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Abstract

For two given graphs G1 and G2, the Ramsey number r(G1, G2) is the smallest
integer n such that for any graph G of order n, either G contains G1 or the comple-
ment of G contains G2. Let Km denote a complete graph of order m and Kn −P3 a
complete graph of order n without two incident edges. In this paper, we prove that
r(K5 − P3,K5) = 25 without help of computer algorithms.

1 Introduction

All graphs considered in this paper are simple graphs without loops. For two given graphs
G1 and G2 and a given integer n, let R(G1, G2; n) denote the set of all graphs G of order n,
such that G does not contain G1 and G does not contain G2, where G is the complement
of G. The Ramsey number r(G1, G2) is the smallest integer n such that R(G1, G2; n) is
empty.

The values of r(G1, G2) for all graphs G1 and G2 of order at most five up to the three
cases that G1 is one of the graphs K5 − P3, K5 − e and K5 and G2 = K5 are found in
[1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 17, 18].

Kalbfleisch [13] proved that r(K5 − P3, K5) ≥ 25 and McKay and Radziszowski [15]
found 350904 graphs belonging to R(K4, K5; 24) ⊆ R(K5−P3, K5; 24), but there might be
more of them. Recently, Black, Leven and Radziszowski [2] proved that r(K5 −P3, K5) ≤
26 and Clavert, Schuster and Radziszowski [4] computed the main result of the present
paper.
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2 Main result

In this paper we find the value of r(K5 − P3, K5) without help of computer algorithms.
The main result is the following:

Theorem 2.1 r(K5 − P3, K5) = 25.

In order to prove Theorem 2.1, we proceed by reduction to the absurd. Suppose
that there exists a graph G ∈ R(K5 − P3, K5; 25). Since r(K4, K5) = 25 [15] we have
G contains K4. Let K be the set of cliques of G of order 4, let K ∈ K be such that∑

v∈V (K) d(v) = max{
∑

v∈V (X) d(v) : X ∈ K} and let v1, v2, v3 and v4 be the vertices of

K. We may suppose without loss of generality that d(v1) ≥ d(v2) ≥ d(v3) ≥ d(v4).
Let |A| denote the cardinality of the set A. If F is a graph then V (F ) denotes its

vertex set. The neighborhood NF (v) of a vertex v is the set of vertices adjacent to v in
the graph F . If G1 is isomorphic to a subgraph of G2 then we use G1 ⊆ G2 to denote it.
If A is a subset of V (F ), then F [A] is the subgraph induced by A. If v ∈ V (F ), dF (v) is
the degree of v in F . The maximum and minimum degree of F are denoted by ∆(F ) and
δ(F ), respectively.

Let d, V and N denote dG, V (G) and NG, respectively.
If k is a positive integer, F ∈ R(Km − P3, Kn; k) and v ∈ V (F ) then F [NF (v)] ∈

R(Km−1−P3, Kn; dF (v)) and F [NF (v)] ∈ R(Km−P3, Kn−1; k−1−dF (v)). Thus ∆(F ) ≤
r(Km−1 − P3, Kn) − 1 and δ(F ) ≥ k − r(Km − P3, Kn−1). Since r(K5 − P3, K4) = 18 [7]
we have δ(G) ≥ 7.

In the rest of the paper, i and j are two different integers with 1 ≤ i, j ≤ 4.
Let Ai = N(vi) − V (K) and D = V (G) − V (K) −

⋃4
k=1 Ak. Ai ∩ Aj = ∅, because in

otherwise G should contain K5−P3. Hence {V (K), A1, A2, A3, A4, D} is a partition of V .
Obviously, |Ai| = d(vi) − 3 ≥ 4.

If u ∈ Ai or u ∈ D then |N(u) ∩ Ai|, the number of vertices belonging to Aj adjacent
to u, is denoted by ej(u).

Let Hi denote the graph G[V (G) − (Ai ∪ V (K))] = G[NG(vi)]. Clearly Hi ∈ R(K5 −
P3, K4; 21 − |Ai|).

If u ∈ V − V (K) − D, g(u) will represent the integer k for which u ∈ Ak. Also, if
u ∈ D, we define g(u) = 0.

In order to prove Theorem 2.1, we need the following results:

Lemma 2.1 Let u ∈ Ai and w ∈ D. Then d(u) − 9 ≤ ej(u) ≤ d(u) + |Aj| − 13 and
d(w) − 8 ≤ ei(w) ≤ d(w) + |Ai| − 12.

Proof. Since Hj ∈ R(K5−P3, K4; 21−|Aj|), r(K4−P3, K4) = 9 [6] and r(K5−P3, K3) = 9
[7], we have dHj

(u), dHj
(w) ≤ ∆(Hj) ≤ r(K4 − P3, K4) − 1 = 8 and dHj

(u), dHj
(w) ≥

δ(Hj) ≥ 21 − |Aj| − r(K5 − P3, K3) = 12 − |Aj|. The results follow on noting that
d(u) = dHj

(u) + ej(u) + 1 and d(w) = dHi
(w) + ei(w).

Corollary 2.1 Let k be, with 1 ≤ k ≤ 4 and k 6= i, and let u ∈ Ai. Then ej(u)+4−|Aj| ≤
ek(u).
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Proof. The result is obtained from ej(u) ≤ d(u) + |Aj| − 13 and d(u) − 9 ≤ ek(u).

Corollary 2.2 The degree in G of every vertex of D is 10.

Proof. Let w ∈ D. Since d(w) = dD(w) +
∑4

k=1 ek(w), by Lemma 2.1, we have dD(w) +
4(d(w)− 8) ≤ d(w) ≤ dD(w) +

∑4
k=1(d(w) + |Ak| − 12). Thus 3d(w) ≥ 48−

∑4
k=1 |Ak| −

dD(w) ≥ 48−
∑4

k=1 |Ak|−(|D|−1) = 28 and 3d(w) ≤ 32−dD(w) ≤ 32. As 28 ≤ 3d(w) ≤
32, the result follows.

Lemma 2.2 The vertices of degree 7 or 8 in G belong to K.

Proof. Let u ∈ V (G) − V (K). On the one hand, if u ∈ D then, by Corollary 2.2,
d(u) = 10, thus d(u) ≥ 9. On the other hand, if u ∈ Ai then, by Lemma 2.1, d(u) =
1+dG[Ai](u)+|D∩N(u)|+

∑4
k=1,k 6=i ek(u) ≤ 1+(|Ai|−1)+|D|+

∑4
k=1,k 6=i(d(u)+|Ak|−13) =

3d(u) +
∑4

k=1 |Ak| + |D| − 39 = 3d(u) + 21 − 39. Therefore d(u) ≥ 9.

Corollary 2.3 G has exactly one subgraph isomorphic to K4.

Proof. Suppose, to the contrary, that there exists K ′ ∈ K − {K}. Since K5 − P3 * G,
we have |V (K) ∩ V (K ′)| ≤ 1 and, by Lemma 2.2, there are at least three vertices in K ′

with degree in G at least 9. Thus
∑

v∈V (K ′) d(v) ≥ 3 · 9+1 · 7 = 34. As 21 ≥
∑4

k=1 |Ak| =
∑4

k=1(d(vk) − 3), we have
∑4

k=1 d(vk) ≤ 33, contradicting the definition of K.

Corollary 2.4 Let u ∈ V − V (K), then K3 * G[N(u)].

Proof. If there is a clique of order 3 in G[N(u)], let u1, u2 and u3 be its vertices.
G[{u, u1, u2, u3}] is a subgraph of G different of K isomorphic to K4, contradicting Lemma
2.3.

Corollary 2.5 G[Ai] ∈ R(K3, K4; |Ai|).

Proof. If K3 ⊆ G[Ai], then let u1, u2 and u3 be the vertices of a clique of order 3 of G[Ai].
G[{u1, u2, u3, vi}] is a subgraph of G isomorphic to K4 different from K, contradicting
Corollary 2.3.

If K4 ⊆ G[Ai], then let u1, u2, u3 and u4 be the four vertices of a clique of order 4 of
G[Ai]. G[{u1, u2, u3, u4, vj}] is a subgraph of G isomorphic to K5, a contradiction. Thus
G[Ai] ∈ R(K3, K4; |Ai|).

Corollary 2.6 Hi ∈ R(K4, K4; 21 − |Ai|).

Proof. K is not a subgraph of Hi, thus, by Corollary 2.3, K4 * Hi. Since Hi ∈ R(K5 −
P3, K4; 21 − |Ai|) we have K4 * Hi, concluding the proof.

Lemma 2.3 D = ∅.
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Proof. Suppose, to the contrary, that there exists w ∈ D. Let X = V (G) − V (K) −
N(w) − {w}. Since N(w) ∩ V (K) = ∅, and, by Corollary 2.2, |N(w)| = 10, we have
|X| = 25 − 4 − 10 − 1 = 10. As K is not a subgraph of G[X], by Corollary 2.3, K4 *

G[X] = G[X]. r(K3, K4) = 9 [10], thus R(K3, K4; 10) = ∅ and G[X] /∈ R(K3, K4; 10),
hence K3 ⊆ G[X]. Let u1, u2 and u3 be the vertices of a clique of order 3 of G[X] and
let k ∈ {1, 2, 3, 4}−{g(u1), g(u2), g(u3)}. Then G[{w, vk, u1, u2, u3}] ⊆ G is isomorphic to
K5, a contradiction.

Lemma 2.4 If G[Ai] contains a clique of order 3, with vertices w1, w2 and w3, then
|(N(w1) − N(w2) − N(w3)) ∩ V (Hi)| ≤ 2.

Proof. Let Y = (N(w1) − N(w2) − N(w3)) ∩ V (Hi). By Corollary 2.4, K3 * G[Y ] ⊆

G[N(w1)]. If K2 ⊆ G[Y ] then let u1u2 be an edge of G[Y ] and let k ∈ {1, 2, 3, 4} −
{i, g(u1), g(u2)}. G[{w1, w2, u1, u2, vk}] is isomorphic to K5, a contradiction. Thus K2 *
G[Y ] and G[Y ] ∈ R(K3, K2; |Y |). Therefore |(N(w1)−N(w2)−N(w3))∩V (Hi)| = |Y | ≤
r(K3, K2) − 1 = 2.

Lemma 2.5 If G[Ai] contains two adjacent vertices w1 and w2 then |V (Hi) ∩ N(w1) ∩
N(w2)| ≤ 3.

Proof. Let Y = V (Hi)∩N(w1)∩N(w2). If K2 ⊆ G[Y ] then let u1 and u2 be the vertices
of an edge of G[Y ]. G[{w1, w2, u1, u2}] is a subgraph of G isomorphic to K4 and different
from K, contradicting Corollary 2.3. Thus K2 * G[Y ].

By Corollary 2.6, K4 * G[Y ] ⊆ Hi. Thus G[Y ] ∈ R(K2, K4; |Y |) and |V (Hi)∩N(w1)∩
N(w2)| = |Y | ≤ r(K2, K4) − 1 = 3.

Lemma 2.6 Let u ∈ Ai, then the following statements are verified: dG[Ai](u) ≤ 3,∑4
k=1,k 6=i ek(u) ≤ 8 and d(u) ≤ 11.

Proof. Suppose, to the contrary, that dG[Ai](u) ≥ 4. Let u1, u2, u3 and u4 be four different
vertices belonging to NG[Ai](u).

If K2 ⊆ G[{u1, u2, u3, u4}], then let up, uq ∈ {u1, u2, u3, u4} be two adjacent vertices.
G[{up, uq, u, vi}] is a subgraph of G isomorphic to K4 different from K, contradicting
Corollary 2.3. Thus K2 * G[{u1, u2, u3, u4}] and G[{u1, u2, u3, u4}] ⊆ Hi is isomorphic to
K4, contradicting Corollary 2.6. Hence dG[Ai](u) ≤ 3.

By Corollary 2.4, K3 * G[V (Hi) ∩ N(u)] ⊆ G[N(u)] and, by Corollary 2.6, K4 *
G[V (Hi) ∩ N(u)] ⊆ Hi. Therefore G[V (Hi) ∩ N(u)] ∈ R(K3, K4; |V (Hi) ∩ N(u)|) and
8 = r(K3, K4) − 1 ≥ |V (Hi) ∩ N(u)| =

∑4
k=1,k 6=i |V (Ak) ∩ N(u)| =

∑4
k=1,k 6=i ek(u),

completing the second part of the proof.
Finally, by Lemma 2.1, d(u) − 9 ≤ ej(u), thus 3d(u) − 27 ≤

∑4
k=1,k 6=i ek(u) ≤ 8 and

d(u) ≤ 11.

Lemma 2.7 Let u ∈ Ai, then |Ai| ≤ 2d(u) + dG[Ai](u) − 17.
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Proof. By Lemma 2.1, ej(u) ≤ d(u) − 13 + |Aj |. Therefore d(u) − dG[Ai](u) − 1 =∑4
k=1,k 6=i ek(u) ≤ 3d(u) − 39 +

∑4
k=1,k 6=i |Ak| = 3d(u) − 39 + (21 − |Ai|) and |Ai| ≤

2d(u) + dG[Ai](u) − 17.

Corollary 2.7 Let u ∈ Ai, then dG[Ai](u) ≥ 1 and if dG[Ai](u) = 1 then |Ai| = 4.

Proof. By Lemma 2.6, d(u) = 1+
∑4

k=1,k 6=i ek(u)+dG[Ai](u) ≤ 9+dG[Ai](u). If dG[Ai](u) = 0
then d(u) ≤ 9 and, by Lemma 2.7, |Ai| ≤ 1, contradicting |Ai| ≥ 4. If dG[Ai](u) = 1 then
d(u) ≤ 10 and, by Lemma 2.7, |Ai| ≤ 4, thus |Ai| = 4.

Corollary 2.8 If |Ai| = 7 and u ∈ Ai then d(u) = 11.

Proof. By Lemmas 2.6 and 2.7, 7 = |Ai| ≤ 2d(u) + dG[Ai](u) − 17 ≤ 2d(u) + 3 − 17, thus
2d(u) ≥ 21 and d(u) ≥ 11. Since d(u) ≤ 11, we conclude the proof.

In the rest of the paper if we assign the name W to an ordered set of vertices,
{u1, . . . , up} ⊆ Ai, with p ≥ 3, then |(N(uk)−

⋃p

t=1,t6=k N(ut))∩V (Hi)| will be denoted by
ak, |(N(uh) ∩N(uk)−

⋃p

t=1,t6=h,k N(ut)) ∩ V (Hi)| by bh,k, and |(N(uh) ∩N(uk) ∩N(ul)−⋃p

t=1,t6=h,k,l N(ut)) ∩ V (Hi)| by ch,k,l.

Lemma 2.8 If G[Ai] contains a clique of order 3, with vertices u1, u2 and u3, then
39 − 2|Ai| ≤ d(u1) + d(u2) + d(u3) − dG[Ai](u1) − dG[Ai](u2) − dG[Ai](u3).

Proof. Let W = {u1, u2, u3}, let w ∈ V (Hi), and let k ∈ {1, 2, 3, 4} − {i, g(w)}. Since
G[{u1, u2, u3, w, vk}] is not isomorphic to K5, w is adjacent to at least a vertex of W and,
therefore, every vertex of V (Hi) is adjacent to at least a vertex of W . Hence:

a1 + a2 + a3 + b1,2 + b1,3 + b2,3 + c1,2,3 = |V (Hi)| = 21 − |Ai| (1)

On the one hand, since u1 is adjacent to d(u1)− dG[Ai](u1)− 1 vertices of Hi we have:

a1 + b1,2 + b1,3 + c1,2,3 = d(u1) − dG[Ai](u1) − 1 (2)

Analogously, u2 and u3 are adjacent to d(u2)−dG[Ai](u2)−1 and d(u3)−dG[Ai](u3)−1
vertices of Hi respectively, thus:

a2 + b1,2 + b2,3 + c1,2,3 = d(u2) − dG[Ai](u2) − 1 (3)

a3 + b1,3 + b2,3 + c1,2,3 = d(u3) − dG[Ai](u3) − 1 (4)

On the other hand, by Lemma 2.4:

a1 = |(N(u1) − N(u2) − N(u3)) ∩ V (Hi)| ≤ 2 (5)

a2 = |(N(u2) − N(u1) − N(u3)) ∩ V (Hi)| ≤ 2 (6)
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a3 = |(N(u3) − N(u1) − N(u2)) ∩ V (Hi)| ≤ 2 (7)

Finally, from (2) + (3) + (4) + (5) + (6) + (7)− 2(1) we have:

c1,2,3 ≤ d(u1) + d(u2) + d(u3) − dG[Ai](u1) − dG[Ai](u2) − dG[Ai](u3) − 39 + 2|Ai|.

We obtain the result noting that c1,2,3 is non-negative.

Corollary 2.9 If G[Ai] contains a clique of order 3, then |Ai| ≥ 6 and if |Ai| = 6 then
for any vertex u of the clique, dG[Ai](u) = 2 and d(u) = 11.

Proof. Let u1, u2, and u3 be the three vertices of the clique. By Corollary 2.7, dG[Ai](u1),
dG[Ai](u2), dG[Ai](u3) ≥ 1 and, by Lemma 2.6, d(u1), d(u2), d(u3) ≤ 11.

Therefore, by Lemma 2.8, 39−2|Ai| ≤ d(u1)+d(u2)+d(u3)−dG[Ai](u1)−dG[Ai](u2)−
dG[Ai](u3) ≤ 11 + 11 + 11 − 1 − 1 − 1 = 30 and |Ai| ≥ 5. Hence, by Corollary 2.7,
dG[Ai](u1), dG[Ai](u2), dG[Ai](u3) ≥ 2, and 39− 2|Ai| ≤ d(u1) + d(u2) + d(u3)− dG[Ai](u1) −
dG[Ai](u2) − dG[Ai](u3) ≤ 11 + 11 + 11 − 2 − 2 − 2 = 27, thus |Ai| ≥ 6.

If |Ai| = 6, on the one hand, 27 = 39 − 2|Ai| ≤ d(u1) + d(u2) + d(u3) − dG[Ai](u1) −
dG[Ai](u2)− dG[Ai](u3) ≤ d(u) + 11 + 11− 2− 2− 2 = d(u) + 16, hence d(u) = 11. On the
other hand, 27 = 39−2|Ai| ≤ d(u1)+d(u2)+d(u3)−dG[Ai](u1)−dG[Ai](u2)−dG[Ai](u3) ≤
11 + 11 + 11 − dG[Ai](u) − 2 − 2 = 29 − dG[Ai](u), therefore dG[Ai](u) = 2.

Corollary 2.10 Let u ∈ Ai, then d(u) ≥ 10.

Proof. By Lemma 2.6, dG[Ai](u) ≤ 3. If d(u) ≤ 9 then by Lemma 2.2, d(u) = 9 and, by
Lemma 2.7, |Ai| ≤ 2d(u) + dG[Ai](u) − 17 ≤ 18 + 3 − 17 = 4, thus |Ai| = 4. By Lemma

2.1, 8− dG[Ai](u) = d(u)− 1− dG[Ai](u) =
∑4

k=1,k 6=i ek(u) ≤
∑4

k=1,k 6=i(|Ak| − 13 + d(u)) =∑4
k=1,k 6=i |Ak|−12 = (21−4)−12 = 5. Hence dG[Ai](u) ≥ 3 and u is adjacent to the three

vertices of Ai − {u}.
By Corollary 2.9, K3 * G[Ai] and at least two of the three vertices of Ai − {u} are

adjacent. Let w1 and w2 denote them. Then u, w1 and w2 are the vertices of a clique of
G[Ai], contradicting Corollary 2.5 and completing the proof.

From Corollaries 2.5 and 2.9 and Lemma 2.6, it is easy to check the next result:

Corollary 2.11 1. If |Ai| = 4 then G[Ai] is isomorphic to 2K2, P4 or C4.

2. If |Ai| = 5 then G[Ai] is isomorphic to C5.

3. If |Ai| = 6 then G[Ai] is isomorphic to C6 or SK2,3 (the graph obtained subdividing
one edge of K2,3).

Now, we prove that G[Ai] is isomorphic neither to C5 nor to SK2,3.

Lemma 2.9 G[Ai] is not isomorphic to C5.
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Proof. Suppose, to the contrary, that G[Ai] is isomorphic to C5. Let W = {u1, . . . , u5}
denote its vertices, with its edges being u1u2, u2u3, u3u4, u4u5 and u1u5.

Let w ∈ V (Hi). By Lemmas 2.1 and 2.6 and Corollary 2.10, 1 ≤ d(w) − 9 ≤ ei(w) ≤
d(w) − 13 + |Ai| = d(w) − 8 ≤ 3, thus every vertex of Hi is adjacent to 1, 2 or 3 vertices
of G[Ai] and we have:

5∑

k=1

ak+
∑

1≤k<m≤5

bk,m+
∑

1≤k<m<n≤5

ck,m,n = |V (Hi)| = 16 (8)

On the one hand, by Lemma 2.5:

b1,2 + c1,2,3 + c1,2,4 + c1,2,5 = |V (Hi) ∩ N(u1) ∩ N(u2)| ≤ 3 (9)

b2,3 + c1,2,3 + c2,3,4 + c2,3,5 = |V (Hi) ∩ N(u2) ∩ N(u3)| ≤ 3 (10)

b3,4 + c1,3,4 + c2,3,4 + c3,4,5 = |V (Hi) ∩ N(u3) ∩ N(u4)| ≤ 3 (11)

b4,5 + c1,4,5 + c2,4,5 + c3,4,5 = |V (Hi) ∩ N(u4) ∩ N(u5)| ≤ 3 (12)

b1,5 + c1,2,5 + c1,3,5 + c1,4,5 = |V (Hi) ∩ N(u1) ∩ N(u5)| ≤ 3 (13)

On the other hand, let Y = V (Hi) −N(u1) − N(u3). By Corollary 2.6, K4 * G[Y ] ⊆

Hi. If K2 ⊆ G[Y ] then let w1 and w2 be the vertices of an edge of G[Y ] and let k ∈
{1, 2, 3, 4}− {i, g(w1), g(w2)}. G[{u1, u3, w1, w2, vk}] is isomorphic to K5, a contradiction.
Thus K2 * G[Y ], G[Y ] ∈ R(K4, K2; |Y |) and:

a2 + a4 + a5 + b2,4 + b2,5 + b4,5 + c2,4,5 = |V (Hi) − N(u1) − N(u3)| =
= |Y | ≤ r(K4, K2) − 1 = 3 (14)

Similarly G[V (Hi) − N(u1) − N(u4)] ∈ R(K4, K2; |V (Hi) − N(u1) − N(u4)|) and:

a2 + a3 + a5 + b2,3 + b2,5 + b3,5 + c2,3,5 ≤ 3 (15)

G[V (Hi) − N(u2) − N(u4)] ∈ R(K4, K2; |V (Hi) − N(u2) − N(u4)|) and:

a1 + a3 + a5 + b1,3 + b1,5 + b3,5 + c1,3,5 ≤ 3 (16)

G[V (Hi) − N(u2) − N(u5)] ∈ R(K4, K2; |V (Hi) − N(u2) − N(u5)|) and:

a1 + a3 + a4 + b1,3 + b1,4 + b3,4 + c1,3,4 ≤ 3 (17)
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G[V (Hi) − N(u3) − N(u5)] ∈ R(K4, K2; |V (Hi) − N(u3) − N(u5)|) and:

a1 + a2 + a4 + b1,2 + b1,4 + b2,4 + c1,2,4 ≤ 3 (18)

From (9) + · · · + (18) we have:

3
5∑

k=1

ak +2
∑

1≤k<m≤5

bk,m +2
∑

1≤k<m<n≤5

ck,m,n ≤ 30 (19)

Finally, from (19) − 2(8) we obtain
∑5

k=1 ak ≤ −2. This contradiction completes the
proof.

Lemma 2.10 G[Ai] is not isomorphic to SK2,3.

Proof. Suppose, to the contrary, that G[Ai] is isomorphic to SK2,3. Let W = {u1, . . . , u4}
be the set of vertices of Ai of degree 2 in G[Ai], with its only edge being u1u2. Every
vertex of W belongs to a clique of order 3 contained in G[Ai], thus, by Corollary 2.9, each
vertex of W has degree 11 in G. Let h = |V (Hi) ∩

⋂4
n=1 N(un)|.

Since d(u1) = 11 and dG[Ai](u1) = 2 we have that, |N(u)∩V (Hi)|, the number of edges
incident to u1 and a vertex of Hi is:

a1 + b1,2 + b1,3 + b1,4 + c1,2,3 + c1,2,4 + c1,3,4 + h = d(u1) − dG[Ai](u1) − 1 = 8 (20)

On the one hand, by Lemma 2.4:

a1 + b1,2 = |(N(u1) − N(u3) − N(u4)) ∩ V (Hi)| ≤ 2 (21)

On the other hand, let Y = V (Hi) ∩ N(u1) ∩ N(u3). By Corollary 2.4, K3 * G[Y ] ⊆

G[N(u1)]. If K2 ⊆ G[Y ] then let w1 and w2 be the vertices of an edge of G[Y ] and let k ∈
{1, 2, 3, 4}− {i, g(w1), g(w2)}. G[{u1, u3, w1, w2, vk}] is isomorphic to K5, a contradiction.
Therefore K2 * G[Y ], G[Y ] ∈ R(K3, K2; |Y |) and:

b1,3 + c1,2,3 + c1,3,4 + h = |V (Hi) ∩ N(u1) ∩ N(u3)| = |Y | ≤ r(K3, K2) − 1 = 2 (22)

Similarly G[V (Hi) ∩ N(u1) ∩ N(u4)] ∈ R(K3, K2; |V (Hi) ∩ N(u1) ∩ N(u4)|) and:

b1,4 + c1,2,4 + c1,3,4 + h ≤ 2 (23)

From (21) + (22) + (23)− (20) we obtain c1,3,4 + h ≤ −2, a contradiction.
Finally, we prove Theorem 2.1:

Proof. By Corollaries 2.8 and 2.11 and Lemmas 2.9 and 2.10, |A1| = 7, |A2| = 6, |A3| =
|A4| = 4, G[A2] is isomorphic to C6 and all vertices of A1 ∪ A2 have degree 11 in G. Let
s denote the number of edges of G[A3].
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By Corollary 2.6, H4 ∈ R(K4, K4; 17). Kalbfleisch [14] proved that there is exactly
one graph in the set R(K4, K4; 17) and every vertex of this graph has degree 8, thus, for
any w ∈ V (H4), dH4

(w) = 8.
If u ∈ A1 ∪ A2, by Lemma 2.1, 2 = d(u) − 9 ≤ e3(u) ≤ d(u) − 13 + |A3| = 2, thus

e3(u) = 2 and the number of edges of H4 with a vertex belonging to A1 ∪A2 and another
vertex belonging to A3 is

∑
w∈A3

(e1(w) + e2(w)) =
∑

u∈A1∪A2
e3(u) = 2|A1 ∪ A2| = 26.

If w ∈ A3, then 8 = dH4
(w) = dG[A3](w) + e1(w) + e2(w). Thus 32 =

∑
w∈A3

8 =∑
w∈A3

dG[A3](w) +
∑

w∈A3
(e1(w)+ e2(w)) = 2s + 26 and s = 3. Hence, by Corollary 2.11,

G[A3] is isomorphic to P4.
In the following, we assume that i = 3. Let W = {u1, . . . , u4} be the vertices of A3,

with the edges of G[A3] being u1u2, u2u3 and u3u4.
Let w ∈ V (H3). By Lemmas 2.1 and 2.6 and Corollary 2.10, 1 ≤ d(w) − 9 ≤ e3(w) ≤

d(w)− 13 + |A3| = d(w)− 9 ≤ 2, thus every vertex of H3 is adjacent to 1 or 2 vertices of
A3 and |N(u2) ∩ V (H3)| is:

a2 + b1,2 + b2,3 + b2,4 = d(u2) − dG[A3](u2) − 1 ≥ 10 − 2 − 1 = 7 (24)

Let Y1 = V (H3)∩N(u2)−N(u1)−N(u3). By Corollary 2.4, K3 * G[Y1] ⊆ G[N(u2)].

If K2 ⊆ G[Y1] then let w1 and w2 be the vertices of an edge of G[Y1] and let k ∈
{1, 2, 4} − {g(w1), g(w2)}. G[{u1, u3, w1, w2, vk}] is isomorphic to K5, a contradiction.
Hence K2 * G[Y1], G[Y1] ∈ R(K3, K2; |Y1|) and:

a2 + b2,4 = |V (H3) ∩ N(u2) − N(u1) − N(u3)| = |Y1| ≤ r(K3, K2) − 1 = 2 (25)

On the one hand, by Lemma 2.5:

b1,2 = |V (H3) ∩ N(u1) ∩ N(u2)| ≤ 3 (26)

On the other hand, let Y2 = V (H3)∩N(u2)∩N(u3). If K2 ⊆ G[Y2] then let w1 and w2

be the vertices of an edge of G[Y2]. G[{w1, w2, u2, u3}] is a subgraph of G isomorphic to K4

and different from K, contradicting Corollary 2.3, thus K2 * G[Y2]. If K2 ⊆ G[Y2] then

let w1 and w2 be the vertices of an edge of G[Y2] and let k ∈ {1, 2, 4} − {g(w1), g(w2)}.
G[{u1, u4, w1, w2, vk3

}] is isomorphic to K5, a contradiction. Hence K2 * G[Y2], G[Y2] ∈
R(K2, K2; |Y2|) and:

b2,3 = |V (H3) ∩ N(u2) ∩ N(u3)| = |Y2| ≤ r(K2, K2) − 1 = 1 (27)

From (25)+(26)+(27) we obtain a2 + b1,2 + b2,3 + b2,4 ≤ 6, contradicting (24) and
completing the proof of Theorem 2.1.
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