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Abstract

The 2-adic valuations of sequences counting the number of alternating sign ma-

trices of size n and the number of totally symmetric plane partitions are shown to

be related in a simple manner.

Keywords: valuations, alternating sign matrices, totally symmetric plane parti-

tions.

1 Introduction

A plane partition (PP) is an array π = (πij)i,j≥1 of nonnegative integers such that π has
finite support and is weakly decreasing in rows and columns. These partitions are often
represented by solid Young diagrams in 3-dimensions. MacMahon found a complicated
formula for the enumeration of all PPs inside an n-cube. This was later simplified to

PPn =

n∏

i,j,k=1

i + j + k − 1

i + j + k − 2
. (1)

A plane partition is called symmetric (SPP) if πij = πji for all indices i, j. The number
of such partitions whose solid Young diagrams fit inside an n-cube is given by

SPPn =

n∏

j=1

n∏

i=1

i + j + n − 1

i + j + i − 2
=

n∏

j=1

n∏

i=j

i + j + n − 1

i + j − 1
. (2)

Another interesting subclass of partitions is that of totally symmetric plane partitions

(TSPP). These are symmetric partitions π such that every row of π is self-conjugate as
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an ordinary plane partition (or the Young diagrams are invariant under any permutation
of the axes). J. Stembridge [3] showed that the number of TSPP in an n-cube is given by

TSPPn =
∏

1≤i≤j≤k≤n

i + j + k − 1

i + j + k − 2
=

n∏

j=1

n∏

i=j

i + j + n − 1

i + j + i − 2
=

∏

1≤i≤j≤n

i + j + n − 1

i + j + j − 2
. (3)

For the solid Young diagram of a plane partition π that fits inside a box of a given size,
one can take the collection of cubes that are in the box but do not belong to the solid
Young diagram. These determine another plane partition called the complement of π. If
the complement of π is the same as the original partition, π is called self-complementary.
Such partitions only fit in an even-dimensional box. The number of plane partitions inside
a 2n × 2n × 2n box that are both totally symmetric and self-complementary (TSSCPP)
is given by

TSSCPP2n =
∏

1≤i≤j≤n

i + j + n − 1

i + j + i − 1
. (4)

The proof required the efforts of three combinatorialists: W. F. Doran, J. Stembridge and
G. Andrews.

An alternating sign matrix (ASM) is an array of 0, 1 and −1 such that the entries
of each row and column add up to 1 and the non-zero entries of a given row/column
alternate. After a fascinating sequence of events, D. Zeilberger [5] completely proved the
conjecture that the number of ASM of size n equals TSSCPP2n. Bressoud’s book [1] con-
tains an entertaining story of these counting functions.

Note. For simplicity, we write An = TSSCPP2n, Bn = TSPPn and Tn = PPn.

A simple calculation shows that An and Bn do not divide each other as integers. The
first few values of the quotient An/Bn are given by

1

2
,

2

5
,

7

16
,

7

11
,

39

32
,
52

17
,

3211

320
,

988

23
,

30685

128
,

50540

29
. (5)

The quotient An/Bn presents a large amount of cancellation. For instance, the integers
A40, B40 have 182 and 100 digits and the reduced form of An/Bn has denominator 17.
Motivated by this cancellation, during a conference in the summer of 2010 at Nankai
University, where Manuel Kauers explained the remarkable result [2], one of the authors
computed a list of the values when Bn is odd. This question had also been the key to the
main ideas behind the arithmetic properties of An, as described in [4]. Figure 1 depicts
the 2-adic valuation of An.

The computation showed that the indices where B2n is odd is related to the Jacobsthal

numbers that are defined by the recurrence Jn = Jn−1 + 2Jn−2, J0 = 1 and J1 = 1. These
are precisely the indices where An is odd. This observation lead to the first result in this
paper.

Note. For n ∈ N, denote by ν2(n) the 2-adic valuation of n, defined as the highest power
of 2 that divides n. Let s2(n) equal to the sum of the binary digits of n.

the electronic journal of combinatorics 18(2) (2011), #P1 2



20 000 40 000 60 000 80 000

5000

10 000

15 000

20 000

Figure 1: The 2-adic valuation of An

Theorem 1.1 For n ∈ N. Then,

ν2(B2n) = ν2(An)

ν2(B2n−1) = ν2(An) + 2n − 1.

Proof. To compare An with B2n, compute the ratios

An+1

An

=

n+1∏

j=1

j∏

i=1

i + j + n

i + j + i − 1

n∏

j=1

j∏

i=1

i + j + i − 1

i + j + n − 1

=
3n + 2

n + 1

n∏

i=1

(i + 2n + 1)(i + 2n)

n−1∏

j=1

1

2j + n + 1

n+1∏

i=1

1

i + i + n

=
n∏

i=1

(i + 2n + 1)(i + 2n)

(2i + n − 1)(2i + n)

and

B2n+2

B2n

=

2n+2∏

k=1

k∏

j=1

j∏

i=1

i + j + k − 1

i + j + k − 2

2n∏

k=1

k∏

j=1

j∏

i=1

i + j + k − 2

i + j + k − 1

=

2n+1∏

j=1

j∏

i=1

i + j + 2n

i + j + 2n − 1

2n+2∏

j=1

j∏

i=1

i + j + 2n + 1

i + j + 2n

=
(6n + 1)(6n + 3)(6n + 5)

(2n + 1)(2n + 2)(2n + 3)

2n−1∏

i=1

(i + 4n + 1)(i + 4n + 3)

(2i + 2n + 2)(2i + 2n + 3)

=
(6n + 5)

(2n + 1)

2n∏

i=1

(i + 4n + 1)(i + 4n + 3)

(2i + 2n)(2i + 2n + 1)

=
(6n + 5)

(2n + 1)

∏n

i=1
(2i + 4n + 1)(2i + 4n + 3)
∏

2n

i=1
(2i + 2n + 1)

∏n

i=1
(2i + 4n)(2i + 4n + 2)
∏

2n

i=1
(2i + 2n)
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=
(6n + 5)

(2n + 1)

n∏

i=1

(2i + 4n + 1)(2i + 4n + 3)

(4i + 2n + 1)(4i + 2n − 1)

n∏

i=1

(2i + 4n)(2i + 4n + 2)

(4i + 2n)(4i + 2n − 2)

=
(6n + 5)

(2n + 1)

n∏

i=1

(2i + 4n + 1)(2i + 4n + 3)

(4i + 2n + 1)(4i + 2n − 1)

n∏

i=1

(i + 2n)(i + 2n + 1)

(2i + n)(2i + n − 1)

=
(6n + 5)

(2n + 1)

n∏

i=1

(2i + 4n + 1)(2i + 4n + 3)

(4i + 2n + 1)(4i + 2n − 1)
×

An+1

An

.

Since ν2(B2) = ν2(A1) = 0 and ν2(B2n+2)−ν2(B2n) = ν2(An+1)−ν2(An), the first assertion
follows. Similarly,

B2n+1

B2n

=
n+1∏

i=1

(2i + 4n + 1)(2i + 2n)

(4i + 2n − 1)(4i + 2n − 3)
×

An+1

An

(6)

= 2n+1
(2n + 1)!

n!

n+1∏

i=1

(2i + 4n + 1)

(4i + 2n − 1)(4i + 2n − 3)
×

An+1

An

.

Hence

ν2(B2n+1)− ν2(B2n) = n + 1 + 2n + 1− s2(2n + 1)− n + s2(n) + ν2(An+1)− ν2(An), (7)

where Legendre’s formula ν2(m!) = m − s2(m) is applied. The rest follows from s2(2n +
1) = s2(n) + 1 and the first part of the proof.

2 A product identity

In this section we consider the function SPPn counting the number of symmetric plane
partitions of size n. Recall

SPPn =
n∏

j=1

n∏

i=1

i + j + n − 1

i + j + i − 2
. (8)

The next result appears to be new and is similar to

cylindrically symmetric = (totally symmetric)2.

Theorem 2.1 The identity SPPn = TSSCPP2n × TSPPn holds.

Proof: After some regrouping and re-indexing,

TSSCPP2n =

n∏

j=1

j∏

i=1

i + j + n − 1

i + j + i − 1

=

n∏

j=1

j∏

i=1

(i + j + n − 1)

n∏

j=2

j−1∏

i=1

(i + j + i − 2)−1

n∏

i=1

(2i + n − 1)−1,
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and

TSPPn =

n∏

j=1

n∏

i=j

i + j + n − 1

i + j + i − 2

=
n∏

j=1

n∏

i=j+1

(i + j + n − 1)
n∏

j=2

n∏

i=j

(i + j + i − 2)−1

n∏

j=1

(2j + n − 1)
n∏

i=1

(2i − 1)−1.

Combining the two it follows that

TSSCPP2n × TSPPn =

n∏

j=1

n∏

i=1

(i + j + n − 1)

n∏

j=2

n∏

i=1

(i + j + i − 2)−1

n∏

i=1

(2i − 1)−1

=
n∏

j=1

n∏

i=1

(i + j + n − 1)
n∏

j=1

n∏

i=1

(i + j + i − 2)−1

=

n∏

j=1

n∏

i=1

i + j + n − 1

i + j + i − 2

= SPPn.

The next statement follows from Theorem 1.1 and Theorem 2.1.

Corollary 2.2 For n ∈ N,

ν2(SPP2n) = ν2(A2n) + ν2(An) (9)

and

ν2(SPP2n−1) = ν2(A2n−1) + ν2(An) + 2n − 1. (10)

3 Some conjectures

This last section contains some conjectures. The first one deals with the 2-adic valuation
of the sequences Bn and Tn.

Conjecture 3.1 For n ∈ N, the inequalities

ν2(T2n) > ν2(B2n) and ν2(T2n+1) < ν2(B2n+1) (11)

hold.

The second conjecture is related to sequences formed by successive ratios.

Given a sequence of positive numbers {an} consider the successive ratios defined by

a
{0}
n+1 := an+1 and a

{k}
n+1 := a

{k−1}
n+1 /a{k−1}

n . (12)
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For instance,

a
{1}
n+1 =

an+1

an

and a
{2}
n+1 =

an+1an−1

a2
n

. (13)

In particular an is nonincreasing if a
{1}
n+1 ≤ 1 and logconcave if a

{2}
n+1 ≤ 1 and logconvex if

a
{2}
n+1 ≥ 1.

Conjecture 3.2 Let An be the ASM sequence. For 0 ≤ k ≤ 3 the iterated sequence A
{k}
n+1

is logconvex. For k ≥ 4, the sequence A
{k}
n+1 is logconvex when k is odd and logconcave

when k is even.

Problem 3.3 Find a combinatorial proof of Theorem 2.1.

Note. The calculations were performed after the talk. There were no violations to the
Zeilberger rules of order.
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