} (ul) — dG[Ai](u2> — dG[Ai] (U3)

Proof. Let W = {uy,ug,uz}, let w € V(H;), and let k € {1,2,3,4} — {i,g(w)}. Since

G[{u1, ug, us, w, v }| is not isomorphic to K, w is adjacent to at least a vertex of W and,
therefore, every vertex of V(H;) is adjacent to at least a vertex of W. Hence:

aq + (45} + as + bl,g + b1,3 + b2,3 + 0172,3 = |V(H,)| =21 — |AZ| (1)

On the one hand, since w, is adjacent to d(u1) — dgpa, (1) — 1 vertices of H; we have:

a1 +bia+bis+cro3=dur) — daa,) (ug) =1 (2)

Analogously, u, and ug are adjacent to d(ug) —dgpa,)(u2) — 1 and d(u3) — dgpa,(us) — 1
vertices of H; respectively, thus:

as +bio + bag + 103 = d(uz) — dgpa,)(uz) — 1 (3)

as +byg + bas + 103 = d(us) — dgpa,)(us) — 1 (4)
On the other hand, by Lemma 2.4:

ay = |[(N(u1) = N(uz) — N(uz)) NV (H;)| <2 (5)

ag = |(N(uz) = N(u1) — N(us)) NV (H;)| <2 (6)
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ag = [(N(uz) = N(u1) — N(ug)) NV (H;)| <2 (7)
Finally, from (2) 4 (3) 4+ (4) + (5) + (6) + (7) — 2(1) we have:
c123 < d(ur) + d(ug) + d(us) — dapa,) (u1) — depag(ue) — dapag (us) — 39 + 2| A,
We obtain the result noting that c; 2 3 is non-negative.

Corollary 2.9 If G[A;] contains a clique of order 3, then |A;| > 6 and if |A;| = 6 then
for any vertex u of the clique, dga,)(u) = 2 and d(u) = 11.

Proof. Let uy, us, and ug be the three vertices of the clique. By Corollary 2.7, dgja,)(u1),
dara,(u2), derag(us) > 1 and, by Lemma 2.6, d(w), d(us), d(us) < 11.

Therefore, by Lemma 2.8, 39 — 2| 4;| < d(uy) +d(ug) + d(us) — daa,) (u1) — dgpag (ue) —
doag(us) < 11 +11+11—-1—-1—-1 = 30 and |4;] > 5. Hence, by Corollary 2.7,
dG[Ai] (ul), dG[Ai} (UQ), dG[Ai] (U3) > 2, and 39 — 2|A2‘ < d(ul) + d(u2) + d(U3) - dG[Ai](ul) —
dG[Ai]('UQ) - dG[Ai}(u;),) <11+11+11-2—-2—2=27, thus |AZ| > 6.

If |A;| = 6, on the one hand, 27 = 39 — 2|A;| < d(u1) + d(uz) + d(u3) — depa,(ur) —
darag (u2) — dapay(us) < d(uw) +11411 -2 —2 — 2 = d(u) + 16, hence d(u) = 11. On the
other hand, 27 = 39 — 2‘A1| < d(ul) + d(u2) + d(U3) — dG[AZ-} (ul) — dG[Ai] (u2) — dG[Ai] (U3) <
114+ 11+ 11— dG[AZ.}(u) —2—-2=29— dG[Ai](u), therefore dG[Al.}(u) = 2.

Corollary 2.10 Let u € A;, then d(u) > 10.

Proof. By Lemma 2.6, dgpa,(u) < 3. If d(u) <9 then by Lemma 2.2, d(u) = 9 and, by
Lemma 2.7, |A4;] < 2d(u) + dgpa,(u) — 17 < 18 4+ 3 — 17 = 4, thus |A;| = 4. By Lemma
2.1, 8 = depa(u) = d(u) — 1 — dapag(u) = Sy paren(u) < 3oy is(|Arl — 13+ d(u)) =
Zizlvk# |Ap| =12 = (21 —4) — 12 = 5. Hence dga,)(u) > 3 and v is adjacent to the three
vertices of A; — {u}. L

By Corollary 2.9, K3 ¢ G[A;] and at least two of the three vertices of A4; — {u} are
adjacent. Let w; and wy denote them. Then wu, w; and wy are the vertices of a clique of
G[A;], contradicting Corollary 2.5 and completing the proof.

From Corollaries 2.5 and 2.9 and Lemma 2.6, it is easy to check the next result:

Corollary 2.11 1. If |A;| = 4 then G[A;] is isomorphic to 2Ky, Py or Cy.
2. If |A;| =5 then G[A;] is isomorphic to Cs.

3. If |A;| = 6 then G[A;] is isomorphic to Cs or SKs3 (the graph obtained subdividing
one edge of Ka3).

Now, we prove that G[A;] is isomorphic neither to C5 nor to SKy 3.

Lemma 2.9 G[A;] is not isomorphic to Cs.
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Proof. Suppose, to the contrary, that G[A;] is isomorphic to Cs. Let W = {uy, ..., us}
denote its vertices, with its edges being ujus, usus, usuy, usus and uius.

Let w € V(H;). By Lemmas 2.1 and 2.6 and Corollary 2.10, 1 < d(w) — 9 < ¢;(w) <
d(w) — 13+ |A;| = d(w) — 8 < 3, thus every vertex of H; is adjacent to 1, 2 or 3 vertices
of G[4;] and we have:

j{:ak%—jz:lm7n+—j£: Comn = |V(H;)| = 16 (8)

1<k<m<s  1<k<m<n<b

On the one hand, by Lemma 2.5:

bia+cips+cioatcras = |V(H;) N N(up) N N(ug)| <3 9)
bag + C123 + Co3a + Ca35 = [V(H;) N N(u2) N N(us)| <3 (10)
bsa+ i34+ Coza+czas = [V(H;) NN (uz) NN (ua)| <3 (11)
bas + cra5 + Cou5 + c3a5 = [V(H;) NN (ug) N N(us)| <3 (12)
bis+ c125 + cias + cras = [V(H;) NN (u) NN (us)| <3 (13)

On the other hand, let Y = V(H;) — N(u1) — N(u3). By Corollary 2.6, K4 € G[Y] C
H;. If Ky C G[Y] then let w; and wy be the vertices of an edge of G[Y] and let k €
{1,2,3,4} — {i, g(wy), g(wa) }. G[{u1,us,wr,ws,vg}] is isomorphic to K, a contradiction.
Thus K> ¢ G[Y], GIY] € R(K4, K»; |Y]) and:

ag + @y + a5 +bag +bos +bys+ coas = |V(H;) — N(up) — N(uz)| =
— V] < r(Ky, Ky) —1=3 (14)

Similarly G[V (H;) — N(uy) — N(uy)] € R(Ky, Ko; |V(H;) — N(u1) — N(u4)|) and:

ay +as + a5+ baz +bas +bss +ca35 <3 (15)
G[V(H;) — N(ug) — N(uy)] € R(Ky, Ko; |V(H;) — N(ug) — N(u4)|) and:

ay +as+as+bi3+bis+bss+ci35 <3 (16)
G[V(H;) — N(ug) — N(us)] € R(Ky4, Ko; |V(H;) — N(ug) — N(us)|) and:

a; +as+ a4 + b173 + b174 + b374 + C1,34 <3 (17)
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G[V(H;) — N(u3) — N(us)] € R(Ky4, Ko; |V(H;) — N(ug) — N(us)|) and:
a; +as + a4 + 6172 + 6174 + 6274 + C1,2,4 S 3 (18)

From (9) 4 -- - + (18) we have:

1<k<m<5 1<k<m<n<5

Finally, from (19) — 2(8) we obtain 3_7_ ax < —2. This contradiction completes the
proof.

Lemma 2.10 G[A;] is not isomorphic to SKs 3.

Proof. Suppose, to the contrary, that G[4;] is isomorphic to SKy3. Let W = {uy, ..., u4}
be the set of vertices of A; of degree 2 in G[A;], with its only edge being ujus. Every
vertex of W belongs to a clique of order 3 contained in G[A;], thus, by Corollary 2.9, each
vertex of W has degree 11 in G. Let h = |V (H;) N (o_, N(uy)|-

Since d(uy) = 11 and dga,)(u1) = 2 we have that, |N(u) NV (H;)|, the number of edges
incident to u; and a vertex of H; is:

ai + b1,2 + b1,3 + b1,4 + C1,2.3 + C1,2.4 + C1,34 +h = d(ul) — dg[Ai](ul) —1=28 (20)
On the one hand, by Lemma 2.4:
a; + b2 = [(N(u1) — N(us) — N(uq)) N V(H;)| <2 (21)

On the other hand, let Y = V(H;) N N(u;) N N(uz). By Corollary 2.4, K3 ¢ G[Y] C
G[N(uy)]. If Ky C G[Y] then let w; and wy be the vertices of an edge of G[Y] and let k €
{1,2,3,4} — {i, g(wy), g(wa) }. G[{u1,us,wr,ws,vg}] is isomorphic to K5, a contradiction.
Therefore Ky ¢ G[Y], G[Y] € R(K3, K»; |Y]) and:

6173 —|—017273 —|—017374—|—h |V( ) ﬂN(ul) ﬂN(U3)| = |Y| < ’I“(Kg,Kg) 1=2 (22)
Similarly G|V (H;) N N(uy) N N(ug)] € R(K3, Koy |V(H;) N N(up) N N(ug)|) and:
b174 + C1,2.4 + C1,34 + h S 2 (23)
From (21) + (22) + (23) — (20) we obtain ¢; 34 + h < —2, a contradiction.
Finally, we prove Theorem 2.1:
Proof. By Corollaries 2.8 and 2.11 and Lemmas 2.9 and 2.10, |A;| =7, |A2| = 6, |A3| =

|A4| = 4, G[As] is isomorphic to Cs and all vertices of A; U Ay have degree 11 in G. Let
s denote the number of edges of G[As3).
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By Corollary 2.6, Hy € R(Ky, K4;17). Kalbfleisch [14] proved that there is exactly
one graph in the set R(Ky, K4;17) and every vertex of this graph has degree 8, thus, for
any w € V(Hy), dy,(w) = 8.

If u e A U Ay, by Lemma 2.1, 2 = d(u) — 9 < e3(u) < d(u) — 13 + |A3] = 2, thus
e3(u) = 2 and the number of edges of Hy with a vertex belonging to A; U Ay and another
vertex belonging to Az is »_ 4. (e1(w) + ea(w)) = > c 4,04, €3(w) = 2|41 U Ay| = 26.

If w € Az, then 8 = dy,(w) = dgpag)(w) + er(w) + ex(w). Thus 32 = 3 . 8 =
> wens dapag) (W) + 0 e, (€1(w) +ea(w)) = 25+ 26 and s = 3. Hence, by Corollary 2.11,
G[A;] is isomorphic to Py.

In the following, we assume that i = 3. Let W = {uy,...,us} be the vertices of Aj,
with the edges of G[A3] being ujus, usus and uguy.

Let w € V(Hj). By Lemmas 2.1 and 2.6 and Corollary 2.10, 1 < d(w) — 9 < eg(w) <
d(w) — 13+ |As| = d(w) — 9 < 2, thus every vertex of Hj is adjacent to 1 or 2 vertices of
A3 and ‘N(l@) N V(Hg)‘ is:

ag + b172 + b273 + b274 = d(UQ) - dG[AB} (UQ) —1 Z 100—-2—-1=7 (24)

Let Y7 = V(H3) N N(ug) — N(u1) — N(us). By Corollary 2.4, K3 € G[Y1] C G[N(uz)].
If Ky C G[Yy] then let w; and wy be the vertices of an edge of G[Y;] and let k €
{1,2,4} — {g(w1), g(ws)}. G[{uy, us, w1, ws, vp}] is isomorphic to K5, a contradiction.
Hence K> ¢ G|Y1], G[Y1] € R(K3, Ko; |Y1]) and:

a9 —+ b2’4 = |V(H3) N N(UQ) - N(Ul) - N(U3)| = ‘Yi‘ S T(K3,K2) —1=2 (25)
On the one hand, by Lemma 2.5:
b172 = |V(H3) N N(Ul) N N(U2)| S 3 (26)

On the other hand, let Yy = V(H3) NN (u2) NN (us). If Ky C G[Ys] then let wy and wy
be the vertices of an edge of G[Ys]. G[{w1, wa, ug, us}] is a subgraph of G isomorphic to K,

and different from K, contradicting Corollary 2.3, thus Ky ¢ G[Ys]. If Ky C G[Y3] then
let w; and wy be the vertices of an edge of G[Ys] and let k € {1,2,4} — {g(w1), g(w2)}.

G[{u1, w4, wy, wa, vy, }] is isomorphic to K5, a contradiction. Hence Ky € G[Y3], G[Ya] €
R(Ks, K»;|Ya|) and:

b273 = |V(H3) N N(Ug) N N(U3)| = |Yé| S T’(KQ, KQ) — 1 = 1 (27)

From (25)+(26)+(27) we obtain as + by + bas + bay < 6, contradicting (24) and
completing the proof of Theorem 2.1.
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