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Abstract

An undirected graph is called integral, if all of its eigenvalues are integers. Let
Γ = Zm1 ⊗· · ·⊗Zmr be an abelian group represented as the direct product of cyclic
groups Zmi

of order mi such that all greatest common divisors gcd(mi,mj) ≤ 2
for i 6= j. We prove that a Cayley graph Cay(Γ, S) over Γ is integral, if and only
if S ⊆ Γ belongs to the the Boolean algebra B(Γ) generated by the subgroups of
Γ. It is also shown that every S ∈ B(Γ) can be characterized by greatest common
divisors.

1 Introduction

The greatest common divisor of nonnegative integers a and b is denoted by gcd(a, b).
Let us agree upon gcd(0, b) = b. If x = (x1, . . . , xr) and m = (m1, ..., mr) are tuples of
nonnegative integers, then we set

gcd(x,m) = (d1, . . . , dr) = d, di = gcd(xi, mi) for i = 1, . . . , r.

For an integer n ≥ 1 we denote by Zn the additive group, respectively the ring of integers
modulo n, Zn = {0, 1, . . . , n−1} as a set. Let Γ be an (additive) abelian group represented
as a direct product of cyclic groups.

Γ = Zm1 ⊗ · · · ⊗ Zmr
, mi ≥ 1 for i = 1, . . . , r
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Suppose that di is a divisor of mi, 1 ≤ di ≤ mi, for i = 1, . . . , r. For the divisor tuple
d = (d1, . . . , dr) of m = (m1, . . . , mr) we define the gcd-set of Γ with respect to d,

SΓ(d) = {x = (x1, . . . , xr) ∈ Γ : gcd(x,m) = d}.

If D = {d(1), . . . , d(k)} is a set of divisor tuples of m, then the gcd-set of Γ with respect
to D is

SΓ(D) =
k

⋃

j=1

SΓ(d(j)).

In Section 2 we realize that the gcd-sets of Γ constitute a Boolean subalgebra Bgcd(Γ) of
the Boolean algebra B(Γ) generated by the subgroups of Γ. The finite abelian group Γ is
called a gcd-group, if Bgcd(Γ) = B(Γ). We show that Γ is a gcd-group, if and only if it is
cyclic or isomorphic to a group of the form

Z2 ⊗ · · · ⊗ Z2 ⊗ Zn, n ≥ 2.

Eigenvalues of an undirected graph G are the eigenvalues of an arbitrary adjacency
matrix of G. Harary and Schwenk [8] defined G to be integral, if all of its eigenvalues
are integers. For a survey of integral graphs see [3]. In [2] the number of integral graphs
on n vertices is estimated. Known characterizations of integral graphs are restricted to
certain graph classes, see e.g. [1]. Here we concentrate on integral Cayley graphs over
gcd-groups.

Let Γ be a finite, additive group, S ⊆ Γ, 0 6∈ S, − S = {−s : s ∈ S} = S. The
undirected Cayley graph over Γ with shift set S, Cay(Γ, S), has vertex set Γ. Vertices
a, b ∈ Γ are adjacent, if and only if a − b ∈ S. For general properties of Cayley graphs
we refer to Godsil and Royle [7] or Biggs [5]. We define a gcd-graph to be a Cayley graph
Cay(Γ, S) over an abelian group Γ = Zm1⊗· · ·⊗Zmr

with a gcd-set S of Γ. All gcd-graphs
are shown to be integral. They can be seen as a generalization of unitary Cayley graphs
and of circulant graphs, which have some remarkable properties and applications (see [4],
[9], [11], [15]).

In our paper [10] we proved for an abelian group Γ and S ∈ B(Γ), 0 6∈ S, that
the Cayley graph Cay(Γ, S) is integral. We conjecture the converse to be true for finite
abelian groups in general. This can be confirmed for cyclic groups by a theorem of So
[16]. In Section 3 we extend the result of So to gcd-groups. A Cayley graph Cay(Γ, S)
over a gcd-group Γ is integral, if and only if S ∈ B(Γ).

2 gcd-Groups

Throughout this section Γ denotes a finite abelian group given as a direct product of
cyclic groups,

Γ = Zm1 ⊗ · · · ⊗ Zmr
, mi ≥ 1 for i = 1, . . . , r.

Theorem 1. The family Bgcd(Γ) of gcd-sets of Γ constitutes a Boolean subalgebra of the
Boolean algebra B(Γ) generated by the subgroups of Γ.
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Proof. First we confirm that Bgcd(Γ) is a Boolean algebra with respect to the usual set
operations. From SΓ(∅) = ∅ we know ∅ ∈ Bgcd(Γ). If D0 denotes the set of all (positive)
divisor tuples of m = (m1, . . . , mr) then we have SΓ(D0) = Γ, which implies Γ ∈ Bgcd(Γ).
As Bgcd(Γ) is obviously closed under the set operations union, intersection and forming
the complement, it is a Boolean algebra.

In order to show Bgcd(Γ) ⊆ B(Γ), it is sufficient to prove for an arbitrary divisor tuple
d = (d1, . . . , dr) of m = (m1, . . . , mr) that

SΓ(d) = {x = (x1, . . . , xr) ∈ Γ : gcd(x,m) = d} ∈ B(Γ).

Observe that dj = mj forces xj = 0 for x = (xi) ∈ SΓ(d). If di = mi for every i = 1, . . . , r
then SΓ(d) = {(0, 0, . . . , 0)} ∈ B(Γ). So we may assume 1 ≤ di < mi for at least one
i ∈ {1, . . . , r}. For i = 1, . . . , r we define δi = di, if di < mi, and δi = 0, if di = mi,
δ = (δ1, . . . , δr). For ai ∈ Zmi

we denote by [ai] the cyclic group generated by ai in Zmi
.

One can easily verify the following representation of SΓ(d):

SΓ(d) = [δ1] ⊗ · · · ⊗ [δr] \
⋃

λ1,...,λr

([λ1δ1] ⊗ · · · ⊗ [λrδr]). (1)

In (1) we set λi = 0, if δi = 0. For i ∈ {1, . . . , r} and δi > 0 the range of λi is

1 ≤ λi <
mi

δi
such that gcd(λi,

mi

δi
) > 1 for at least one i ∈ {1, . . . , r}.

As [δ1]⊗· · ·⊗[δr] and [λ1δ1]⊗· · ·⊗[λrδr] are subgroups of Γ, (1) implies SΓ(d) ∈ B(Γ).

A gcd-graph is a Cayley graph Cay(Γ, SΓ(D)) over an abelian group Γ = Zm1 ⊗ · · · ⊗
Zmr

with a gcd-set SΓ(D) as its shift set. In [10] we proved that for a finite abelian group
Γ and S ∈ B(Γ), 0 6∈ S, the Cayley graph Cay(Γ, S) is integral. Therefore, Theorem 1
implies the following corollary.

Corollary 1. Every gcd-graph Cay(Γ, SΓ(D)) is integral.

We remind that we call Γ a gcd-group, if Bgcd(Γ) = B(Γ). For a = (ai) ∈ Γ we denote
by [a] the cyclic subgroup of Γ generated by a.

Lemma 1. Let Γ be the abelian group Zm1 ⊗ · · · ⊗ Zmr
, m = (m1, . . . , mr). Then Γ is a

gcd-group, if and only if for every a ∈ Γ, gcd(a,m) = d implies SΓ(d) ⊆ [a].

Proof. Let Γ be a gcd-group, Bgcd(Γ) = B(Γ). Then every subgroup of Γ, especially every
cyclic subgroup [a] is a gcd-set of Γ. This means [a] = SΓ(D) for a set D of divisor tuples
of m. Now gcd(a,m) = d implies d ∈ D and therefore SΓ(d) ⊆ SΓ(D) = [a].

To prove the converse assume that the condition in Lemma 1 is satisfied. Let H be
an arbitrary subgroup of Γ. We show H ∈ Bgcd(Γ). Let a ∈ H , gcd(a,m) = d. Then our
assumption implies

a ∈ SΓ(d) ⊆ [a] ⊆ H, H =
⋃

d∈D

SΓ(d) = SΓ(D) ∈ Bgcd(Γ),

where D = {gcd(a,m) : a ∈ H}.
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For integers x, y, n we express by x ≡ y mod n that x is congruent to y modulo n.

Lemma 2. Every cyclic group Γ = Zn, n ≥ 1, is a gcd-group.

Proof. As the lemma is trivially true for n = 1, we assume n ≥ 2. Let a ∈ Γ, 0 ≤ a ≤ n−1,
gcd(a, n) = d. According to Lemma 1 we have to show SΓ(d) ⊆ [a]. Again, to avoid the
trivial case, assume a ≥ 1. From gcd(a, n) = d < n we deduce

a = αd, 1 ≤ α <
n

d
, gcd(α,

n

d
) = 1.

As the order of a ∈ Γ is ord(a) = n/d, the cyclic group generated by a is

[a] = {x ∈ Γ : x ≡ (λα)d mod n, 0 ≤ λ <
n

d
}.

Finally, we conclude

[a] ⊇ {x ∈ Γ : x ≡ (λα)d mod n, 0 ≤ λ <
n

d
, gcd(λ,

n

d
) = 1}

= {x ∈ Γ : x ≡ µd mod n, 0 ≤ µ <
n

d
, gcd(µ,

n

d
) = 1} = SΓ(d).

Lemma 3. If Γ = Zm1 ⊗· · ·⊗Zmr
, r ≥ 2, is a gcd-group, then gcd(mi, mj) ≤ 2 for every

i 6= j, i, j = 1, . . . , r.

Proof. Without loss of generality we concentrate on gcd(m1, m2). We may assume m1 > 2
and m2 > 2. Consider a = (1, 1, 0, . . . , 0) ∈ Γ and b = (m1 − 1, 1, 0, . . . , 0) ∈ Γ. For
m = (m1, . . . , mr) we have

gcd(a,m) = (1, 1, m3, . . . , mr) = gcd(b,m).

By Lemma 1 the element b must belong to the cyclic group [a]. This requires the existence
of an integer λ, b = λa in Γ, or equivalently

λ ≡ −1 mod m1 and λ ≡ 1 mod m2.

Therefore, integers k1 and k2 exist satisfying λ = −1 + k1m1 and λ = 1 + k2m2, which
implies k1m1 − k2m2 = 2 and gcd(m1, m2) divides 2.

The next two lemmas will enable us to prove the converse of Lemma 3.

Lemma 4. Let a1, . . . , ar, g1, . . . , gr be integers, r ≥ 2, gi ≥ 2 for i = 1, . . . , r. Moreover,
assume gcd(gi, gj) = 2 for every i 6= j, i, j = 1, . . . , r. The system of congruences

x ≡ a1 mod g1, . . . , x ≡ ar mod gr (2)

is solvable, if and only if

ai ≡ aj mod 2 for every i, j = 1, . . . , r. (3)

If the system is solvable, then the solution consists of a unique residue class modulo
(g1g2 · · · gr)/2

r−1.
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Proof. Suppose that x is a solution of (2). As every gi is even, the necessity of condition
(3) follows by

ai ≡ x mod 2 for i = 1, . . . , r.

Assume now that condition (3) is satisfied. We set κ = 0, if every ai is even, and
κ = 1, if every ai is odd. By x ≡ ai mod 2 we have x = 2y + κ for an integer y. The
congruences (2) can be equivalently transformed to

y ≡
a1 − κ

2
mod

g1

2
, . . . , y ≡

ar − κ

2
mod

gr

2
. (4)

As gcd((gi/2), (gj/2)) = 1 for i 6= j, i, j = 1, . . . , r, we know by the Chinese remainder
theorem [14] that the system (4) has a unique solution y ≡ h mod (g1 · · · gr)/2

r. This
implies for the solution x of (2):

x = 2y + κ ≡ 2h+ κ mod
g1 · · · gr

2r−1
.

Lemma 5. Let a1, . . . , ar, m1, . . . , mr be integers, r ≥ 2, mi ≥ 2 for i = 1, . . . , r. More-
over, assume gcd(mi, mj) ≤ 2 for every i 6= j, i, j = 1, . . . , r. The system of congruences

x ≡ a1 mod m1, . . . , x ≡ ar mod mr (5)

is solvable, if and only if

ai ≡ aj mod 2 for every i 6= j, mi ≡ mj ≡ 0 mod 2, i, j = 1, . . . , r. (6)

Proof. If at most one of the integers mi, i = 1, . . . r, is even then gcd(mi, mj) = 1 for
every i 6= j, i, j = 1, . . . , r, and system (5) is solvable. Therefore, we may assume that
m1, . . . , mk are even, 2 ≤ k ≤ r, and mk+1, . . . , mr are odd, if k < r. Now we split system
(5) into two systems.

x ≡ a1 mod m1, . . . , x ≡ ak mod mk (7)

x ≡ ak+1 mod mk+1, . . . , x ≡ ar mod mr (8)

By Lemma 4 the solvability of (7) requires (6). If this condition is satisfied, then (7)
has a unique solution x ≡ b mod (m1 · · ·mk)/2

k−1 by Lemma 4. System (8) has a
unique solution x ≡ c mod (mk+1 · · ·mr) by the Chinese remainder theorem, because
gcd(mi, mj) = 1 for i 6= j, i, j = k + 1, . . . , r. So the original system (5) is equivalent to

x ≡ b mod
m1 · · ·mk

2k−1
and x ≡ c mod (mk+1 · · ·mr). (9)

As gcd((m1 · · ·mk), (mk+1 · · ·mr)) = 1, the Chinese remainder theorem can be applied
once more to arrive at a unique solution x ≡ h mod (m1 · · ·mr)/2

k−1 of (9) and (5).
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Theorem 2. The abelian group Γ = Zm1 ⊗ · · · ⊗ Zmr
is a gcd-group, if and only if

gcd(mi, mj) ≤ 2 for every i 6= j, i, j = 1, . . . , r. (10)

Proof. As every cyclic group is a gcd-group by Lemma 2, we may assume r ≥ 2. Then
(10) necessarily holds for every gcd-group Γ by Lemma 3.

Suppose now that Γ satisfies (10). Let a = (a1, . . . , ar) and b = (b1, . . . , br) be elements
of Γ, m = (m1, . . . , mr), and

gcd(a,m) = d = (d1, . . . , dr) = gcd(b,m). (11)

According to Lemma 1 we have to show that b belongs to the cyclic group [a] generated
by a. Now b ∈ [a] is equivalent to the existence of an integer λ which solves the following
system of congruences:

b1 ≡ λa1 mod m1, . . . , br ≡ λar mod mr. (12)

If di = mi then ai = bi = 0 and the congruence bi ≡ λai mod mi becomes trivial.
Therefore, we assume 1 ≤ di < mi for every i = 1, . . . , r. By (11) we have gcd(ai, mi) =
gcd(bi, mi) = di, which implies the existence of integers µi, νi satisfying

ai = µidi, 1 ≤ µi <
mi

di

, gcd(µi,
mi

di

) = 1; bi = νidi, 1 ≤ νi <
mi

di

, gcd(νi,
mi

di

) = 1.

(13)
Inserting ai and bi for i = 1, . . . , r from (13) in (12) yields

ν1d1 ≡ λµ1d1 mod m1, . . . , νrdr ≡ λµrdr mod mr.

We divide the i-th congruence by di and multiply with κi, the multiplicative inverse of
µi modulo mi/di. Thus each congruence is solved for λ and we arrive at the following
system equivalent to (12).

λ ≡ κ1ν1 mod
m1

d1

, . . . , λ ≡ κrνr mod
mr

dr

(14)

To prove the solvability of (14) by Lemma 5 we first notice that gcd(mi, mj) ≤ 2 for
i 6= j implies gcd((mi/di), (mj/dj)) ≤ 2 for i, j = 1, . . . , r. Suppose now that mi/di

is even. As gcd(µi, (mi/di)) = 1, see (13), µi must be odd. Also κi is odd because of
gcd(κi, (mi/di)) = 1. If for i 6= j both mi/di and mj/dj are even, then both κiνi and κjνj

are odd, because all involved integers κi, νi, κj , νj are odd. We conclude now by Lemma
5 that (14) is solvable, which finally confirms b ∈ [a].

Lemma 6. Let Γ = Zm1 ⊗· · ·⊗Zmr
be isomorphic to Γ′ = Zn1 ⊗· · ·⊗Zns

, Γ ≃ Γ′. Then
Γ is a gcd-group, if and only if Γ′ is a gcd-group.

Proof. We may assume mi ≥ 2 for i = 1, . . . , r and nj ≥ 2 for j = 1, . . . , s. For the
following isomorphy and more basic facts about abelian groups we refer to Cohn [6].

Zpq ≃ Zp ⊗ Zq, if gcd(p, q) = 1 (15)
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If the positive integer m is written as a product of pairwise coprime prime powers, m =
u1 · · ·uh, then

Zm ≃ Zu1 ⊗ · · · ⊗ Zuh
. (16)

We apply the decomposition (16) to every factor Zmi
, i = 1, . . . , r, of Γ and to every

factor Znj
, j = 1, . . . , s, of Γ′. So we obtain the “prime power representation” Γ∗, which

is the same for Γ and for Γ′, if the factors are e. g. arranged in ascending order.

Γ ≃ Γ∗ = Zq1 ⊗ · · · ⊗ Zqt
≃ Γ′, qj a prime power for j = 1, . . . , t

The following equivalences are easily checked.

gcd(mi, mj) ≤ 2 for every i 6= j, i, j = 1, . . . , r

⇔ gcd(qk, ql) ≤ 2 for every k 6= l, k, l = 1, . . . , t

⇔ gcd(ni, nj) ≤ 2 for every i 6= j, i, j = 1, . . . , s

(17)

Theorem 2 and (17) imply that Γ is a gcd-group, if and only if Γ∗, respectively Γ′, is a
gcd-group.

Every finite abelian group Γ̃ can be represented as the direct product of cyclic groups.

Γ̃ ≃ Zm1 ⊗ · · · ⊗ Zmr
= Γ (18)

We define Γ̃ to be a gcd-group, if Γ is a gcd-group. Although the representation (18) may
not be unique, this definition is correct by Lemma 6.

Theorem 3. The finite abelian group Γ is a gcd-group, if and only if Γ is cyclic or Γ is
isomorphic to a group Γ′ of the form

Γ′ = Z2 ⊗ · · · ⊗ Z2 ⊗ Zn, n ≥ 2.

Proof. If Γ is isomorphic to a group Γ′ as stated in the theorem, then Γ is a gcd-group by
Theorem 2.

To prove the converse, let Γ be a gcd-group. We may assume that Γ is not cyclic. The
prime power representation Γ∗ of Γ is established as described in the proof of Lemma 6.
We start this representation with those orders which are a power of 2, followed possibly
by odd orders.

Γ ≃ Γ∗ = Z2 ⊗ · · · ⊗ Z2 ⊗ Z2α ⊗ Zu1 ⊗ · · · ⊗ Zus
, α ≥ 1, ui odd for i = 1, . . . , s (19)

Theorem 2 implies that there is at most one order 2α with α ≥ 2. Moreover, all odd orders
u1, . . . , us must be pairwise coprime. As 2α, u1, . . . , us are pairwise coprime integers, we
deduce from (15) that

Z2α ⊗ Zu1 ⊗ · · · ⊗ Zus
≃ Zn for n = 2αu1 · · ·us.

Now (19) implies
Γ ≃ Γ′ = Z2 ⊗ · · · ⊗ Z2 ⊗ Zn.
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3 Integral Cayley graphs over gcd-groups

The following method to determine the eigenvectors and eigenvalues of Cayley graphs
over abelian groups is due to Lovász [13], see also our description in [10]. We outline the
main features of this method, which will be applied in this section.

The finite, additive, abelian group Γ, |Γ| = n ≥ 2, is represented as the direct product
of cyclic groups,

Γ = Zm1 ⊗ · · · ⊗ Zmr
, mi ≥ 2 for 1 ≤ i ≤ r. (20)

We consider the elements x ∈ Γ as elements of the cartesian product Zm1 × · · · × Zmr
,

x = (xi), xi ∈ Zmi
= {0, 1, . . . , mi − 1}, 1 ≤ i ≤ r.

Addition is coordinatewise modulo mi. A character ψ of Γ is a homomorphism from Γ
into the multiplicative group of complex n-th roots of unity. Denote by ei the unit vector
with entry 1 in position i and entry 0 in every position j 6= i. A character ψ of Γ is
uniquely determined by its values ψ(ei), 1 ≤ i ≤ r.

x = (xi) =
r

∑

i=1

xiei, ψ(x) =
r

∏

i=1

(ψ(ei))
xi (21)

The value of ψ(ei) must be an mi-th root of unity. There are mi possible choices for this
value. Let ζi be a fixed primitive mi-th root of unity for every i, 1 ≤ i ≤ r. For every
α = (αi) ∈ Γ a character ψα can be uniquely defined by

ψα(ei) = ζαi

i , 1 ≤ i ≤ r. (22)

Combining (21) and (22) yields

ψα(x) =
r

∏

i=1

ζαixi

i for α = (αi) ∈ Γ and x = (xi) ∈ Γ. (23)

Thus all |Γ| = m1 · · ·mr = n characters of the abelian group Γ can be obtained.

Lemma 7. Let ψ0, . . . , ψn−1 be the distinct characters of the additive abelian group Γ =
{w0, . . . , wn−1}, S ⊆ Γ, 0 6∈ S, −S = S. Assume that A(G) = A = (ai,j) is the adjacency
matrix of G = Cay(Γ, S) with respect to the given ordering of the vertex set V (G) = Γ.

ai,j =

{

1, if wi is adjacent to wj

0, if wi and wj are not adjacent
, 0 ≤ i ≤ n− 1, 0 ≤ j ≤ n− 1

Then the vectors (ψi(wj))j=0,...,n−1, 0 ≤ i ≤ n − 1, represent an orthogonal basis of Cn

consisting of eigenvectors of A. To the eigenvector (ψi(wj))j=0,...,n−1 belongs the eigenvalue

ψi(S) =
∑

s∈S

ψi(s).
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There is a unique character ψwi
associated with every wi ∈ Γ according to (23). So we

may assume in Lemma 7 that ψi = ψwi
for i = 0, . . . , n− 1. Let us call the n× n-matrix

H(Γ) = (ψwi
(wj)), 0 ≤ i ≤ n− 1, 0 ≤ j ≤ n− 1,

the character matrix of Γ with respect to the given ordering of the elements of Γ. Here we
always assume that Γ is represented by (20) as a direct product of cyclic groups and that
the elements of Γ are ordered lexicographically increasing. Then w0 is the zero element of
Γ. Moreover, by (23) the character matrix H(Γ) becomes the Kronecker product of the
character matrices of the cyclic factors of Γ,

Γ = Zm1 ⊗ · · · ⊗ Zmr
implies H(Γ) = H(Zm1) ⊗ · · · ⊗H(Zmr

). (24)

We remind that the Kronecker product A⊗B of matrices A and B is defined by replacing
the entry ai,j of A by ai,jB for all i, j. For every Cayley graph G = Cay(Γ, S) the rows
of H(Γ) represent an orthogonal basis of Cn consisting of eigenvectors of G, respectively
A(G). The corresponding eigenvalues are obtained by H(Γ)cS,Γ, the product of H(Γ) and
the characteristic (column) vector cS,Γ of S in Γ,

cS,Γ(i) =

{

1, if wi ∈ S
0, if wi 6∈ S

, 0 ≤ i ≤ n− 1.

Consider the situation, when Γ is a cyclic group, Γ = Zn, n ≥ 2. Let ωn be a primitive
n-th root of unity. Setting r = 1 and ζ1 = ωn in (23) we establish the character matrix
H(Zn) = Fn according to the natural ordering of the elements 0, 1, . . . , n− 1.

Fn = ((ωn)
ij), 0 ≤ i ≤ n− 1, 0 ≤ j ≤ n− 1

Observe that all entries in the first row and in the first column of Fn are equal to 1. For
a divisor δ of n, 1 ≤ δ ≤ n, we simplify the notation of the characteristic vector of the
gcd-set SZn

(δ) in Zn to cδ,n,

cδ,n(i) =

{

1, if gcd(i, n) = δ
0, otherwise

, 0 ≤ i ≤ n− 1.

For δ < n we have 0 6∈ SZn
(δ). So the Cayley graph Cay(Zn, SZn

(δ)) is well defined. It is
integral by Corollary 1. The eigenvalues of this graph are the entries of Fncδ,n. Therefore,
this vector is integral, which is also trivially true for δ = n,

Fncδ,n ∈ Zn for every positive divisor δ of n. (25)

The only quadratic primitive root is −1. This implies that H(Z2) = F2 is the elemen-
tary Hadamard matrix (see [12])

F2 =

(

1 1
1 −1

)

.
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By (24) the character matrix of the r-fold direct product Z2 ⊗ · · · ⊗ Z2 = Zr
2 is

H(Zr
2) = F2 ⊗ · · · ⊗ F2 = F

(r)
2 ,

the r-fold Kronecker product of F2 with itself, which is also a Hadamard matrix consisting
of orthogonal rows with entries ±1.

From now on let Γ be a gcd-group. By Theorem 3 we may assume

Γ = Zr
2 ⊗ Zn, r ≥ 0, n ≥ 2. (26)

If we set p = n− 1 and q = 2r − 1 , then we have |Γ| − 1 = 2rn− 1 = qn + p. We order
the elements of Zr

2 , and Γ lexicographically increasing.

Zr
2 = {a0, a1, . . . , aq},

a0 = (0, . . . , 0, 0), a1 = (0, . . . , 0, 1), . . . , aq = (1, . . . , 1, 1);
Γ = {w0, w1, . . . , wqn+p},
w0 = (a0, 0), w1 = (a0, 1), . . . , wp = (a0, p),
. . . . . .
wqn = (aq, 0), wqn+1 = (aq, 1), . . . , wqn+p = (aq, p).

(27)

The character matrix H(Γ) with respect to the given ordering of elements becomes the

Kronecker product of the character matrix F
(r)
2 of Zr

2 and the character matrix Fn of Zn,

H(Γ) = F
(r)
2 ⊗ Fn.

This means that H(Γ) consists of disjoint submatrices ±Fn, because F
(r)
2 has only entries

±1. The structure of H(Γ) is displayed in Figure 1. Rows and columns are labelled with
the elements of Γ. Observe that a label α at a row stands for the unique character ψα.
The sign ǫ(j, l) ∈ {1,−1} of a submatrix Fn is the entry of F

(r)
2 in position (j, l), 0 ≤ j ≤

q, 0 ≤ l ≤ q.

(a0, 0) · · · (a0, p) · · · (al, 0) · · · (al, p) · · · (aq, 0) · · · (aq, p)

(a0, 0) · · · · · ·
· · · ǫ(0, 0)Fn · · · ǫ(0, l)Fn · · · ǫ(0, q)Fn

(a0, p) · · · · · ·
· · · · · · · · · · · · · · · · · ·

(aj, 0) · · · · · ·
· · · ǫ(j, 0)Fn · · · ǫ(j, l)Fn · · · ǫ(j, q)Fn

(aj, p) · · · · · ·
· · · · · · · · · · · · · · · · · ·

(aq, 0) · · · · · ·
· · · ǫ(q, 0)Fn · · · ǫ(q, l)Fn · · · ǫ(q, q)Fn

(aq, p) · · · · · ·

Figure 1: The structure of H(Zr
2 ⊗ Zn).
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Let m = (m1, . . . , mr, mr+1), m1 = . . . = mr = 2, mr+1 = n. Suppose that d =
(d1, . . . , dr+1) is a tuple of positive divisors of m1, . . . , mr+1, di ∈ {1, 2} for i = 1, . . . , r,
dr+1 = δ divides n. If x = (x1, . . . , xr+1) ∈ Γ = Zr

2⊗Zn and gcd(x,m) = d, then x1, . . . , xr

are uniquely determined,

xi =

{

1, if di = 1
0, if di = 2

for i = 1, . . . , r.

This means that the divisor tuple d of m determines a unique element al ∈ Zr
2 such that

SΓ(d) = {(al, b) : b ∈ Zn, gcd(b, n) = δ}

= {wi ∈ Γ : i = ln+ b, 0 ≤ b ≤ p = n− 1, gcd(b, n) = δ}.

The characteristic vector cd,Γ of SΓ(d) in Γ may have nonzero entries only for positions
i = ln + b, b ∈ Zn. Its restriction to these positions is xδ,n, the characteristic vector of
SZn

(δ) in Zn. The vector H(Γ)cd,Γ is composed of 2r disjoint vectors ±Fncδ,n, which by
(25) have only integral entries. So H(Γ)cd,Γ has also only integral entries,

H(Γ)cd,Γ ∈ Z |Γ| for every divisor tuple d of m. (28)

For different divisor tuples d(1), . . . , d(k) of m the sets of positions of cd(1),Γ, . . . , cd(k),Γ with
entries 1 are pairwise disjoint. Therefore, these vectors are linearly independent in the
rational space Q|Γ|.

From now on we abbreviate H(Γ) = H, H = (hα,β), 0 ≤ α ≤ |Γ|−1, 0 ≤ β ≤ |Γ|−1.
We continue to use the notation established for (27). By D̃ we denote the set of all
positive divisor tuples of m = (2, . . . , 2, n). The transpose of a vector v is vT . It is easily
verified that

A = {v ∈ Q|Γ| : Hv ∈ Q|Γ|}

is a subspace of the rational space QΓ. By (28) we see that

D = span{cd,Γ : d ∈ D̃} ⊆ A. (29)

As {cd,Γ : d ∈ D̃} is a basis of D, we have dim(D) = |D̃| = 2rτ(n), where τ(n) is the
number of positive divisors of n. The next lemma will enable us to show D = A.

Lemma 8. Let the elements of Γ = Zr ⊗ Zn be ordered as in (27), Γ = {w0, . . . , wqn+p},
q = 2r − 1, p = n − 1, and let the character matrix H = (hα,β) of Γ be established with
respect to this ordering of the elements (Figure 1). Moreover, let v = (v0, . . . , vqn+p)

T ∈ A,
u = (u0, . . . , uqn+p)

T = Hv. Then

gcd(ws, m) = gcd(wt, m) implies us = ut for every s, t ∈ {0, 1, . . . , qn+ p}.

Proof. Notice that v ∈ A and u = Hv implies that the entries of v and u are rationals.
Suppose gcd(ws, m) = gcd(wt, m) = d, d = (d1, . . . , dr+1), di ∈ {1, 2} for i = 1, . . . , r,
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dr+1 = δ a positive divisor of n. As explained earlier, d uniquely determines elements
al ∈ Zr

2 and b1, b2 ∈ Zn such that

ws = (al, b1), wt = (al, b2), s = ln + b1, t = ln + b2, gcd(b1, n) = gcd(b2, n) = δ. (30)

Rows s and t of H belong to the same row of submatrices ǫ(l, g)Fn, 0 ≤ g ≤ q in Figure
1. We remind that Fn = (ωij

n ), ωn a primitive n-th root of unity, 0 ≤ i ≤ p, 0 ≤ j ≤ p,
p = n− 1.

us =

qn+p
∑

k=0

hs,kvk =

q
∑

g=0

p
∑

f=0

hln+b1,gn+f vgn+f ,

us =

q
∑

g=0

ǫ(l, g)

p
∑

f=0

ωb1f
n vgn+f . (31)

Similarly we deduce

ut =

q
∑

g=0

ǫ(l, g)

p
∑

f=0

ωb2f
n vgn+f . (32)

Setting ωb1
n = x in (31) shows that ωb1

n is a root of the rational polynomial

ψ(x) =

q
∑

g=0

ǫ(l, g)

p
∑

f=0

xf vgn+f − us.

As gcd(b1, n) = δ by (30), we know that ωb1
n is an (n/δ) = δ′-th root of unity. The irre-

ducible polynomial over the rationals for a δ′-th root of unity is the cyclotomic polynomial
Φδ′ (see [6]). Therefore, we have ψ(x) = M(x)Φδ′(x) with a rational polynomial M(x).
Now we see by (30), gcd(b2, n) = δ, that ωb2

n is also a δ′-th root of unity. So ωb2
n is also a

root of Φδ′(x) and consequently also of ψ(x).

ψ(ωb2
n ) =

q
∑

g=0

ǫ(l, g)

p
∑

f=0

ωb2f
n vgn+f − us = 0.

Finally, (32) implies us = ut.

Corollary 2. Assume that the conditions of Lemma 8 are satisfied. Let D̃ be the set of
all positive divisor tuples of m = (2, . . . , 2, n). For d ∈ D̃ denote by cd,Γ the characteristic
vector of SΓ(d) = {w ∈ Γ : gcd(w,m) = d} in Γ, D = span{cd,Γ : d ∈ D̃}. Then we
have

u = Hv ∈ D for every v ∈ A.

Proof. Suppose d ∈ D̃. By Lemma 8 the vector u = Hv has the same entry λd in every
position j, wj ∈ SΓ(d). The sets SΓ(d), d ∈ D̃ induce a partition of the set of all possible
positions {0, 1, . . . , |Γ| − 1} = Z|Γ| into disjoint subsets.

S|Γ| =
⋃

d∈D̃

{j ∈ Z|Γ| : wj ∈ SΓ(d)}
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This implies

u =
∑

d∈D̃

λdcd,Γ ∈ D.

Lemma 9. With the notations introduced for Lemma 8 and its corollary we have D = A.

Proof. By (29) D is a subspace of the linear space A ⊆ Q|Γ|. Consider the mapping ∆
defined by ∆(v) = Hv for v ∈ A. Corollary 2 shows that ∆ maps A in D. As the rows of
H are pairwise orthogonal and nonzero, this matrix is regular. Therefore, ∆ is bijective,
dim(D) = dim(A), D = A.

As before let D̃ be the set of all positive divisor tuples d of m = (2, . . . , 2, n). Remem-
ber that {cd,Γ : d ∈ D̃} is a basis of D = A, dim(A) = |D̃|.

Lemma 10. Let Γ = Zr
2 ⊗Zn, S ⊆ Γ, 0 6∈ S, −S = S. The Cayley graph G = Cay(Γ, S)

is integral, if and only S = ∅ or if there are positive divisor tuples d(1), . . . , d(k) of m =
(2, . . . , 2, n) such that S = SΓ(D) for D = {d(1), . . . , d(k)}.

Proof. For S = SΓ(D) the Cayley graph G = Cay(Γ, S) is a gcd-graph, which is integral
by Corollary 1.

To prove the converse, we skip the trivial case of G being edgeless and assume that
G is integral, S 6= ∅. Let cS,Γ be the characteristic vector of S with respect to the same
ordering of the elements of Γ which we used to establish the character matrix H = H(Γ),
see Figure 1. By Lemma 7 the entries of HcS,Γ are the eigenvalues of G, which are integral.
This means cS,Γ ∈ A. Lemma 9 implies that there are positive, distinct divisor tuples
d(1), . . . , d(k) of m such that

cS,Γ = λ1cd(1),Γ + · · ·+ λkcd(k),Γ , λj ∈ Q, λj 6= 0 for j = 1, . . . , k.

All vectors cd(1),Γ, . . . , cd(k),Γ have only 0,1-entries and their sets of positions with entries
1 are pairwise disjoint. As cS,Γ has also only 0,1-entries, we must have λ1 = · · · = λk = 1.
Then S becomes the disjoint union

S = SΓ(d(1)) ∪ · · · ∪ SΓ(d(k)) = SΓ(D).

Theorem 4. Let Γ be a gcd-group, S ⊆ Γ, 0 6∈ S, − S = S. The Cayley graph
G = Cay(Γ, S) is integral, if and only if S belongs to the Boolean algebra B(Γ) generated
by the subgroups of Γ.

Proof. In [10] we showed that S ∈ B(Γ) implies that G is integral.
To prove the converse, we assume S 6= ∅ and G = Cay(Γ, S) integral. By Theorem 3

we know that there is a group Γ′ = Zr
2⊗Zn and a group isomorphism ϕ : Γ → Γ′. If we set

S ′ = ϕ(S) and G′ = Cay(Γ′, S ′), then ϕ becomes also a graph isomorphism ϕ : G → G′.
Therefore, G′ is integral and S ′ is a gcd-set of Γ′ by Lemma 10, S ′ ∈ Bgcd(Γ

′) = B(Γ′).
The group isomorphism ϕ provides a bijection between the sets in B(Γ′) and in B(Γ). So
we conclude S ∈ B(Γ).
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Example. We have shown that for a gcd-group Γ the integral Cayley graphs over Γ are
exactly the gcd-graphs over Γ. For an arbitrary group Γ the number of integral Cayley
graphs over Γ may be considerably larger than the number of gcd-graphs over Γ.

Let p be a prime number, p ≥ 5. We determine the number of nonisomorphic gcd-
graphs over Γ = Zp⊗Zp. There are three possible divisor tuples of (p, p) for the construc-
tion of a gcd-graph over Γ: (1, 1), (1, p), (p, 1). From these tuples we can form 8 sets of
divisor tuples:

D1 = ∅, D2 = {(1, 1)}, D3 = {(1, p)}, D4 = {(p, 1)}, D5 = {(1, 1), (1, p)},
D6 = {(1, 1), (p, 1)}, D7 = {(1, p), (p, 1)}, D8 = {(1, 1), (1, p), (p, 1)}.

Obviously, D3 andD4 generate isomorphic gcd-graphs over Γ, so doD5 andD6. Therefore,
we cancel D4 and D6. The cardinalities |SΓ(Di)| for i ∈ {1, 2, 3, 5, 7, 8} = M are in
ascending order:

0, p− 1, 2(p− 1), (p− 1)2, p(p− 1), p2 − 1.

These are the degrees of regularity of the corresponding gcd-graphs Cay(Γ, SΓ(Di)), i ∈
M . As the above degree sequence is strictly increasing for p ≥ 5, there are exactly 6
nonisomorphic gcd-graphs over Γ = Zp ⊗ Zp.

Every element of Γ = Zp ⊗ Zp has order p except for the zero element (0, 0). Denote
by [a] the cyclic subgroup generated by a. There are nonzero elements a1, . . . , ap+1 in Γ
such that

Γ = U1 ∪ · · · ∪ Up+1, Ui = [ai], Ui ∩ Uj = {(0, 0)} for i 6= j.

The sets
S0 = ∅, Si = (U1 ∪ · · · ∪ Ui)\{(0, 0)}, 1 ≤ i ≤ p+ 1,

belong to the Boolean algebra B(Γ). Therefore, the Cayley graphs Gi = Cay(Γ, Si), 0 ≤
i ≤ p + 1, are integral. They are nonisomorphic, because they have pairwise distinct
degrees of regularity: degree(Gi) = i(p − 1), 0 ≤ i ≤ p + 1. As there are exactly 6
nonisomorphic gcd-graphs over Γ, we conclude that there are at least (p+ 2)− 6 = p− 4
nonisomorphic integral Cayley graphs over Γ, which are not gcd-graphs. An interesting
task would be to determine for every prime number p the number of all nonisomorphic
integral Cayley graphs over Γ = Zp ⊗ Zp.
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vanović, D. A survey on integral graphs. Univ. Beograd, Publ. Elektrotehn. Fak.
Ser. Mat 13 (2003), 42–65.

the electronic journal of combinatorics 18 (2011), #P94 14
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