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Abstract

Two characterizations of hypercubes are given: 1) A graph is a hypercube
if and only if it is antipodal and bipartite (0, 2)-graph. 2) A graph is an n-
hypercube if and only if there are n pairs of prime convexes, the graph is a
prime convex intersection graph, and each intersection of n prime convexes (no
one of which is from the same pair) is a vertex.

1 Introduction

Hypercubes constitute a very remarkable class of graphs especially for transmitting
communication and therefore each characterization of hypercubes offers a new point
of view to use and construct hypercubes.

The class of (0, 2)-graphs is a subclass of strongly regular graphs studied in the
theory of combinatorial design. It was introduced in [6] and intensively studied in
[3] and in [4].

We begin with some basic properties of antipodal graphs (see also [7]). Then we
prove that a graph is a hypercube if and only if it is an antipodal, bipartite (0, 2)-
graph. This characterization gives another characterization of hypercubes by using
prime convex intersection graphs.

The graphs G = (V, E) considered here are finite, connected and undirected
without loops and multiple edges. The set V is the set of vertices and E the set
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of edges in G. A shortest u − v path is called a u − v geodesic and d(u, v) is its
length. The interval [u, v] is the set of all vertices locating on any u − v geodesic.
By N(u) we denote the set of neighbours of u, i.e N(u) = {v|d(u, v) = 1} and by
deg(u) the cardinality of N(u). The diameter of a graph G is denoted by diam(G) =
max{d(u, v)|u, v ∈ V }. A graph G = (V, E) is called antipodal, if for every vertex
u there exists - a necessarily unique - vertex u′ called the antipode of u, such that
[u, u′] = V , see [1] and [5].

2 Bipartite and antipodal graphs

We give a sufficient conditions for an antipodal bipartite graph to be a regular one.
First we give two basic properties of antipodal graphs (see also [7]).

Lemma 1 An antipodal graph G = (V, E) is bipartite if and only if for any two
adjacent vertices u and v of G intervals [u, v′] and [v, u′] constitute a partition of V .

Proof. Assume first that G is bipartite. If u and v are adjacent vertices then
let Vu = {w ∈ V |d(u, w) < d(v, w)} = {w ∈ V |d(u, w) + 1 = d(v, w)} and Vv =
{w ∈ V |d(v, w) < d(u, w)} = {w ∈ V |d(v, w) + 1 = d(u, w)}. Since G is bipartite,
the vertex sets Vu and Vv constitute a partition of V . Moreover, since [v, v′] = V ,
it follows that for every w ∈ Vu we have w ∈ [u, v′], thus Vu = [u, v′]. Analogously
Vv = [v, u′].

Assume that [u, v′] ∪ [v, u′] = V and [u, v′] ∩ [v, u′] = ∅ for any two adjacent
vertices u and v of V . Let a ∈ V , V1 = {x ∈ V |d(a, x) is odd} and V2 = {x ∈
V |d(a, x) is even}. Assume first, that there are two adjacent vertices x, y ∈ V2. Let
d(a, x) = 2m and d(a, y) = 2n. If m < n, then, because x and y are adjacent, we
have 2n = d(a, y) ≤ d(a, x) + d(x, y) = 1 + 2m < 2n; a contradiction. The case
n < m is analogous, and accordingly, n = m and d(a, y) = d(a, x). If a ∈ [x, y′], then
d(x, y′) = d(x, a) + d(a, y′) = d(a, y) + d(a, y′) = diam(G), whence x′ = y′, This is a
contradiction, since the antipode of a vertex is unique and thus a 6∈ [x, y′]. Similarly
we see that a 6∈ [x′, y], and accordingly, a 6∈ [x, y′] ∪ [y, x′], which is a contradiction.
Thus the assumption that there are two adjacent vertices in V2 is false and any two
vertices x, y ∈ V2 are nonadjacent. Similarly we can prove that any two vertices x, y
of V1 are nonadjacent. Thus G is bipartite.

Lemma 2 If a graph G = (V, E) is antipodal, then vertices u and v of G are adjacent
if and only if u′ and v′ are adjacent. Moreover deg(u) = deg(u′) for all u ∈ V .
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Proof. Assume that u and v are adjacent vertices. It suffices to prove, that u′ and
v′ are adjacent. Assume on the contrary, that there exists a vertex z on the u′ − v′

geodesic such that z 6= u′, v′. Because u′ ∈ [v, v′] and z ∈ [u′, v′], there exists a v− v′

geodesic through u′ and z, and thus d(v, v′) = d(v, u′)+d(u′, z)+d(z, v′) ≥ d(v, u′)+2.
On the other hand, because v ∈ [u, u′] and because v is adjacent to u, we have
d(u, u′) = 1+d(v, u′). Because G is antipodal, we have d(v, v′) = d(u, u′) = diam(G)
and thus d(v, v′) = d(u, u′) = 1 + d(v, u′) ≥ d(v, u′) + 2; a contradiction.

The following theorem gives a sufficient condition for an antipodal bipartite graph
to be regular.

Theorem 3 Let G = (V, E) be an antipodal bipartite graph. If for any two adjacent
vertices u and v of G there exists a (graph) isomorphism f from the subgraph G1

induced by [v, u′] onto the subgraph G2 induced by [u, v′] such that f(x) = y for any
two adjacent vertices x ∈ G1 and y ∈ G2, then G is regular.

Proof. Let u and v be adjacent vertices. According to the isomorphism f , f(u) =
v and deg(u) = deg(v). Because u′ and v′ also are adjacent, u′ ∈ [v, u′] and v′ ∈
[u, v′], we have f(u′) = v′ and deg(u′) = deg(v′). This implies, by Lemma 2, that
deg(u′) = deg(u) = deg(v) = deg(v′), for any two adjacent vertices u and v. If z
is adjacent to u, then by repeating the proof above we have deg(z) = deg(u), and
further, deg(z) = deg(u) = deg(v). Because G is connected, the result follows.

3 Spherical graphs

A graph G = (V, E) is spherical if for any two vertices u and v and for any z ∈ [u, v]
there exists precisely one vertex z1 such that [z, z1] = [u, v]. In [6] a graph G = (V, E)
is defined as a (0, λ)-graph if any two distinct vertices u and v have exactly λ common
neighbours or none at all. Clearly in a (0, 2)-graph for any two vertices u and v such
that d(u, v) = 2 and for any z ∈ [u, v] there exists precisely one vertex z1 such that
[z, z1] = [u, v].

Theorem 4 A graph G = (V, E) is a hypercube if and only if G is an antipodal and
bipartite (0, 2)-graph.

As noted in [2] and [7], a graph G is a hypercube if and only if G is spherical
and bipartite. We aim to substitute this condition for a graph to be spherical with
a weaker condition of antipodality and with a local condition for a graph to be a
(0, 2)-graph. Thus we have
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Corollary 5 A bipartite graph is spherical if and only if it is an antipodal (0, 2)-
graph.

Proof of Theorem 4. A hypercube is clearly an antipodal and bipartite (0, 2)-
graph. For the converse proof we assume that G = (V, E) is an antipodal bipartite
(0, 2)-graph. Let u and v be adjacent vertices, whence [u, v′] ∪ [v, u′] = V and
[u, v′] ∩ [v, u′] = ∅.

We first prove the following result.
Claim. If u, u1, u2, ..., un is a geodesic on [u, v′], then for any ui, i = 1, 2, . . . , n

there exists a unique vertex vi ∈ [v, u′] such that vi ∈ N(ui), v, v1, v2, ..., vn is a
geodesic on [v, u′] and N(vi) ∩ [u, v′] = {ui}.

Proof of Claim. We proceed by induction on n. If n = 1, then u1 is adjacent to
u and d(u1, v) = 2. Because u ∈ [u1, v] and G is a (0, 2)-graph, there exists a vertex
v1 such that [u, v1] = [v, u1]. Clearly the path u, v, v1 is a geodesic. If v1 ∈ [u, v′],
there exists a geodesic u, v, v1, . . . , v

′, which is a contradiction. Thus v1 ∈ [v, u′].
Let w be a vertex such that w ∈ N(u1) ∩ [v, u′], w 6= v1. If w ∈ N(v1), there is
a triangle u1, v1, w, u1, which is a contradiction since G is bipartite. If v, u, u1, w is
a geodesic, then u ∈ [v, u′], because w ∈ [v, u′]; a contradiction. If d(v, w) = 2,
there exists a vertex w1 ∈ [v, u′] such that w, w1, v is a geodesic. This implies an
odd cycle v, u, u1, w, w1, v, which is a contradiction. Thus d(v, w) = 1 and then
w ∈ [v, u1]. This contradicts the fact that G is a (0, 2)-graph, d(u, v1) = d(u, w) = 2,
and u, v1, w ∈ [v, u1]. Thus the Claim holds for n = 1.

Assume now, that the Claim holds for all n ≤ k − 1. Let u, u1, u2, . . . , uk be a
geodesic on [u, v′]. By the induction assumption there exists a geodesic v, v1, v2, . . . ,
vk−1 such that vi ∈ N(ui)∩ [v, u′] and N(vi)∩ [u, v′] = {ui} for all i = 1, 2, . . . , k− 1.

Because d(uk, vk−1) = 2, uk−1 ∈ [uk, vk−1], and because G is a (0, 2)-graph, there
exists a vertex vk 6= uk−1 adjacent to uk and vk−1. By induction assumption {uk−1} =
N(vk−1) ∩ [u, v′], and thus we have vk ∈ [v, u′]. Because d(v, vk−1) = k − 1 and vk

is adjacent to vk−1, we have k − 2 ≤ d(v, vk) ≤ k. If d(v, vk) = k − 2, there
exists a geodesic u, v, v1, ..., vk, uk, whence v ∈ [u, v′], which is a contradiction. If
d(v, vk) = k − 1, there exists a cycle u, u1, u2, ..., uk, vk, vk−1, ..., v, u such that the
length of the cycle is k + 1 + (k− 1) + 1 = 2k + 1, a contradiction. Thus d(v, vk) = k
and v, v1, ..., vk−1, vk is a geodesic.

If there exists a vertex z ∈ N(uk) ∩ [v, u′], z 6= vk, then z /∈ N(vk), because
otherwise uk, vk, z, uk is a triangle. Thus d(vk, z) = 2. Because d(uk−1, z) = 2, uk ∈
[uk−1, z], and G is a (0, 2)-graph, there exists a vertex w such that [uk, w] = [uk−1, z].
Clearly w ∈ N(uk−1) ∩ N(z). Two cases arise (i) w ∈ [v, u′] (ii) w ∈ [u, v′].

(i) If w ∈ [v, u′], then by induction assumption w = vk−1, and z, vk, uk−1 ∈
[uk, vk−1]. Because d(uk−1, z) = d(uk−1, vk) = 2 and G is a (0, 2)-graph we have a
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contradiction.
(ii) Since w ∈ N(uk−1) and d(u, uk−1) = k − 1, the relation w ∈ N(uk−1) implies

k − 2 ≤ d(u, w) ≤ k. If d(u, w) = k − 2, then z ∈ N(w) ∩ [v, u′] and the induction
assumption imply d(v, z) = k − 2. Because z, uk, vk is a geodesic and d(v, vk) = k,
the vertex uk is on the v, v1, ..., vk geodesic. Now, by the relation vk ∈ [v, u′] we
have uk ∈ [v, u′], which is a contradiction. Because z ∈ N(w) ∩ [v, u′] and the
induction assumption, the assumption d(u, w) = k − 1 implies d(v, z) = k − 1.
But then there exists a cycle u, u1, ..., uk, z, ..., v, u of length k + 1 + k − 1 + 1 =
2k + 1; a contradiction. Since w is adjacent to uk−1, the relation d(u, w) = k implies
that the path u, u1, ..., uk−1, w is a geodesic. By the first part of the proof of the
Claim, there exists a geodesic v, z1, z2, ..., zk−1, z on [v, u′] such that zi ∈ N(ui) for
all i = 1, 2, . . . k − 1. By induction assumption, zk−1 = vk−1. This implies that
uk−1, z, vk ∈ [vk−1, uk] and d(uk−1, z) = d(uk−1, vk) = 2 which is a contradiction,
because G is a (0, 2)-graph and d(vk−1, uk) = 2. If we assume that there exists
z ∈ [u, v′] ∩ N(vk), z 6= uk, then by symmetry this yields a contradiction. Thus the
Claim holds for all n.

To prove Theorem 4, we proceed by induction on |V | of G. If |V | = 4, then clearly
G is Q2. Assume that the theorem holds for |V | ≤ k, and let u and v be adjacent
vertices. By the Claim, the subgraphs induced by [u, v′] and [v, u′] are isomorphic,
and moreover, G is isomorphic to the graph Q1 × G0 where G0 is isomorphic to the
subgraph induced by [u, v′]. By the induction assumption, it suffices to prove that
the subgraph G1 of G induced by [u, v′] is an antipodal and bipartite (0, 2)-graph.

Because G is bipartite, the subgraph G1 is also bipartite. It follows from the
Claim that every x − y geodesic, x, y ∈ [u, v′], contains p vertices of [v, u′], where p
is zero or an even number. Thus if d(x, y) = 2 and x, y ∈ [u, v′], then [x, y] does not
contain any vertices of [v, u′]. Thus [x, y] ⊆ [u, v′] and G1 is a (0, 2)-graph, since G
is a (0, 2)-graph.

Assume that u1 ∈ [u, v′]. By the Claim there is a unique vertex v1 ∈ N(u1)∩[v, u′]
and thus v′

1
∈ [u, v′]. To prove the antipodality of G1 it suffices to prove that

[u1, v
′

1
] = [u, v′].

Assume first, that z ∈ [u, v′]. Since z ∈ [v1, v
′

1
], there exists a geodesic v1, z1, · · · ,

zn−1, z, · · · , v
′

1
. Since z, u1 ∈ [u, v′] and v1 is adjacent to u1, there exists, by the

Claim, a geodesic u1, w1, w2, · · · , wn−1, z, · · · , v
′

1
such that wi = zi, if zi ∈ [u, v′] and

wi ∈ N(zi) ∩ [u, v′], if zi ∈ [v, u′]. By the Claim, the vertex wi is unique for all
i = 1, . . . , n − 1, and thus z ∈ [u1, v

′

1
].

To prove the another inclusion we assume that there exists a geodesic u1, · · · , z1,
z2, · · · , zl, · · · , v

′

1
, such that z1, zl ∈ [u, v′] and z2, . . . zl−1 ∈ [v, u′]. We may assume

now that the u1 − z1 geodesic does not contain any vertex of [v′, u]. If l = 3, then
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z1, zl ∈ N(z2) ∩ [v, u′], which contradicts the Claim. Thus z3 ∈ [v, u′]. Because
G is a (0, 2)-graph and d(z1, z3) = 2, there exists a vertex w2 ∈ N(z1) ∩ N(z3),
w2 6= z2. By the Claim, N(z1) ∩ [v, u′] = {z2}, and thus w2 ∈ [u, v′]. By repeating
the process above we conclude, that there exists a geodesic z1, w2, w3, · · · , wl−1, such
that wi ∈ N(zi)∩ [u, v′] for all i = 2, 3, . . . , l−1. Since zl, wl−1 ∈ N(zl−1)∩ [u, v′], the
Claim implies wl−1 = zl, which contradicts the fact that the path z1, z2 · · · , zl goes
along a u1 − v′

1
geodesic. Thus any vertex on the u1 − v′

1
geodesic is in the interval

[u, v′]. This completes the proof.

4 Prime convex intersection characterization

A nonempty vertex set A ⊂ V is a convex, if x, y ∈ A and z on an x − y geodesic
imply that z ∈ A. Clearly a nonempty intersection A ∩ B of two convexes is a
convex, too. By < D > we denote the least convex containing the vertex set D:
< D >=

⋂
{C|C is a convex and D ⊂ C}. The least convex containing the vertices

x and y is briefly denoted by < x, y >. In general, the convex < x, y > also contains
vertices not on an x−y geodesic and hence [x, y] ⊂< x, y >. In the covering graph of
a finite distributive lattice, [x, y] =< x, y > for each two vertices x and y, and thus
in each (finite) hypercube < x, y >⊂ [x, y] for all x, y ∈ V . A convex P 6= V is called
prime if also the set V \P = P̄ is a convex. A graph G is a prime convex intersection
graph if each convex C of G is the intersection of prime convexes containing C:
C =

⋂
{P |P is a prime convex and C ⊂ P}. For example, all nontrivial trees and all

nontrivial complete graphs are prime convex intersection graphs. As the definition
shows, prime convexes exist in pairs and this property is used in our characterization

Theorem 6 A graph G is an n−cube Qn if and only if
(i) there are n disjoint pairs of prime convexes in G;
(ii) G is a prime convex intersection graph;
(iii) each intersection of n prime convexes, no one of which is from the same

pair, is a vertex of G.

Proof. Let G have the properties (i) − (iii). By Theorem 4 proving that G is a
hypercube it suffices to prove that G is an antipodal and bipartite (0, 2)-graph. We
prove this by sequence of claims given and proved below.

Claim 1. Each prime convex Pi of G is maximal, i.e. there is no prime convex
Pj in G containing Pi properly.

Proof of Claim 1. Assume that P1 ⊂ P2 with P1 6= P2. By (iii), there exists a
vertex a of G such that {a} = P1 ∩ P2 ∩ P3 ∩ ... ∩ Pn. Because P1 ⊂ P2, we have
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P1 ∩ P̄2 = ∅ and thus ∅ = P1 ∩ P̄2 ∩ P3 ∩ ... ∩ Pn contradicts the property (iii), and
the Claim 1 follows.

If ab is an edge of G, a ∈ Pi and b ∈ P̄i, we say that the pair Pi, P̄i of prime
convexes cuts off the edge ab.

Claim 2. If a is a vertex of G, then each pair Pi, P̄i, i = 1, ..., n cuts off exactly
one edge incident to a.

Proof of Claim 2. Because G is a prime convex intersection graph and the vertex
a is obtained as an intersection of prime convexes, the pairs of prime convexes of
G must cut off each edge incident to a. If there is a pair of prime convexes, say
P1, P̄1, such that a ∈ P1 but the pair does not cut off any edge incident to a,
then the vertex a has an intersection representation {a} =

⋂
{Pi|i = 2, 3, .., n}, and

because a ∈ P1, a also has the representation {a} =
⋂
{Pi|i = 1, 2, ..., n}. On the

other hand, a 6∈ P̄1, and thus P̄1 ∩ P2 ∩ ... ∩ Pn = ∅, which contradicts (iii), and
thus each pair of prime convexes cuts off at least one edge incident to a. Let now
a ∈ P1 and the pair P1, P̄1 cut off at least two edges ab1 and ab2. If the edge b1b2

does not exist in G, then one of the b1 − b2 geodesics goes through a, and thus
a ∈ P̄1; a contradiction. Thus we assume that the edge b1b2 exists in G and the
vertices a, b1, b2 induce a complete subgraph K3 of G. In order to obtain the vertex
b1 as an intersection of prime convexes, there must be a pair cutting off all edges
incident to b1 or to b2 in K3. Assume that the pair P2, P̄2 cuts off the edges ab1 and
b1b2 and b1 ∈ P̄2, and thus the edge ab1 is cutted off by at least two pairs P1, P̄1

and P2, P̄2. The relation P2 ⊂ P̄1 is a contradiction because each prime convex is
maximal as stated above. Assume that P2 6⊂ P̄1, i.e. there is a vertex c belonging to
the intersection P1 ∩P2. Because G is a prime convex intersection graph and {a, b1}
is a convex as a set of end vertices of an edge, we have {a, b1} =

⋂
{Pi|a, b1 ∈ Pi}.

Thus {a} = P̄2 ∩ (
⋂
{Pi|a, b1 ∈ Pi}) = P1 ∩ P̄2 ∩ (

⋂
{Pi|a, b1 ∈ Pi}) containing

by (iii) at most n prime convexes from n disjoint pairs of prime convexes. Now
P1 ∩ P2 ∩ (

⋂
{Pi|a, b1 ∈ Pi}) = ∅ because the vertex c ∈ P1 ∩ P2 cannot belong to

the intersection {a, b1} =
⋂
{Pi|a, b1 ∈ Pi}. This contradicts (iii), and the Claim 2

holds.
Claim 2 also implies that each vertex of G has degree n i.e. G is regular of degree

n.
Claim 3.The graph G is bipartite.
Proof of Claim 3. If a prime convex Pi cuts off an edge of a cycle it must cut off

also another edge of the cycle (i.e. cut off the cycle), because Pi induces a connected
subgraph of G. If there is an odd cycle in G there also is a least odd cycle C without
chords in G. If Pi cuts off an edge of C, it also cuts off an opposite edge because
otherwise Pi or P̄i is not a convex. Each edge of C must be cutted off by prime
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convexes; if there is an uncutted edge ab then its endpoints do not have a prime
convex intersection representation which contradicts (ii). Because C is odd, one
edge must be cutted off twice, which contradicts the proof of the Claim 2 and Claim
3 holds.

Claim 4. The graph G is antipodal.
Proof of Claim 4. If {a} = P1 ∩ P2 ∩ ... ∩ Pn we denote the set P̄1 ∩ P̄2 ∩ ... ∩ P̄n

by {a′} and call a′ the complement of a. Let d(a, a′) = l. By the definitions of
a and a′, no prime convex of G can contain simultaneously the vertices a and a′.
Moreover, any prime convex Pk cannot simultaneously cut off (at least) two edges
of an x − x′ geodesic: if Pk cuts off the edges e1e2 and eres of an x − x′ geodesic
such that e2, er ∈ Pk and e1, es ∈ P̄k, then e2, er ∈ P̄k, because e2 and er are on
the e1 − es geodesic. In order to obtain each vertex of an x − x′ geodesic as prime
convex intersection, each edge of that x − x′ geodesic must be cutted off exactly
once. If l < n, there is a pair Pj, P̄j not cutting of any edge of x − x′ geodesic, and
thus x, x′ ∈ Pj or x, x′ ∈ P̄j, which is a contradiction. Because each edge of x − x′

geodesic must be cutted off, the relation l > n cannot hold, and thus we have l = n.
By the definition of a′, there is for any vertex a exactly one vertex a′. If x 6= y for
two vertices x and y of G, there must be at least one pair, say Pt, P̄t, such that y ∈ Pt

and x 6∈ Pt. This means that y 6∈ P̄t and x ∈ P̄t, whence y′ ∈ P̄t, x′ ∈ Pt, and x′ 6= y′.
Hence for any vertex a of G there is a unique vertex a′ such that d(a, a′) = n.

The vertices in P1 induce a connected subgraph G1

n−1
of the graph G which

we shall here denote by Gn (G = Gn). If Pi is a prime convex of Gn, there are
n − 1 pairs of prime convexes P1 ∩ Pi, P1 ∩ P̄i (i = 2, 3, ..., n) in G1

n−1
. This proves

(i) for G1

n−1
. If a is vertex in P1, then we have by (iii) of Gn the representation

{a} = P1 ∩ P2 ∩ P3 ∩ ... ∩ Pn = (P1 ∩ P2) ∩ (P1 ∩ P3) ∩ ... ∩ (P1 ∩ Pn), which is a
representation of a as an intersection of n − 1 prime convexes of G1

n−1
. Thus each

prime convex intersection representation of a convex in G1

n−1
can be obtained from

the corresponding representation in Gn. This shows that G1

n−1
has the properties

(ii) and (iii). The result holds also if P1 is replaced by any of the prime convexes
Pi, P̄i(i = 2, 3, ..., n) and P̄1. Because G1

n−1
has the same properties as G = Gn, we

can deduce from G1

n−1
(and from all other graphs deduced from Gn by the same way

as G1

n−1
) graph G12

n−2
. The graph G12

n−2
is induced by the vertices in the set P1 ∩ P2

and there are n−2 pairs (P1∩P2)∩Pi, (P1∩P2)∩P̄i (i = 3, 4, ..., n) of prime convexes
in G12

n−2
. As above, we see, that G12

n−2
has the properties (i) − (iii). By continuing

this process, the vertex set P1∩P2 ∩ ...∩Pn−2 induces the graph G12...n−2

2
having two

pairs (P1 ∩ ... ∩ Pn−2) ∩ Pj, (P1 ∩ ... ∩ Pn−2) ∩ P̄j (j = n − 1, n) of prime convexes
and having the properties (i) − (iii) of the theorem. Thus the properties proved
to hold for G = Gn also hold for G12...n−2

2
, and accordingly, G12...n−2

2
is regular of
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degree 2 and there are four vertices obtained as intersections of the prime convexes:
{c1} = (P1 ∩ ... ∩ Pn−2) ∩ Pn−1 ∩ (P1 ∩ ... ∩ Pn−2) ∩ Pn, {c2} = (P1 ∩ ... ∩ Pn−2) ∩
Pn−1 ∩ (P1 ∩ ...∩ Pn−2) ∩ P̄n, {c3} = (P1 ∩ ...∩ Pn−2) ∩ P̄n−1 ∩ (P1 ∩ ... ∩ Pn−2) ∩ Pn

and {c4} = (P1 ∩ ... ∩ Pn−2) ∩ P̄n−1 ∩ (P1 ∩ ... ∩ Pn−2) ∩ P̄n. By the definition,
c4 = c′

1
and c3 = c′

2
. Now the proof of the properties of Gn implies that d(c1, c

′

1
) =

2 = d(c2, c
′

2
) in G12...n−2

2
. These properties imply that G12...n−2

2
is a four-cycle, where

[x, x′] = V (G12...n−2

2
) for each vertex x of G12...n−2

2
. By using induction, we assume

that [x, x′] = V (G12...j
n−j ), j = 1, 2, ..., n−2 and thus [x, x′] = V (G1

n−1
) for each vertex x

of G1

n−1
, and prove that [x, x′] = V (Gn) for each vertex x of Gn. Let the vertex x have

the representation {x} = P1∩P2∩P3∩ ...∩Pn in Gn and thus the same vertex has in
the graph G1

n−1
induced by the vertex set P1 the representation {x} = (P1∩P2)∩(P1∩

P3)∩...∩(P1∩Pn) = P1∩(P2∩P3∩...∩Pn). The complement c of x in the graph G1

n−1

is by the definition (P1∩P̄2)∩(P1∩P̄3)∩...∩(P1∩P̄n) = P1∩(P̄2∩P̄3∩...∩P̄n) = {c}.
By the induction assumption, [x, c] = V (G1

n−1
) and by the proof above d(x, c) = n−1

in G1

n−1
as well as in Gn. The representations {x′} = P̄1 ∩ P̄2 ∩ P̄3 ∩ ... ∩ P̄n and

{c} = P1 ∩ (P̄2 ∩ P̄3 ∩ ...∩̄Pn) show that x′, c ∈ P̄2 ∩ P̄3 ∩ ... ∩ P̄n. Because a pair of
prime convexes cuts off exactly one edge incident to a vertex of Gn, the prime convex
P1 (as well as P̄1) cuts off the edge x′c and P̄2 ∩ P̄3 ∩ ... ∩ P̄n = {x′, c}. Because
d(x, x′) = n = d(x, c) + 1 in Gn, we see that each vertex of [x, c] = V (G1

n−1
) = P1 is

on an x − x′ geodesic in Gn. By repeating the proof for the subgraph G1̄

n−1
induced

by P̄1 in Gn we see that each vertex in V (G1̄

n−1
) = P̄1 is on an x − x′ geodesic in

Gn. Accordingly, [x, x′] = P1 ∪ P̄1 = V (Gn) for each vertex x and its complement in
Gn and thus the graph G = Gn is antipodal such that the complement x′ is also the
antipode of x and Claim 4 holds.

Claim 5. G is a (0, 2)-graph.
Proof of Claim 5. Let x and y be two vertices of G such that d(x, y) = 2. Because

G is a prime convex intersection graph, < x, y >=
⋂
{Pi|x, y ∈ Pi}. As seen above,

each nonempty intersection of prime convexes induces a subgraph Gxy of G having
the properties (i)− (iii). The vertex x has a complement/an antipode x′ in Gxy such
that [x, x′] = V (Gxy) and thus the vertex y is on an x − x′ geodesic in Gxy as well
as in G. If y 6= x′, then d(x, x′) > d(x, y) = 2, and we can cut off the vertex x′ from
Gxy by using prime convexes containing x′. As a result we obtain a smaller convex
containing x and y, which is a contradiction. Thus x′ = y, d(x, x′) = 2, and Gxy is a
4-cycle (without chords) of G. In a 4-cycle there exists for a vertex z a unique vertex
z1 with [z, z1] containg all vertices of the 4-cycle. Hence the Claim 5 holds and so
the conditions (i) − (iii) imply an n-hypercube by Theorem 4.

Conversely, let G be an n-hypercube Qn. As well known, Qn = Q1×Qn−1, which
means that Qn is obtained by combining two complementary n−1-hypercubes Q1

n−1
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and Q2

n−1
such that if f is an isomorphism between these two n− 1-hypercubes then

each vertex x of Q1

n−1
is joined by an edge to its image vertex f(x) in Q2

n−1
. As

known, an n-hypercube is a prime convex intersection graph where the vertex sets
V (Q1

n−1
), V (Q2

n−1
) of each pair of complementary n − 1-hypercubes Q1

n−1
and Q2

n−1

constitute a pair of prime convexes. As well known, there are n disjoint pairs of
complementary n − 1-hypercubes in an n−hypercube. Thus (i) and (ii) hold in the
graph of Qn. It is also known that the intersection of two n − 1-hypercubes of an
n−hypercube is an n− 2-hypercube or an empty graph (when the n− 1-hypercubes
are the pair of complementary n−1-hypercubes of Qn). We prove the validity of (iii)
of Qn by induction on the dimension of the hypercube. One can see by inspection
that (iii) holds for Q2 and we assume that (iii) holds for all n − 1-hypercubes. Let
V (Qn−1(j)) j = 1, ..., n be n prime convexes of Qn, no one of which is from the same
pair and consider the intersection

⋂
{V (Qn−1(j))|j = 1, ..., n}. We can write this

intersection as follows:
⋂
{V (Qn−1(j))|j = 1, ..., n} = (V (Qn−1(1)) ∩ V (Qn−1(n))) ∩

(V (Qn−1(2)) ∩ V (Qn−1(n))) ∩ (V (Qn−1(3)) ∩ V (Qn−1(n))) ∩ ... ∩ (V (Qn−1(n − 1)) ∩
V (Qn−1(n))), where each set V (Qn−1(j)) ∩ V (Qn−1(n)) (j = 1, ..., n − 1) is the
vertex set of an n− 2−hypercube/prime convex in the n− 1−hypercube induced by
V (Qn−1(n)) in Qn. By the assumption, this intersection in the n − 1−hypercube is
a vertex of Qn−1(n) which is contained in Qn. This proves the assertion for Qn and
the characterization follows.
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