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Abstract

In this article we prove explicit formulae for the number of non-isomorphic
cluster-tilted algebras of type Ãn in the derived equivalence classes. In partic-
ular, we obtain the number of elements in the mutation classes of quivers of
type Ãn. As a by-product, this provides an alternative proof for the number
of quivers mutation equivalent to a quiver of Dynkin type Dn which was first
determined by Buan and Torkildsen in [5].
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1 Introduction

Quiver mutation is a central element in the recent theory of cluster algebras intro-
duced by Fomin and Zelevinsky in [10]. It is an elementary operation on quivers
which generates an equivalence relation. The mutation class of a quiver Q is the
class of all quivers which are mutation equivalent to Q.

The mutation class of quivers of type An is the class containing all quivers mu-
tation equivalent to a quiver whose underlying graph is the Dynkin diagram of type
An, shown in Figure 1(a). This mutation class was described by Caldero, Chapoton
and Schiffler [7] in terms of triangulations. An explicit characterisation of the quiv-
ers themselves can be found in Buan and Vatne in [6]. The corresponding task for
type Dn, shown in Figure 1(b), was accomplished by Vatne in [12]. Furthermore, an
explicit formula for the number of quivers in the mutation class of type An was given
by Torkildsen in [11] and of type Dn by Buan and Torkildsen in [5].

In this article, we consider quivers of type Ãn−1. That is, all quivers mutation
equivalent to a quiver whose underlying graph is the extended Dynkin diagram of
type Ãn−1, i.e., the n-cycle, see Figure 1(c). If this cycle is oriented, then we get
the mutation class of Dn, see Fomin et al. in [9] and Type IV in [12]. If the cycle is
non-oriented, we get the mutation classes of Ãn−1, studied by the first named author
in [2]. The purpose of this paper is to give an explicit formula for the number of
quivers in the mutation classes of quivers of type Ãn−1.

A cluster-tilted algebra C of type Ãn−1 is finite dimensional over an algebraically
closed field K. Therefore, there exists a quiver Q which is in one of the mutation
classes of Ãn−1 (see for instance Buan, Marsh and Reiten [4] or Assem et al. [1])
and an admissible ideal I of the path algebra KQ of Q such that C ∼= KQ/I.
Furthermore, two cluster-tilted algebras of the same type are isomorphic if and only
if the corresponding quivers are isomorphic as directed graphs.

Thus, we also obtain the number of non-isomorphic cluster-tilted algebras of type
Ãn−1. In fact, we prove a more refined counting theorem. Namely, one can classify
these algebras up to derived equivalence, see [2]. Each equivalence class is determined
by four parameters, r1, r2, s1 and s2, where r1+2r2+s1+2s2 = n, up to interchanging
r1, r2 and s1, s2. Without loss of generality, we can therefore assume that r1 < s1

or r1 = s1 and r2 ≤ s2. Given positive integers r and s with r + s = n, the set of
equivalence classes with r1 + 2r2 = r and s1 + 2s2 = s corresponds to one mutation
class of quivers.

Theorem. The number of cluster-tilted algebras in the derived equivalence classes
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with parameters r1, r2, s1 and s2 is given by

∑

k|r,k|r2,k|s,k|s2

φ(k)

k
(−1)(r+r2+s+s2)/k

∑

i,j≥0
(i,j)6=(0,0)

[

(−1)i+j

2(i + j)

(

2i

i, 2i − r/k, r2/k, (r − r2)/k − i

)

(

2j

j, 2j − s/k, s2/k, (s − s2)/k − j

)]

if r1 < s1 or r1 = s1 and r2 < s2. Otherwise, if r1 = s1 and r2 = s2, the number is

2r−2r2−2

(

r

r2, r2, r − 2r2

)

+
∑

k|r,k|r2

i,j≥0
(i,j)6=(0,0)

[

φ(k)

k

(−1)i+j

4(i + j)

(

2i

i, 2i − r/k, r2/k, (r − r2)/k − i

)

(

2j

j, 2j − r/k, r2/k, (r − r2)/k − j

)]

.

Here φ(k) is Euler’s totient function, i.e., the number of 1 ≤ d < k coprime to k and
(

m
m1,m2,...,mℓ

)

with m1 + m2 + · · ·+ mℓ = m denotes the multinomial coefficient.

In particular, for r = r1 + 2r2 and s = s1 + 2s2, we obtain the number ã(r, s) of
quivers mutation equivalent to a non-oriented n-cycle with r arrows oriented in one
direction and s arrows oriented in the other direction:

ã(r, s) =



















1
2

∑

k|r,k|s

φ(k)
r+s

(

2r/k
r/k

)(

2s/k
s/k

)

if r < s,

1
2

(

1
2

(

2r
r

)

+
∑

k|r

φ(k)
4r

(

2r/k
r/k

)2

)

if r = s.

Additionally, we obtain the number of quivers in the mutation class of a quiver
of Dynkin type Dn. This formula was first determined in [5]:

Corollary. The number of quivers of type Dn, for n ≥ 5, is given by

ã(0, n) =
∑

d|n

φ(n/d)

2n

(

2d

d

)

.

The number of quivers of type D4 is 6.
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(a)

(b)
(c)

Figure 1: The Dynkin diagrams of types An and Dn and the extended Dynkin
diagram of type Ãn−1, assuming that all diagrams have n vertices.

The paper is organized as follows. In Section 2 we collect some basic notions
about quiver mutation. Furthermore, we present the classification of quivers of type
Ãn−1 according to the parameters r and s mentioned above, as given in [2]. In
Section 3 we restate the classification as a combinatorial grammar. Using ‘generat-
ingfunctionology’ we obtain the formulae for the assymmetric case where r1 6= s1 or
r2 6= s2. For the case r1 = s1 and r2 = s2 some additional combinatorial consid-
erations, counting the number of quivers invariant under reflection, yield the result
stated above.

The formulae for ã(r, s) are developed in parallel. In fact, it is remarkable that
the generating function including variables for the parameters r2 and s2 can be
obtained by specialising the much simpler generating function having variables for
the parameters r and s only. Moreover, extracting the coefficient of prqsxr2ys2 in
a naive way from the equations obtained from combinatorial grammars results in a
much uglier five-fold sum, instead of the three-fold sum stated in the main theorem.

Finally, at the end of Section 3 we prove the formula for the number of quivers in
the mutation class of type Dn, by exhibiting an appropriate bijection between these
and a subclass of the objects counted in Section 3.2.

Acknowledgements: We would like to thank Thorsten Holm for invaluable
comments on a preliminary version of this article, and Ira Gessel for providing the
beautiful proof of Lemma 3.3. We also would like to thank Christian Krattenthaler
who gave an elementary proof of the same lemma, of which at first we only had a
computer assisted proof.

2 Preliminaries

A quiver Q is a (finite) directed graph where loops and multiple arrows are allowed.
Formally, Q is a quadruple Q = (Q0, Q1, h, t) consisting of two finite sets Q0, Q1
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whose elements are called vertices and arrows resp., and two functions

h : Q1 → Q0, t : Q1 → Q0,

assigning a head h(α) and a tail t(α) to each arrow α ∈ Q1.
Moreover, if t(α) = i and h(α) = j for i, j ∈ Q0, we say α is an arrow from i to

j and write i
α−→ j. In this case, i and α as well as j and α are called incident to

each other. As usual, two quivers are considered to be equal if they are isomorphic
as directed graphs. The underlying graph of a quiver Q is the graph obtained from
Q by replacing the arrows in Q by undirected edges.

A quiver Q′ = (Q′0, Q
′
1, h
′, t′) is a subquiver of a quiver Q = (Q0, Q1, h, t) if

Q′0 ⊆ Q0 and Q′1 ⊆ Q1 and where h′(α) = h(α) ∈ Q′0, t′(α) = t(α) ∈ Q′0 for any
arrow α ∈ Q′1. A subquiver is called a full subquiver if for any two vertices i and j
in the subquiver, the subquiver also will contain all arrows between i and j present
in Q.

An oriented cycle is a subquiver of a quiver whose underlying graph is a cycle
on at least two vertices and whose arrows are all oriented in the same direction, i.e.,
every vertex has outdegree 1. By contrast, a non-oriented cycle is a subquiver of a
quiver whose underlying graph is a cycle, but not all of its arrows are oriented in the
same direction.

Throughout the paper, unless explicitly stated, we assume that

• quivers do not have loops or oriented 2-cycles, i.e., h(α) 6= t(α) for any arrow
α and there do not exist arrows α, β such that h(α) = t(β) and h(β) = t(α);

• quivers are connected.

2.1 Quiver mutation

In [10], Fomin and Zelevinsky introduced the quiver mutation of a quiver Q without
loops and oriented 2-cycles at a given vertex of Q:

Definition 2.1. Let Q be a quiver. The mutation of Q at a vertex k is defined to
be the quiver Q∗ := µk(Q) given as follows.

1. Add a new vertex k∗.

2. Suppose that the number of arrows i → k in Q equals a, the number of arrows
k → j equals b and the number of arrows j → i equals c ∈ Z. Then we have
c− ab arrows j → i in Q∗. Here, a negative number of arrows means arrows in
the opposite direction.
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3. For any arrow i → k (resp. k → j) in Q add an arrow k∗ → i (resp. j → k∗) in
Q∗.

4. Remove the vertex k and all its incident arrows.

No other arrows are affected by this operation.

Note that mutation at sinks or sources only means changing the direction of all
incoming and outgoing arrows. Mutation at a vertex k is an involution on quivers,
that is, µk(µk(Q)) = Q. It follows that mutation generates an equivalence relation
and we call two quivers mutation equivalent if they can be obtained from each other
by a finite sequence of mutations. The mutation class of a quiver Q is the class of
all quivers (up to relabelling of the vertices) which are mutation equivalent to Q.

We have the following well-known lemma:

Lemma 2.2. If quivers Q, Q′ have the same underlying graph which is a tree, then
Q and Q′ are mutation equivalent.

This lemma implies that one can speak of quivers associated to a simply-laced
Dynkin diagram, i.e., the Dynkin diagram of type An, Dn or En: we define a quiver
of type An (resp. Dn, En) to be a quiver in the mutation class of all quivers whose
underlying graph is the Dynkin diagram of type An (resp. Dn, En). We remark that
some authors use this term to refer to an orientation of the Dynkin diagram of type
An (resp. Dn, En).

One can easily check that the oriented n-cycle is also of type Dn, as has been
done in [12, Type IV]. Two non-oriented n-cycles are mutation equivalent if and only
if the number of arrows oriented clockwise coincide, or the number of arrows oriented
clockwise in one cycle agrees with the number of arrows oriented anti-clockwise in
the other cycle. This was shown in [2, 9] and is restated in Theorem 2.10. We call
quivers in those mutation classes quivers of type Ãn−1. They will be described in
more detail in Section 2.2. In Figure 1, the Dynkin diagrams of types An and Dn

and the extended Dynkin diagram of Ãn−1 are shown.

Example 2.3. The mutation class of type Ã3 of the non-oriented cycles with two
arrows in each direction is given by

2 3

1 4

µ3←→

1 4

2 3

µ4←→

1 4

2 3

µ2←→

2 3

1 4

.
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The mutation class of type Ã3 of the non-oriented cycle with 3 arrows in one
direction and 1 arrow in the other is given by

1 4

2 3

µ4←→

2 3

1 4

µ2←→

1 4

2 3

µ1←→

3 4

2

1
µ2←→

3 4

2

1 .

2.2 Mutation classes of Ãn−1−quivers

Following [2], we now describe the mutation classes of quivers of type Ãn−1 in more
detail:

Definition 2.4. Let Qn−1 be the class of quivers with n vertices which satisfy the
following conditions:

1. There exists precisely one full subquiver which is a non-oriented cycle of length
≥ 2. Thus, if the length is two, it is a double arrow.

2. For each arrow x
α−→ y in this non-oriented cycle, there may (or may not) be a

vertex zα which is not on the non-oriented cycle, such that there is an oriented
3-cycle of the form

x y

zα

α

Apart from the arrows of these oriented 3-cycles there are no other arrows
incident to vertices on the non-oriented cycle.

3. If we remove all vertices in the non-oriented cycle and their incident arrows,
the result is a disconnected union of quivers, one for each zα. These are quivers
of type Akα

for kα ≥ 1 (see [6] for the mutation class of An), and the vertices
zα have at most two incident arrows in these quivers. Furthermore, if a vertex
zα has two incident arrows in such a quiver, then zα is a vertex in an oriented
3-cycle. We call these quivers rooted quivers of type A with root zα. Note that
this is a similar description as for Type IV in [12].

The rooted quiver of type A with root zα is called attached to the arrow α.
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Remark 2.5. Our convention is to choose only one of the double arrows to be part
of the oriented 3-cycle in the following case:

Example 2.6. The following quiver is of type Ã21:

α

x

y

zα

rooted quiver of type A5

Definition 2.7. A realization of a quiver Q ∈ Qn−1 is the quiver together with an
embedding of the non-oriented cycle into the plane. We do not care about a particular
embedding of the other arrows, i.e., there are at most two different realizations of
any given quiver. Thus, we can speak of clockwise and anti-clockwise oriented arrows
in the non-oriented cycle.

We will see in Section 3 that it is straightforward to count the number of possible
realizations of quivers in a mutation class of Ãn−1. Since the two realizations of a
quiver may coincide, we will need an additional argument to count the number of
quivers themselves.

As in [2] we can define parameters r1, r2, s1 and s2 for a realization of a quiver
Q ∈ Qn−1 as follows:

Definition 2.8. Let Q be a quiver in Qn−1 and fix a realization of Q. The arrows
in Q which are part of the non-oriented cycle are called base arrows. Let r1 be the
number of arrows which are not part of any oriented 3-cycle and which are either

the electronic journal of combinatorics 15 (2008), #R00 8



1. base arrows and oriented anti-clockwise, or

2. contained in a rooted quiver of type A attached to a base arrow α which is
oriented anti-clockwise.

(1) (2) α

C

zα

Let r2 be the number of oriented 3-cycles

1. which share an arrow α with the non-oriented cycle and α (a base arrow) is
oriented anti-clockwise, or

2. which are contained in a rooted quiver of type A attached to a base arrow α
which is oriented anti-clockwise.

(1)
α

C

(2) α

C

zα

Similarly we define the parameters s1 and s2 with ‘anti-clockwise’ replaced by
‘clockwise’.

Example 2.9. We indicate the arrows which count for the parameter r1 by
and the arrows which count for s1 by . Furthermore, the oriented 3-cycles

counting for r2 are indicated by and the oriented 3-cycles counting for s2 are

indicated by .

Consider the following realization of a quiver in Q16:
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Here, we have r1 = 3, r2 = 3, s1 = 4 and s2 = 2.

In [2] an explicit description of the mutation classes of quivers of type Ãn−1 and,
moreover, the derived equivalence classes of cluster-tilted algebras of type Ãn−1 is
given as follows:

Theorem 2.10. [2, Theorem 3.12, Theorem 5.5] Let Q1 ∈ Qn−1 be a quiver with
a realization having parameters r1, r2, s1 and s2 such that r1 < s1 or r1 = s1 and
r2 ≤ s2. Similarly, let Q2 ∈ Qn−1 be a quiver with a realization having parameters
r̃1, r̃2, s̃1 and s̃2 such that r̃1 < s̃1 or r̃1 = s̃1 and r̃2 ≤ s̃2. Then Q1 is mutation
equivalent to Q2 if and only if r1 + 2r2 = r̃1 + 2r̃2 and s1 + 2s2 = s̃1 + 2s̃2.

Moreover, two cluster-tilted algebras of type Ãn−1 are derived equivalent if and
only if their quivers have realizations with the same parameters r1, r2, s1 and s2.

3 A Combinatorial Grammar

In this section we describe the elements of the mutation classes of type Ãn−1 by a
combinatorial grammar. This can be viewed as an exercise in the theory of species
(introduced by Joyal, see the book [3] by Bergeron, Labelle and Leroux) or the
symbolic method (as detailed in the recent book [8] by Flajolet and Sedgewick). We
first give a recursive description of rooted quivers of type A as defined in 2.4. A quiver
of type Ãn−1 will then be roughly a cycle of rooted quivers of type A.

3.1 A recursive description of rooted quivers of type A

Let A• be the set of all rooted quivers of type A. We can then describe the elements
of A• recursively. A rooted quiver of type A is one of the following:

• the root;
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• the root, incident to an arrow, and a rooted quiver of type A incident to the
other end of the arrow. The arrow may be directed either way.

• the root, incident to an oriented 3-cycle, and two rooted quivers of type A,
each being incident to one of the other two vertices of the 3-cycle.

We obtain the following combinatorial grammar:

=A
•

A
•

A
•

A
•

A
•

∪ ∪

We set the weight of an arrow which is not part of an oriented 3-cycle equal to
z and the weight of an oriented 3-cycle equal to tz2. Hence, the weight of a rooted
quiver Q of type A is z#{vertices in Q}−1t#{oriented 3-cycles in Q}. This choice of weight is
in accordance with the first part of Theorem 2.10 where we count oriented 3-cycles
in quivers (the number of which we denoted r2, resp. s2) twice.

Thus, let

A•(z, t) =
∑

Q∈A•

z#{vertices in Q}−1t#{oriented 3-cycles in Q}

be the generating function (in particular: the formal power series) associated to
rooted quivers of type A. From the recursive description, we obtain

A•(z, t) = 1 + 2zA•(z, t) + z2tA•(z, t)2,

or equivalently

z2tA•(z, t)2 + (2z − 1)A•(z, t) + 1 = 0.

Solving this quadratic equation for A•(z, t) and choosing the branch corresponding
to a generating function gives

A•(z, t) =
1 − 2z −

√

1 − 4(z + (t − 1)z2)

2z2t
.
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We remark that for t = 1 this is the generating function for the Catalan numbers
shifted by 1,

A•(z, 1) =
1 − 2z −

√
1 − 4z

2z2

=
∑

n≥1

1

n + 1

(

2n

n

)

zn−1,

see e.g. [3, Section 3.0 Eq. (3)].
To give a combinatorial description of the realizations of quivers in the mutation

classes of type Ãn−1 corresponding to Definition 2.8 we need auxiliary objects, which
are one of the following:

1. a single (base) arrow, oriented from left to right, or

2. a rooted quiver of type A attached to an oriented 3-cycle, whose base arrow
(see Definition 2.8) is oriented from left to right, or

3. a single (base) arrow, oriented from right to left, or

4. a rooted quiver of type A attached to an oriented 3-cycle, whose base arrow is
oriented from right to left.

Remark 3.1. The ‘base arrows’ in (1)–(4) above will become precisely the arrows of
the non-oriented cycle, which justifies the usage of the name.

Thus, we again obtain a combinatorial grammar:

= ∪ ∪ ∪B

A
•

A
•

The weight of an object Q ∈ B is p#{vertices in Q}−1x#{oriented 3-cycles in Q} if it is of
type (1) or (2), and q#{vertices in Q}−1y#{oriented 3-cycles in Q} if it is of type (3) or (4). In
particular, the weight of Q depends only on the orientation of the base arrow and
on the total number of vertices and 3-cycles of Q. Passing to generating functions,
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we obtain

B(p, q, x, y) = p + p2xA•(p, x) + q + q2yA•(q, y)

=
1 −

√

1 − 4
(

p + (x − 1)p2
)

2
+

1 −
√

1 − 4
(

q + (y − 1)q2
)

2
=
(

p + (x − 1)p2
)

C
(

p + (x − 1)p2
)

+
(

q + (y − 1)q2
)

C
(

q + (y − 1)q2
)

,

where C(z) is the generating function for the Catalan numbers,

C(z) =
1 −

√
1 − 4z

2z
=
∑

n≥0

1

n + 1

(

2n

n

)

zn.

Note that
B(p, q, x, y) = B

(

p + (x − 1)p2, q + (y − 1)q2, 1, 1
)

.

3.2 The number of quivers of type Ãn−1

In this section we will first determine the number of realizations of quivers of type
Ãn−1, as defined in Definition 2.7. This already suffices to determine the number of
quivers with parameters r1, r2, s1, s2 such that r1 < s1 or r1 = s1 and r2 < s2, see
Corollary 3.6. We then count quivers with r1 = s1 and r2 = s2 that are symmetric,
i.e., whose two realizations coincide, to determine the number of quivers in the general
case as stated in Corollary 3.9.

By Definition 2.4, a realization of a quiver of type Ãn−1 is simply a cyclic ar-
rangement of elements in B with a total of n vertices. For example, the quiver in
Example 2.9 consists of five elements of B, three of which are just arrows, the two
others are rooted quivers of type A attached to an oriented 3-cycle.

The following Lemma is the so called cycle construction, which is well known in
combinatorics, see eg. [3, Eq. (18), Section 1.4] or [8, Theorem I.1, Section I.2.2].

Lemma 3.2. Let B(z) be the generating function for a family of unlabelled objects,
where z marks size. Then the generating function for cycles of such objects is

∑

k≥1

φ(k)

k
log

(

1

1 − B(zk)

)

,

where φ(k) is Euler’s totient function, i.e., the number of 1 ≤ d < k coprime to k.
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Thus, we obtain for the generating function for realizations of quivers of type
Ãn−1 with p marking r1 + 2r2, q marking s1 + 2s2, x marking r2 and y marking s2

Ã(p, q, x, y) =
∑

k≥1

φ(k)

k
log

(

1

1 − B(pk, qk, xk, yk)

)

.

Let us first determine the coefficients in the special case of log 1
1−B(p,q,1,1)

.

Lemma 3.3. For (r, s) 6= (0, 0) we have

[prqs] log

(

1

1 − B(p, q, 1, 1)

)

=
1

2(r + s)

(

2r

r

)(

2s

s

)

,

where [prqs]G(p, q) denotes the coefficient of prqs in the formal power series G(p, q).

Proof. A direct calculation gives

1 + 2t
d

dt
log

(

1

1 − B(tp, tq, 1, 1)

)

= 1 +
2t√

1 − 4tp +
√

1 − 4tq

(

2p√
1 − 4tp

+
2q√

1 − 4tq

)

=
1√

1 − 4tp +
√

1 − 4tq

(

√

1 − 4tp +
4tp√

1 − 4tp
+
√

1 − 4tq +
4tq√

1 − 4tq

)

=
1√

1 − 4tp +
√

1 − 4tq

(

1√
1 − 4tp

+
1√

1 − 4tq

)

=
1√

1 − 4tp
· 1√

1 − 4tq

=
∑

r,s≥0

(

2r

r

)(

2s

s

)

prqstr+s .

(1)

Denoting ar,s = [prqs] log
(

1
1−B(p,q,1,1)

)

we have

1 + 2t
d

dt
log

(

1

1 − B(tp, tq, 1, 1)

)

= 1 + 2t
d

dt

∑

r,s≥0

ar,sp
rqstr+s (2)

= 1 + 2
∑

r,s≥0

(r + s)ar,sp
rqstr+s.

We now obtain ar,s by equating coefficients on the right hand sides of Equation (1)
and Equation (2).
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We can now determine the coefficients of log 1
1−B(p,q,x,y)

.

Lemma 3.4.

[prqsxr2ys2] log

(

1

1 − B(p, q, x, y)

)

= (−1)r+r2+s+s2

∑

i,j≥0
(i,j)6=(0,0)

[

(−1)i+j

2(i + j)

(

2i

i, 2i − r, r2, r − r2 − i

)

(

2j

j, 2j − s, s2, s − s2 − j

)]

,

where [prqsxr2ys2]B(p, q, x, y) denotes the coefficient of prqsxr2ys2 in the formal power
series B(p, q, x, y).

Proof. From Lemma 3.3 and the substitution B(p, q, x, y) = B(p+(x−1)p2, q+(y−
1)q2, 1, 1) it follows that

log

(

1

1 − B(p, q, x, y)

)

=
∑

i,j≥0
(i,j)6=(0,0)

1

2(i + j)

(

2i

i

)(

2j

j

)

pi(1+(x−1)p)iqj(1+(y−1)q)j .

A simple expansion gives now

log

(

1

1 − B(p, q, x, y)

)

=
∑

i,j≥0
(i,j)6=(0,0)

∑

k,l,r2,s2≥0

pi+kqj+lxr2ys2
(−1)k+r2+l+s2

2(i + j)

(

2i

i

)(

2j

j

)(

i

k

)(

j

l

)(

k

r2

)(

l

s2

)

=
∑

r,s,r2,s2≥0

prqsxr2ys2

∑

i,j≥0
(i,j)6=(0,0)

(−1)r+s+r2+s2+i+j

2(i + j)

(

2i

i

)(

2j

j

)(

i

r − i

)(

j

s − j

)(

r − i

r2

)(

s − j

s2

)

,

from which one reads off the desired result.

Putting the pieces together we obtain:
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Theorem 3.5. The number of realizations of quivers of type Ãr+s−1 with parameters
r > 0 and s > 0 is given by

1

2

∑

k|r,k|s

φ(k)

r + s

(

2r/k

r/k

)(

2s/k

s/k

)

. (3)

The number of realizations of quivers of type Ãr+s−1 with parameters r1, r2, s1, s2 such
that r = r1 + 2r2 > 0 and s = s1 + 2s2 > 0 is given by

∑

k|r,k|r2,k|s,k|s2

φ(k)

k
(−1)(r+r2+s+s2)/k

∑

i,j≥0
(i,j)6=(0,0)

[

(−1)i+j

2(i + j)

(

2i

i, 2i − r/k, r2/k, (r − r2)/k − i

)

(

2j

j, 2j − s/k, s2/k, (s − s2)/k − j

)]

. (4)

Proof. Observe that for any F (p, q) =
∑

r,s fr,sp
rqs we have

[prqs]F (pk, qk) =

{

fr/k,s/k when k|r and k|s,
0 otherwise.

Using Lemma 3.3 we get

[prqs]
∑

k≥1

φ(k)

k
log

(

1

1 − B(pk, qk, 1, 1)

)

=
∑

k≥1

φ(k)

k
[prqs] log

(

1

1 − B(pk, qk, 1, 1)

)

=
∑

k|r,k|s

φ(k)

k

k

2(r + s)

(

2r/k

r/k

)(

2s/k

s/k

)

.

The general formula follows similarly from Lemma 3.4.

As a corollary we obtain the number of quivers of type Ãr+s−1 with parameters
that do not coincide:

Corollary 3.6. For r < s, the number ã(r, s) of quivers of type Ãr+s−1 with parame-
ters r and s is given by Formula (3). For r1 < s1 or r1 = s1 and r2 < s2, the number
of quivers with parameters r1, r2, s1 and s2 is given by Formula (4).

Proof. If r1 < s1 or r1 = s1 and r2 < s2, a quiver has a unique realization with these
parameters. Therefore, the claim follows directly from Theorem 3.5.
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We have seen that a quiver of type Ã2r−1 is a non-oriented cycle of elements
in B with a total number of 2r vertices. To count quivers of type Ã2r−1, we first
have to consider symmetric quivers of type Ã2r−1, i.e., quivers where both possible
realizations coincide. To do so, we have to count lists of elements in B:

Lemma 3.7. The number of lists (B1, . . . , Bℓ) of elements in B with a total of r + ℓ
vertices is given by the central binomial coefficient

(

2r
r

)

. The number of such lists
with r2 oriented 3-cycles is given by

2r−2r2

(

r

r2, r2, r − 2r2

)

= 2r−2r2

(

r

2r2

)(

2r2

r2

)

. (5)

Proof. The generating function for elements in B taking into account only the num-
ber of vertices is B(p, p, 1, 1) = 1 − √

1 − 4p. Thus, we obtain that the number of
lists of elements in B with r + ℓ vertices in total is given by

[pr]
1

1 − B(p, p, 1, 1)
= [pr]

1√
1 − 4p

= [pr]
∑

n≥0

(

2n

n

)

pn =

(

2r

r

)

,

compare [3, Example 1.2.2(a) and Theorem 1.4.2].
Let us now prove the more refined statement, by giving a meaning to each of the

factors in the last expression of Equation (5). We first observe that r1 = r − 2r2

is precisely the number of arrows that are not part of an oriented 3-cycle, and thus
2r−2r2 is the number of their possible orientations.

The central binomial coefficient
(

2r2

r2

)

can be interpreted as the number of lists

LB∆ = (B1, . . . , Bℓ) of elements in B, where all elements consist of oriented 3-cycles
only: namely, such a list is either empty, or its first element is an oriented 3-cycle
(with its two possible orientations), to which a rooted quiver of type A, consisting of
oriented 3 cycles only, is attached. It is easy to see that the generating function for
such rooted quivers is 1−

√
1−4x

2x
. Let us denote the generating function for the lists

under consideration LB∆(x). We then have:

LB∆(x) = 1 + 2x
1 −

√
1 − 4x

2x
LB∆(x)

= 1 + (1 −
√

1 − 4x)LB∆(x)

=
1√

1 − 4x
.

Finally,
(

r
2r2

)

=
(

(2r2+1)+r1−1
r1

)

is the number of ways to choose r1 vertices (with

repetitions) in a list LB∆ where arrows can be inserted to obtain a list of elements
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v v
′

(a)

v v
′

(b)

v
′

v

(c)

Figure 2: (a) a symmetric quiver of type Ã15; (b) the list L of elements in B starting
at v end ending at v′; (c) the list rev(L) of elements in B starting at v′ end ending
at v.

in B with r + ℓ vertices and r2 oriented 3-cycles. Namely, there are 2r2 + ℓ vertices
in total in LB∆ , all but the ℓ − 1 vertices which are at the left of the base-arrows in
B2, . . . , Bℓ are possible insertion places.

Given a list L = (B1, . . . , Bℓ) of elements in B, we identify L with the quiver
obtained from L by gluing together the right vertex in the base arrow of Bi and the
left vertex in the base arrow of Bi+1 for 1 ≤ i < ℓ. For a list L = (B1, . . . , Bℓ) of
elements in B define the reversed list rev(L) := (Bℓ, . . . , B1), where Bi is obtained
from Bi by reversing the direction of the base arrow of Bi (and eventually of the
associated oriented 3-cycle). See Figures 2(b) and 2(c) for an example. Obviously,
we have rev(rev(L)) = L.

Theorem 3.8. The number of symmetric quivers of type Ã2r−1, i.e., quivers where
both possible realizations coincide, is equal to 1

2

(

2r
r

)

. The number of symmetric quivers

of type Ã2r−1 with 2r2 oriented 3-cycles is

2r−2r2−1

(

r

r2, r2, r − 2r2

)

Proof. Starting with a list L of elements in B with a total of r+ℓ vertices, we obtain
a symmetric quiver of type Ã2r−1 by taking L and rev(L), and gluing together the
end point of L with the start point of rev(L) and vice versa. E.g., the symmetric
quiver in Figure 2(a) is obtained from the lists L and rev(L) shown in Figures 2(b)
and 2(c).
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To prove the statement it remains to show that exactly two different lists belong to
the given symmetric quiver Q. Observe first, that Q is of the form Q = (L, L′) where
the end point of L is glued together with the start point of L′ and vice versa, such
that furthermore, L′ = rev(L) is the reversed list of L. It may happen that L is itself
symmetric, i.e., L = rev(L). However, it is always possible to find a non-symmetric
X such that Y := rev(X) 6= X and L = (X, Y, X, . . . , Y ) and L′ = (Y , X, Y , . . . , X).
That is, any symmetric quiver is of the following form:

X

Y

X

Y

Y

Y

X

X

This proves that there exist exactly two different lists that correspond to a sym-
metric quiver Q, namely L and L′.

We now know the number of realizations of quivers as well as the number of
symmetric quivers of type Ã2r−1 with parameters r and s = r. Therefore, we can
also compute the total number of quivers of type Ã2r−1 with the same parameters:

Corollary 3.9. The number ã(r, r) of quivers of type Ã2r−1 with parameters r and
s = r is given by

1

2





1

2

(

2r

r

)

+
∑

k|r

φ(k)

4r

(

2r/k

r/k

)2


 .

The number of quivers of type Ã2r−1 with parameters r1, r2, s1 and s2 such that
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2 1
3 2
4 5 4
5 14 12
6 42 36 22
7 132 108 100
8 429 349 315 172
9 1430 1144 1028 980
10 4862 3868 3432 3240 1651

�
�

�
�

�
�n
r

1 2 3 4 5

Table 1: Number of quivers of type Ãn−1 according to the parameter r for n in
{2, 3, . . . , 10}

r1 = s1 and r2 = s2 is given by

2r−2r2−2

(

r

r2, r2, r − 2r2

)

+
∑

k|r,k|r2

i,j≥0
(i,j)6=(0,0)

[

φ(k)

k

(−1)i+j

4(i + j)

(

2i

i, 2i − r/k, r2/k, (r − r2)/k − i

)

(

2j

j, 2j − r/k, r2/k, (r − r2)/k − j

)]

,

where r = r1 + 2r2.

Proof. According to Theorem 3.5, the expression
∑

k|r
φ(k)
4r

(

2r/k
r/k

)2
counts realizations

of quivers with parameters r and s = r. Therefore, it counts non-symmetric quivers
with parameters r and s = r twice and symmetric quivers with parameters r and
s = r once. By Theorem 3.8, the number of symmetric quivers with parameters r
and s = r is given by 1

2

(

2r
r

)

. In total, we get the desired expression. The general case
is dealt with similarly.

3.3 The number of quivers of type Dn

With the help of Corollary 3.6 and a little extra work we obtain the number of quivers
in the mutation class of Dynkin type Dn. This result was first determined by Buan
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and Torkildsen in [5].

Corollary 3.10. The number of quivers of type Dn, for n ≥ 5, is given by

ã(0, n) =
∑

d|n

φ(n/d)

2n

(

2d

d

)

.

The number of quivers of type D4 is 6.

Proof. For n = 4, the quivers can be explicitly listed, see [5]. We remark that their
number does not agree with the general formula. Now, let D̄n, n ≥ 5, be the family
of cyclic arrangements of elements in B, with all base arrows oriented clockwise and
a total of n vertices. Thus, the elements in D̄n are quivers with a distinguished
oriented cycle, which we call the main cycle. Note that the main cycle may be an
oriented 2-cycle or even a loop.

We want to show that the quivers of type Dn are in bijection with those in D̄n.
To do so, we use the classification given by Vatne [12], who distinguishes four types
I–IV . Quivers in Dn of type IV coincide with those objects in D̄n whose main cycle
consists of at least three arrows. The other three types are as in Figure 3.

rooted quiver

of type A

type I
rooted quiver

of type A of type A

rooted quivertype II

rooted quiver

of type A of type A

rooted quivertype III

Figure 3: Quivers in Dn of type I–III.

Suppose that the main cycle of Q̄ ∈ D̄n is an oriented 2-cycle. By deleting these
two arrows we obtain one of the following:

1. a quiver in Dn of type I, where precisely one of the two distinguished arrows
incident to the root is oriented towards it, or

2. a quiver in Dn of type III, i.e., a quiver having a unique oriented 4-cycle.
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It remains to describe the bijection in the case where the main cycle of Q̄ ∈ D̄n is
a loop. In a first step, we delete the vertex of this loop and all arrows incident to it,
to obtain a rooted quiver Q̄• of type A. For the second and final step, we distinguish
two cases:

1. the root of Q̄• is incident to a single arrow α. In this case we obtain a quiver
Q in Dn of type I by adding a second arrow, oriented in the same way as α,
to the other vertex α is incident to.

2. On the other hand, consider the case that the root of Q̄• is incident to an
oriented 3-cycle γ. Then, we glue a second 3-cycle, oriented in the same way
as γ, along the arrow of γ opposite to the root. In this way we create a quiver
in Dn of type II.

This transformation is invertible:

• a quiver Q in Dn of type I has a uniquely determined root, and two distin-
guished arrows incident to it. If they are oriented in opposite directions, then
the main cycle in the preimage of the transformation is an oriented 2-cycle.
Otherwise, the preimage is a loop.

• Q is of type II, if and only if it has two oriented 3-cycles sharing an arrow.

• Finally, Q is of type III, if and only if it has a unique oriented 4-cycle.

To conclude, we compute the number of elements in D̄n. This is easy, since we
can use the degenerate case of r = 0 and s = n of Corollary 3.6:

ã(0, n) =
1

2

∑

k|n

φ(k)

n

(

2n/k

n/k

)

=
1

2

∑

d|n

φ(n/d)

n

(

2d

d

)

, for d :=
n

k
.
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