Embedding a Forest in a Graph
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Abstract

Forp > 1, we prove that every forest with trees whose sizes atg, ..., a, can be
embedded in any graph containing at le@sf_; (a; + 1) vertices and having minimum
degree atleast?_; a;.

1 Introduction

It is a folklore fact that every tree witlh > 0 edges can be embedded in any graph with mini-
mum vertex degreéd. Indeed, a linear algorithm to find such an embedding woulgisetially
embed the vertices of the tree according to a depth first Beadering of the tree vertices. It
is likely, though, that the required bound on the minimumrdegs excessive, as captured by
the famous conjecture by Erdds and So6s ([3]), which stitasevery tree withi edges can
be embedded in any graph whose average degree is greatet thdn A number of results
(1, 2, 6, 7, 8, 9]) confirm the conjecture for some classesa#d and classes of graphs. The
full conjecture is still neither proved, nor disproved.

A natural extension of the problem is to embed a forestin plyrd ' =7, U---UT,is a
forest ofp disjoint trees whose sizes atg, . . ., a, respectively, then a necessary condition for
embeddingF in a graphG is that|V (G)| > Y%, (1 + ;). The straightforward tree embedding
algorithm outlined above may fail, even if the minimum degieat leas} "_, a;. However, we
show that this condition on the minimum degree (in additmtihe obvious necessary condition)
is sufficient to guarantee that the forest can be embeddéeigraph; we prove the following:

Theorem1 Let F =T U---UT, beaforestandd = >~7_, a;, where a; isthe number of edges
inthetree 7; (i € [1,p]). Then every graph G with at least d + p vertices and minimum degree
at least d contains F' as a subgraph.

Our proof can be converted to a quadratic algorithm for erdbegla forest.
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We consider simple undirected graphs without parallel sdgel loops. The set of vertices
adjacent to a vertex, the neighborhood of, is denotedV(z). An embeddingf : H — G
of a graphH in a graphG is a one-to-one mapping : V(H) — V(G) such that for any two
distinct verticese,y € V(H), if xzy € E(H) thenf(z)f(y) € E(G). For a graphH, the order
of H is the number of its vertices (denotgd|) and the size of! is is the number of its edges.
For the terms not defined in this paper see ([10]).

2 A Proof of Theorem 1

We prove the theorem by induction pnthe number of trees in the forest. We can assume that
every tree in a forest has at least two verticesy;so 1.

TheBase Case, p = 1. The forest in this case consists of a single ffgevith d edges. We
prove a slightly stronger statement, which implies the theoforp = 1.

Lemmal Given a connected subgraph C' of 77 and an embedding / : C' — G, thereisan
embedding g : 77 — G whoserestrictionto C' is precisely f.

Proof: The idea is to arbitrarily grow the embeddirfgof C' to an embedding of 7. If

|IC| < d+1,letuv € E(T7) be an edge such thate V(C) andv € V(11 \ C). Letw = f(u).
SinceC has at mostl — 1 vertices other tham and since the degree ofin G is at leastl, G
has an edge = with vertexz not in g(C'). Thus, f can be expanded tp: C' U {v} — G by
definingg(xz) = g(z) forall z € C, andg(v) = z. Iterating this expansion completes the proof.
|

Corollary 1 For any vertex = of 77 and any vertex y of GG, an embedding f : 77 — G existsfor
which f(z) = y.

TheInduction Step, p > 1. Assume the theorem holds for any forést ; with p — 1 trees,
and letF, = T, U- - - U T, be a forest containing trees. Denote by, the size ofl; (i € [1, p)).
Assumen; > ay > ... > a,, and leta = a;.

Assumption. For the purpose of deriving a contradiction, we assume khatannot be em-
bedded in graplir satisfying the conditions of the theorem.

Lemma 2 For everyembedding g : 77 — G, thereisa vertex outside of ¢(77 ) which isadjacent
to every vertexin g(77).

Proof: If the statement were incorrect, then the removaj @, ) from G would leave a sub-
graph G’ with at leastd + p — (a + 1) = Y% ,(1 + ;) vertices each of degree at least
d—a = > ,a;. Inductively,T, U --- U T, can be embedded i@’ which would yield an
embedding ofF, in G contradicting the assumption th&g cannot be embedded . ]
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The main use of the previous lemma is to show that under oungstson, there is a large clique
inG.

Lemma 3 G containsa clique of order at least a + 2.

Proof: Let K be alargest clique it¥ and supposg{| < a+2. Select any connected subgraph
C of Ty of order|C| = | K|, and embed” in K; this is possible sinc&’ is a clique. By Lemma
1, this embedding can be expanded to an embedgiof7; in G, and by Lemma 2 there is
a vertex outside off(7}) adjacent to all vertices irf(77). In particular, it is adjacent to all
vertices ink, contradictingk’s maximality. Thus|K| > a + 2. u

It turns out that for the rest of the proof, we only need a digfiordera.

Lemma4 Any tree of order a + 1 can be embedded in any connected graph of order at least
a + 1 that contains a clique of order a.

Proof: Start by embedding a leaf at a vertex outsidexattique, but adjacent to a node in the
clique (such a vertex must exist by connectivity). The rerdar of the tree can be embedded
in the clique. |

Let K be a clique of ordet in G. The subgraplt:’ = G \ K contains at least — a + p
vertices each of degree at ledst a. Inductively,F,,_, = {15, ...,T,} can be embedded @'
Letg : F,_1 — G’ be such an embedding. Select any vertex /X and a subseX C N(z)\ K
with | X| = d — a + 1 vertices. It is possible sind&V(z) \ K| > d —a + 1.

Lemma5 Every vertexin X isused by any embedding g of F),_;.

Proof: Indeed, ifx € X \ ¢(7,-1) is not used, then by Lemma 4, can be embedded in the
subgraph# induced byl (K) U {z}, which would yield an embedding df,. |

Since alld — a + 1 vertices ofX are used in the embedding: F,,_; — G, exactlyp — 2
vertices outside of U X, denoted by the sét (|Y| = p — 2), are used by. The remaining
vertices of the graph, outside @f U ¢(7,,_,), are denoted by the sét; |S| > 0 because
|[K Ug(T,-1)] = d+p—1andG has at leasi + p vertices. We now split the set of the trees
of the forestF),_, into four subsetd;, 75, 75, andZ,.

7,: trees which are embedded entirelyXn

7T,: trees whose embedding has at least two vertice$ and at least one vertex ij;

73: trees whose embedding has only one verteX ijrand

74: trees whose embedding is entirely}in
Letg, = |7;| (i = 1,2,3,4). Since every tree irf,_; belongs to exactly one of these four
subsets,

G+et+teagtu=p—L

For the embedding: every tree in7, uses at least one vertex n; and, every tred; in 73
(resp.7y) usesu; (resp.1 + a;) vertices inY. Since there arg — 2 vertices inY’,

q2 + Zari‘ Z(GMLU S pP-2=q+t@eteta—L
Ti€T3 T;€7y

This immediately gives a lower bound fgy.

THE ELECTRONIC JOURNAL OF COMBINATORICS 18 (2011), #P99 3



Lemmab6 ¢ > 1+ ZTZ_eT&(ai —1)+ ZTieﬂ a; > 1+ q4.

Let s be an arbitrary vertex it. Our goal now is to evaluate the degreesah the subgraph
induced onS, based on the assumption thigtcannot be embedded. We start with

IN(s)NS|>d—|N(s)N K| —|N(s)N (X UY)|. Q)
We make the following observations about the neighborhdodo X U X U Y.
1. sis not adjacent to any vertex ifi, else by Lemma 4]} could be embedded inU K.

2. s is not adjacent to at least one vertexdfi") for any treeT € 7, U 73. Indeed, ifs is
adjacent to every vertex i(T"), a vertex ofg(7") which is in X can be swapped witky this
gives an embedding df,_; that doesn’t use every vertex af, contradicting Lemma 5.

3. s is not adjacent to at least two verticesgdfl’) for any treeT” € 7;. Indeed, supposeis
adjacent to all but one vertex ji{T), and lety = ¢g(z) be that exceptional vertex. Then for
every neighbor’ (in T') of z, s is adjacent tgy(«’). By settingg(z) = s, we obtain a valid
embedding off},_; which doesn'’t use a vertex i, contradicting Lemma 5.

So,N(s)NK = Pand|N(s)N(XUY)| < | XUY|—(2¢1+g2+¢3). Sincel XUY| = d—a+p—1,
we have from Inequality (1) that the number of neighbors of S is at least:

IN(s)NS| > d—(d—a+p—1)+2q +q + g3
= a+q —q4
> a+1,

where we have used + ¢» + g3 + ¢4 = p — 1 and Lemma 6. Thus, the degree of any vegex
in the subgraph induced by is at least + 1, and in particulatS| > a + 2. By Lemma 1,1}
can be embedded in this subgraph, contradicting the Assampnd completing the proof of
Theorem 1. |

3 Conjecture

When the number of vertices equals the lower bopd! and the minimum degree is at ledst
then the Hajnal-Szemerédi theorem on equitable colofhd|), applied to the complement of
the graph, guarantees the existenceg oliques each of order at least//p |. Thus, an arbitrary
p graphs of order at mostd/p | can besimultaneously embedded in the graph. When the
number of vertices increases, however, cliques are no fanggranteed. Our result shows that
one can simultaneously embed trees, even as the numberticEgegrows, as long as the sum
of the tree sizes is at most

Alternatively, one can ask whether a bound on the minimurnmesteig excessive to guarantee
that a forest can be embedded. Indeed, we propose a nattgasmn to the conjecture by Erdés
and Sos:
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Let =Ty U---UT, be aforest,and = )" | a;, whereq; is the number of
edges inthe tre&; (i € [1, p]). Then every grapli’ with at least + p vertices and
average degree d — 1 contains a subgraph isomorphicko

For a single star, the conjecture clearly holds; but, everetttension to a collection of stars is
not clear.
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