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Abstract

For p ≥ 1, we prove that every forest withp trees whose sizes area1, . . . , ap can be
embedded in any graph containing at least

∑p
i=1

(ai + 1) vertices and having minimum
degree at least

∑p
i=1

ai.

1 Introduction

It is a folklore fact that every tree withd ≥ 0 edges can be embedded in any graph with mini-
mum vertex degreed. Indeed, a linear algorithm to find such an embedding would sequentially
embed the vertices of the tree according to a depth first search ordering of the tree vertices. It
is likely, though, that the required bound on the minimum degree is excessive, as captured by
the famous conjecture by Erdős and Sós ([3]), which statesthat every tree withd edges can
be embedded in any graph whose average degree is greater thand − 1. A number of results
([1, 2, 6, 7, 8, 9]) confirm the conjecture for some classes of trees and classes of graphs. The
full conjecture is still neither proved, nor disproved.

A natural extension of the problem is to embed a forest in a graph. If F = T1 ∪ · · · ∪ Tp is a
forest ofp disjoint trees whose sizes area1, . . . , ap respectively, then a necessary condition for
embeddingF in a graphG is that|V (G)| ≥

∑p

i=1
(1+ai). The straightforward tree embedding

algorithm outlined above may fail, even if the minimum degree is at least
∑p

i=1
ai. However, we

show that this condition on the minimum degree (in addition to the obvious necessary condition)
is sufficient to guarantee that the forest can be embedded in the graph; we prove the following:

Theorem 1 Let F = T1∪· · ·∪Tp be a forest and d =
∑p

i=1
ai, where ai is the number of edges

in the tree Ti (i ∈ [1, p]). Then every graph G with at least d + p vertices and minimum degree
at least d contains F as a subgraph.

Our proof can be converted to a quadratic algorithm for embedding a forest.
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We consider simple undirected graphs without parallel edges and loops. The set of vertices
adjacent to a vertexx, the neighborhood ofx, is denotedN(x). An embeddingf : H → G
of a graphH in a graphG is a one-to-one mappingf : V (H) → V (G) such that for any two
distinct verticesx, y ∈ V (H), if xy ∈ E(H) thenf(x)f(y) ∈ E(G). For a graphH, the order
of H is the number of its vertices (denoted|H|) and the size ofH is is the number of its edges.
For the terms not defined in this paper see ([10]).

2 A Proof of Theorem 1

We prove the theorem by induction onp, the number of trees in the forest. We can assume that
every tree in a forest has at least two vertices, soai ≥ 1.

The Base Case, p = 1. The forest in this case consists of a single treeT1 with d edges. We
prove a slightly stronger statement, which implies the theorem forp = 1.

Lemma 1 Given a connected subgraph C of T1 and an embedding f : C → G, there is an
embedding g : T1 → G whose restriction to C is precisely f .

Proof: The idea is to arbitrarily grow the embeddingf of C to an embeddingg of T1. If
|C| < d+1, letuv ∈ E(T1) be an edge such thatu ∈ V (C) andv ∈ V (T1 \C). Letw = f(u).
SinceC has at mostd − 1 vertices other thanu and since the degree ofw in G is at leastd, G
has an edgewz with vertexz not in g(C). Thus,f can be expanded tog : C ∪ {v} → G by
definingg(x) = g(x) for all x ∈ C, andg(v) = z. Iterating this expansion completes the proof.

Corollary 1 For any vertex x of T1 and any vertex y of G, an embedding f : T1 → G exists for
which f(x) = y.

The Induction Step, p > 1. Assume the theorem holds for any forestFp−1 with p − 1 trees,
and letFp = T1 ∪ · · · ∪ Tp be a forest containingp trees. Denote byai the size ofTi (i ∈ [1, p]).
Assumea1 ≥ a2 ≥ . . . ≥ ap, and leta = a1.

Assumption. For the purpose of deriving a contradiction, we assume thatFp cannot be em-
bedded in graphG satisfying the conditions of the theorem.

Lemma 2 For every embedding g : T1 → G, there is a vertex outside of g(T1) which is adjacent
to every vertex in g(T1).

Proof: If the statement were incorrect, then the removal ofg(T1) from G would leave a sub-
graphG′ with at leastd + p − (a + 1) =

∑p

i=2
(1 + ai) vertices each of degree at least

d − a =
∑p

i=2
ai. Inductively,T2 ∪ · · · ∪ Tp can be embedded inG′ which would yield an

embedding ofFp in G contradicting the assumption thatFp cannot be embedded inG.

the electronic journal of combinatorics 18 (2011), #P99 2



The main use of the previous lemma is to show that under our assumption, there is a large clique
in G.

Lemma 3 G contains a clique of order at least a + 2.

Proof: LetK be a largest clique inG and suppose|K| < a+2. Select any connected subgraph
C of T1 of order|C| = |K|, and embedC in K; this is possible sinceK is a clique. By Lemma
1, this embedding can be expanded to an embeddingf of T1 in G, and by Lemma 2 there is
a vertex outside off(T1) adjacent to all vertices inf(T1). In particular, it is adjacent to all
vertices inK, contradictingK ’s maximality. Thus,|K| ≥ a + 2.

It turns out that for the rest of the proof, we only need a clique of ordera.

Lemma 4 Any tree of order a + 1 can be embedded in any connected graph of order at least
a + 1 that contains a clique of order a.

Proof: Start by embedding a leaf at a vertex outside ana-clique, but adjacent to a node in the
clique (such a vertex must exist by connectivity). The remainder of the tree can be embedded
in the clique.

Let K be a clique of ordera in G. The subgraphG′ = G \ K contains at leastd − a + p
vertices each of degree at leastd−a. Inductively,Fp−1 = {T2, . . . , Tp} can be embedded inG′.
Let g : Fp−1 → G′ be such an embedding. Select any vertexx ∈ K and a subsetX ⊆ N(x)\K
with |X| = d − a + 1 vertices. It is possible since|N(x) \ K| ≥ d − a + 1.

Lemma 5 Every vertex in X is used by any embedding g of Fp−1.

Proof: Indeed, ifx ∈ X \ g(Tp−1) is not used, then by Lemma 4,T1 can be embedded in the
subgraphH induced byV (K) ∪ {x}, which would yield an embedding ofFp.

Since alld − a + 1 vertices ofX are used in the embeddingg : Fp−1 → G, exactlyp − 2
vertices outside ofK ∪ X, denoted by the setY (|Y | = p − 2), are used byg. The remaining
vertices of the graph, outside ofK ∪ g(Tp−1), are denoted by the setS; |S| > 0 because
|K ∪ g(Tp−1)| = d + p − 1 andG has at leastd + p vertices. We now split the set of the trees
of the forestFp−1 into four subsetsT1, T2, T3, andT4.

T1: trees which are embedded entirely inX;
T2: trees whose embedding has at least two vertices inX and at least one vertex inY ;
T3: trees whose embedding has only one vertex inX; and
T4: trees whose embedding is entirely inY .

Let qi = |Ti| (i = 1, 2, 3, 4). Since every tree inFp−1 belongs to exactly one of these four
subsets,

q1 + q2 + q3 + q4 = p − 1.

For the embeddingg: every tree inT2 uses at least one vertex inY ; and, every treeTi in T3

(resp.T4) usesai (resp.1 + ai) vertices inY . Since there arep − 2 vertices inY ,

q2 +
∑

Ti∈T3

ai +
∑

Ti∈T4

(ai + 1) ≤ p − 2 = q1 + q2 + q3 + q4 − 1.

This immediately gives a lower bound forq1.
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Lemma 6 q1 ≥ 1 +
∑

Ti∈T3
(ai − 1) +

∑
Ti∈T4

ai ≥ 1 + q4.

Let s be an arbitrary vertex inS. Our goal now is to evaluate the degree ofs in the subgraph
induced onS, based on the assumption thatFp cannot be embedded. We start with

|N(s) ∩ S| ≥ d − |N(s) ∩ K| − |N(s) ∩ (X ∪ Y )|. (1)

We make the following observations about the neighborhood of s in K ∪ X ∪ Y .

1. s is not adjacent to any vertex inK, else by Lemma 4,T1 could be embedded ins ∪ K.

2. s is not adjacent to at least one vertex ing(T ) for any treeT ∈ T2 ∪ T3. Indeed, ifs is
adjacent to every vertex ing(T ), a vertex ofg(T ) which is inX can be swapped withs; this
gives an embedding ofFp−1 that doesn’t use every vertex ofX, contradicting Lemma 5.

3. s is not adjacent to at least two vertices ofg(T ) for any treeT ∈ T1. Indeed, supposes is
adjacent to all but one vertex ing(T ), and lety = g(x) be that exceptional vertex. Then for
every neighborx′ (in T ) of x, s is adjacent tog(x′). By settingg(x) = s, we obtain a valid
embedding ofFp−1 which doesn’t use a vertex inX, contradicting Lemma 5.

So,N(s)∩K = ∅ and|N(s)∩(X∪Y )| ≤ |X∪Y |−(2q1+q2+q3). Since|X∪Y | = d−a+p−1,
we have from Inequality (1) that the number of neighbors ofs in S is at least:

|N(s) ∩ S| ≥ d − (d − a + p − 1) + 2q1 + q2 + q3

= a + q1 − q4

≥ a + 1,

where we have usedq1 + q2 + q3 + q4 = p − 1 and Lemma 6. Thus, the degree of any vertexs
in the subgraph induced byS is at leasta + 1, and in particular|S| ≥ a + 2. By Lemma 1,T1

can be embedded in this subgraph, contradicting the Assumption, and completing the proof of
Theorem 1.

3 Conjecture

When the number of vertices equals the lower boundp+d and the minimum degree is at leastd,
then the Hajnal-Szemerédi theorem on equitable coloring ([4, 5]), applied to the complement of
the graph, guarantees the existence ofp cliques each of order at least⌊ d/p ⌋. Thus, an arbitrary
p graphs of order at most⌊ d/p ⌋ can besimultaneously embedded in the graph. When the
number of vertices increases, however, cliques are no longer guaranteed. Our result shows that
one can simultaneously embed trees, even as the number of vertices grows, as long as the sum
of the tree sizes is at mostd.

Alternatively, one can ask whether a bound on the minimum degree is excessive to guarantee
that a forest can be embedded. Indeed, we propose a natural extension to the conjecture by Erdős
and Sós:
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Let F = T1 ∪ · · · ∪ Tp be a forest, andd =
∑p

i=1
ai, whereai is the number of

edges in the treeTi (i ∈ [1, p]). Then every graphG with at leastd + p vertices and
average degree> d − 1 contains a subgraph isomorphic toF .

For a single star, the conjecture clearly holds; but, even the extension to a collection of stars is
not clear.
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