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Abstract

E. S. Rowland proved that ak = ak−1+gcd(k, ak−1), a1 = 7 implies that ak−ak−1

is always 1 or prime. Conjecturally this property also holds for any a1 > 3 from a
certain k onwards. We state some properties of this sequence for arbitrary values
of a1. Namely, we prove that some specific sequences contain infinitely many primes
and we characterize the possible finite subsequences of primes.

1 Introduction

In [4] E. S. Rowland introduced the recursively defined sequence

ak = ak−1 + gcd(k, ak−1), a1 = 7. (1)

He proved the following suprising result:

Theorem 1.1 (Rowland [4]) Let P be the set of prime numbers and P1 = P ∪ {1}.
Then ak − ak−1 ∈ P1 for every k > 1.

∗The first and the third authors are supported by the grant MTM2008-03880 of the Ministerio de
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the electronic journal of combinatorics 18(2) (2011), #P10 1



Unfortunately it is not clear whether the proof applies to all possible values of a1.
Note that a1 = 2A and a1 = 2A + 1 give the same a2, so we can restrict ourselves to odd
initial conditions. It is easy to check that a1 = 1 and a1 = 3 lead to the sequences ak = k
and ak = k + 2, respectively. Hence, in this paper we only consider the sequences

ak = ak−1 + gcd(k, ak−1) with a1 odd and greater than 3. (2)

Conjecture 1.2 For any sequence of the form (2), there exists a positive integer N such
that ak − ak−1 ∈ P1 for every k > N .

Actually in [4] this conjecture is stated for starting values of the form ak0
= A. We

consider the former statement more natural (although less general) and, as we shall see,
there are some differences between the two situations.

We refer the reader to [1] for some other conjectures about related sequences.

Our approach depends on the introduction of two auxiliary recurrences. They are a
version of the ‘shortcut’ mentioned in [4]. Before giving the actual definitions we motivate
them including here a very simple proof of Theorem 1.1 in a stronger form, using the
sequences

c∗n = c∗n−1 + lpf(c∗n−1) − 1, c∗1 = 5 and r∗n =
c∗n + 1

2
, (3)

where lpf(·) denotes the least prime factor. Note that c∗n is odd for every n.

Proposition 1.3 Let {ak}
∞

k=1 be Rowland’s sequence (1). Then

ak − ak−1 =

{

lpf(c∗n−1) if k = r∗n for some n > 1,

1 otherwise.
(4)

Proof: Define x1 = 7, x2 = 8, and xk = c∗n + k + 1 for k ∈ [r∗n, r∗n+1), n ≥ 1. In this
interval; xk−1 = c∗n + k for k 6= r∗n, and xk−1 = c∗n−1 + k for k = r∗n > 3. Then xk − xk−1 is
equal to the right hand side of (4). To deduce xk = ak, we only need to prove that it is
also equal to gcd(k, xk−1). For k 6= r∗n

gcd(k, xk−1) = gcd(k, c∗n + k) = gcd(2k, c∗n) = gcd(2(k − r∗n) + 1, c∗n)

and this is 1, since 2(k− r∗n) + 1 < 2(r∗n+1 − r∗n) + 1 = lpf(c∗n). For k = r∗n the result is the
same replacing n by n − 1, hence 2(k − r∗n−1) + 1 = 2(r∗n − r∗n−1) + 1 = lpf(c∗n−1). 2

This short proof of Theorem 1.1 suggests that we introduce a general recurrence

{

rn+1 = min
{

p + p⌊rn/p⌋ : p | cn

}

cn+1 = cn + gcd(cn, rn+1) − 1
with r1 = 1 and c1 = a1 − 2, (5)
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where ⌊·⌋ denotes the integral part and p denotes a prime number. It is easy to check
that rn = r∗n and cn = c∗n satisfy this recurrence for n > 1, where here r∗n and c∗n are as in
(3). Again cn is odd for every n. An elementary argument gives an alternative expression
to the recurrence for rn showing that rn+1 is the smallest number above rn being not
coprime to cn (see Lemma 2.1 below and cf. Proposition 3 [4]).

The sequence (2) is determined by (5). Indeed rn gives the indices k for which ak −
ak−1 6= 1. The analogue of Proposition 1.3 is

Proposition 1.4 The sequence (2) satisfies

ak = cn + k + 1 for rn ≤ k < rn+1, (6)

where rn and cn are defined by (5). Moreover, ak − ak−1 equals gcd(cn−1, rn) for k = rn,
and equals 1 otherwise.

Rowland notes that his proof applies when ak = 3k for some k (it occurs in (1) when
k = 3). With our approach it corresponds to cn = 2rn−1 for some n which indeed implies
cl = 2rl−1 for l > n. On the other hand, the underlying idea in several number theoretical
conjectures (e.g. Schinzel’s hypothesis [5] or Hardy-Littlewood k-tuples conjecture [3], [2,
IV.2]) is that prime numbers should appear in a sequence if no local divisibility conditions
prevent it. Then a natural guess is that cm is prime for some m. Curiously it seems that
the minimal choices of m and n in these claims are always consecutive.

For instance, if a1 = 117 we have

r1 = 1, r2 = 5, r3 = 7, r4 = 10, r5 = 12, r6 = 131, . . .
c1 = 115, c2 = 119, c3 = 125, c4 = 129, c5 = 131, c6 = 261, . . .

Here cn = 2rn − 1 for the first time when n = 6, and the first prime value of cm occurs
for m = 5. We have checked every a1 < 108 and the experiments suggest

Conjecture 1.5 Consider the recurrence (5) for odd a1 > 3, and define

n0 = inf{n ∈ Z
+ : cn = 2rn − 1} and m0 = inf{n ∈ Z

+ : cn is prime},

writing conventionally inf ∅ = ∞ as usual. Then

(i) n0 < ∞, (ii) m0 < ∞, (iii) n0 = m0 + 1 < ∞.

In §2 we provide some theoretical support and equivalences. In §3 we include some
properties of the set of primes generated by the sequences (2). Any of the three statements
in Conjecture 1.5 implies Conjecture 1.2 (Proposition 3.2). In terms of ak, (iii) implies
that the first k for which ak −ak−1 6= 1 and ak = 3k is necessarily prime (Proposition 2.6).
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For sequences not starting at a1, the latter primality property and (iii) admit coun-
terexamples. One of the simplest is a59 = 153 that satisfies Proposition 1.4 allowing in
(5) the case r1 = 59 and c1 = 93. The values

r1 = 59, r2 = 60, r3 = 65, r4 = 66, . . .
c1 = 93, c2 = 95, c3 = 99, c4 = 131, . . .

show that ak = 3k for the first time for k = 66, which corresponds to c4 = 2r4 − 1. But
neither r4 = 66 nor c3 = 99 are prime.

2 Relation between the conjectures

We start by giving the alternative formula for rn+1 and the proof of Proposition 1.4.

Lemma 2.1 For n, m ∈ Z
+

min
{

p + p
⌊n

p

⌋

: p | m
}

= min
{

k > n : gcd(k, m) 6= 1
}

.

Proof: Lemma follows from the fact that

p + p
⌊n

p

⌋

= p

(

1 +
⌊n

p

⌋

)

is the first multiple of p that is greater than n, and that p | gcd(p + p⌊n/p⌋, m). 2

Proof of Proposition 1.4: If rn < k < rn+1 then, by Lemma 2.1, we have that gcd(k, cn) =
1 and therefore

gcd(k, cn + k) = 1 = (cn + k + 1) − (cn + k) = ak − ak−1.

On the other hand, if k = rn, then gcd(rn, cn−1) 6= 1 and clearly

gcd(rn, cn−1 + rn) = gcd(rn, cn−1) = (cn + rn + 1) − (cn−1 + rn) = ak − ak−1.

This proves (6). Now it is clear that ak − ak−1 is gcd(cn−1, rn) for k = rn and 1 otherwise.
2

The following unconditional relation between rn and cn plays an important role when
relating the conjectures. Compare it with Proposition 1 and Propostion 2 in [4] and the
comments given there. Note for instance that after (6) ak ≥ 3k for k = rn.

Proposition 2.2 Let rn and cn be given by (5) with a1 odd > 3. Then, rn ≤ (cn + 1)/2
for every n ∈ Z

+. Moreover, the equality for n > 1 occurs if and only if gcd(cn−1, rn) is
a prime p and p⌊rn−1/p⌋ = (cn−1 − p)/2.
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Proof: We prove the inequality by induction. Clearly is it true for n = 1. Assume
rn−1 ≤ (cn−1 + 1)/2. By definition, rn = p + p⌊rn−1/p⌋ for some prime p | cn−1. Apply
now the inductive hypothesis

rn = p + p

⌊

rn−1

p

⌋

≤ p + p

⌊

cn−1 + 1

2p

⌋

= p +
cn−1 − p

2
=

cn−1 + p

2
. (7)

On the other hand, as p | gcd(cn−1, rn), then

cn−1 + p

2
≤

cn−1 + (cn−1, rn)

2
=

cn + 1

2
. (8)

Combining (7) and (8) the induction step is finished.

If gcd(cn−1, rn) is not prime, then we have a strict inequality in (8) and rn 6= (cn+1)/2.
We obtain the same conclusion if p⌊rn−1/p⌋ 6= (cn−1−p)/2 using (7). Then, the properties
in the statement are necessary conditions for the equality. It is easy to see that the converse
is also true. 2

Using Lemma 2.1, it is easy to check that (ii) implies (i). Also, trivially (iii) implies
(i) and (ii).

Corollary 2.3 If (i) holds and gcd(cn0−1, rn0
) > rn0−1, then (iii) is true.

We can redefine m0 with no reference to prime numbers thanks to the following result.

Proposition 2.4 Given n > 1, rn = cn−1 if and only if cn−1 is prime.

This proposition can be reformulated as the following corollary.

Corollary 2.5 If rn = cn−1 for some n > 1, then (i) and (ii) hold true.

Proof of Proposition 2.4: If cn−1 is prime, then Proposition 2.2 implies that rn−1 < cn−1

and, according to Lemma 2.1, we conclude that rn has to be cn−1.
For the converse, assume rn = cn−1 and take m = (cn−1 + lpf(cn−1))/2 = (rn +

lpf(rn))/2. We have that gcd(m, cn−1) 6= 1 and, again by Proposition 2.2, rn−1 < m.
The alternative definition of rn given by Lemma 2.1 implies that rn ≤ m, or equivalently
rn = lpf(rn). Hence, rn = cn−1 is prime. 2

Proposition 2.6 Under (iii), there exists a prime p such that

inf{k : ak = 3k} =
p + 1

2
and inf{k : ak = 3k, ak − ak−1 > 1} = p.
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Proof: Clearly ak = 3k is equivalent to cn = 2k − 1. If ak − ak−1 > 1, then Proposition
1.4 shows that k = rn for some n. As rn is increasing, the minimum is reached in rn0

which is prime by Proposition 2.4.
Without any assumption on ak − ak−1, by Proposition 1.4 for rn0−1 ≤ k < rn0

ak = 3k ⇔ k =
cn0−1 + 1

2
=

p + 1

2

and we know by Proposition 2.2 that actually this value lies on the interval [rn0−1, rn0
).

It only remains to check that ak > 3k for all k ≤ rn0−1. Otherwise, if ak−1 ≤ 3(k − 1)
for some k, then 3 ≤ 3k − ak−1. By Proposition 1.4, ak − ak−1 is equal to gcd(cn−1, rn)
for k = rn and equals 1 otherwise, therefore it always divides 3k − ak−1, so ak − ak−1 ≤
3k − ak−1, and then ak ≤ 3k. Iterating this process would lead to a contradiction for
k = rn0−1. 2

Extensive computations show that

Qk = min
n<n0

cn + 1

rn

is by far greater than 2 when a1 is large. For example when 220 < a1 < 221, the minimum
is 340.56. Any improvement of Proposition 2.2 in this direction reduces the equivalence
between (i) and (iii) to a finite number of computations. We show an example here using
our computer based verification of Conjecture 1.5 for a1 < 108.

Proposition 2.7 Assume (i) and
(

2 + 1
2500

)

rn < cn + 1 for n < n0. Then (iii) holds.

Proof: By Proposition 2.2 we have gcd(cn0−1, rn0
) = p. Also, for some j and l,

rn0−1 = pj + l, rn0
= p(j + 1),

cn0−1 = p(2j + 1), cn0
= 2p(j + 1) − 1.

For the sake of brevity write K = 3500. If j > K, then

cn0−1 + 1

rn0−1

≤
p(2j + 1) + 1

pj
= 2 +

1

j
+

1

3j
< 2 +

1

2500
,

which does not match our assumption. So we can suppose 1 ≤ j ≤ K, since j = 0 clearly
implies (iii). We distinguish several cases.

If p ≤ 4K − 3 then cn0−1 < 108 − 2 and it corresponds to some a1 < 108 for which (iii)
was checked with a computer.

The remaining case has p > 4K−3. If l < p−2K, there always exists rn0−1 < m < rn0

being a multiple of 2j+1, hence gcd(m, cn0−1) 6= 1, and this contradicts Lemma 2.1. Then
we have l ≥ p − 2K and

cn0−1 + 1

rn0−1
≤

p(2j + 1) + 1

p(j + 1) − 2K
= 2 +

4K − p + 1

p(j + 1) − 2K
.
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Comparing with the assumed inequality we should have

p(j + 1) − 2K < 2500
(

4K − p + 1
)

,

which is impossible for j > 0 and p > 4K − 3. 2

Proposition 2.8 Given N there exists a1 such that m0 > N .

Proof: Let a1 be such that m0 < ∞. Take a′

1 = a1 + M with M = cm0
!. We claim that

the sequences (5) corresponding to a′

1 are

r′j = rj and c′j = cj + M for j ≤ m0.

Clearly cj is a nontrivial factor of c′j then m′

0 > m0 and iterating this process N times we

can obtain a
(N)
1 whose m0 exceeds at least in N the m0 corresponding to a1.

To prove the claim note that gcd(k, cj + M) = gcd(k, cj) for any k ≤ rm0
because in

fact k divides M and appeal to Lemma 2.1. 2

3 Primes

Proposition 3.1 Under (i) we have

cn = cn−1 + lpf(cn−1) − 1 and rn = (cn + 1)/2,

for n > n0.

Proof: We are going to prove that given n ≥ n0, if rn = (cn + 1)/2, then

cn+1 = cn + lpf(cn) − 1 and rn+1 = (cn+1 + 1)/2. (9)

As (i) assures rn0
= (cn0

+ 1)/2, the result follows by an inductive argument.
By Lemma 2.1,

rn+1 = min{l ≥ 1 : gcd(rn + l, cn) 6= 1},

where gcd(rn + l, cn) = gcd((cn + 1 + 2l)/2, cn) = gcd(1 + 2l, cn), as cn is odd. Hence,
1 + 2l = lpf(cn). Then rn+1 = rn + (lpf(cn) − 1)/2 and

cn+1 = cn + gcd
(

cn,
cn + 1

2
+

lpf(cn) − 1

2

)

− 1 = cn + lpf(cn) − 1,

and we obtain (9). 2

Proposition 3.2 Under (i), (ii) or (iii) Conjecture 1.2 is true. Moreover, {ak −ak−1}
∞

k=1

contains infinitely many distinct primes.
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Proof: We can always suppose (i) is true because it is in principle less general. By
Propositions 1.4 and 3.1, for k = rn with n > n0, we have

ak − ak−1 = gcd(cn−1, rn) = gcd
(

cn + 1 − lpf(cn−1),
cn + 1

2

)

= gcd(lpf(cn−1), cn + 1) = lpf(cn−1).

It remains to be proved that the set {ak − ak−1}
∞

k=1 contains infinitely many primes.
Let P be the product of the primes being smaller than N , with N such that P > cn0

. Let
n be the only integer satisfying cn < P ≤ cn+1. If we put cn = pq with p = lpf(cn) and
use Proposition 3.1, then pq < P ≤ pq + p − 1, and so 0 < P − pq < p. Now, as P − pq
cannot be a multiple of p, we deduce that p has to be greater than N .

Therefore, given N we have found n such that arn+1 − arn
= lpf(cn) = p > N . Letting

N tend to infinity, we obtain an unbounded sequence of primes and the result follows. 2

Not all possible sequences of primes do actually appear. For instance it is obvious
that (4) and (3) prevent from getting the same prime twice as consecutive values of
ak − ak−1 6= 1. It motivates the following definition.

Definition: We say that a finite sequence of k odd primes Ck = {p1, p2, . . . , pk} is a
Rowland’s chain if there exists c∗1 > 1 such that pn = lpf(c∗n) for 1 ≤ n ≤ k, where
c∗n = c∗n−1 + lpf(c∗n−1) − 1. We associate to Ck the shifted partial sums

S(n) =
∑

j<n

(pj − 1) and S(1) = 0.

The following is a characterization of Rowland’s chains.

Proposition 3.3 A finite sequence of odd primes Ck = {p1, p2, . . . , pk} is a Rowland’s
chain if and only if the following three conditions are satisfied:

a) S(m) ≡ S(n) (mod pn) when pn = pm.

b) S(m) 6≡ S(n) (mod pn) when pn < pm.

c) For any prime q the set {S(j) (mod q) : pj > q} does not contain all residue
classes modulo q.

Of course in the third condition the set is empty except for q less than the maximum
of Ck and it is also trivially satisfied if q > k, so this characterization allows one to verify
whether Ck is a Rowland’s chain in a finite number of steps. For instance {3, 19, 5, 3}
is a Rowland’s chain because S(1) = 0, S(4) = 24 imply a). The rest of the values,
S(2) = 2, S(3) = 20 imply that neither S(1) nor S(4) are congruent to S(2) or S(3)
(mod 3), and S(2) 6≡ S(3) (mod 5), which is b). Finally c) does not need a verification
because (excluding the trivial case q = 2) if the set is nonempty q ≥ 5 and we only have
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4 residue classes. On the other hand {17, 5, p} is not a Rowland’s chain for any p > 3
because it violates c) for q = 3.

Proof: Note that, according to the definition of Rowland’s chain, c∗n = c∗1 + S(n) and Ck

is a Rowland’s chain if and only if there exists c∗1 satisfying for 1 ≤ n ≤ k

c∗1 + S(n) ≡ 0 (mod pn) and c∗1 + S(n) 6≡ 0 (mod q) for every q < pn. (10)

If pn = pm then c∗1 + S(n) ≡ c∗1 + S(m) ≡ 0 (mod pn) implies a). On the other hand,
the Chinese remainder theorem assures that under these conditions there exists a solution
to the system formed by the first set of equations of (10).

Let q be any prime less that the maximum of Ck. Then the equations in (10) involving
q are

c∗1 + S(m) 6≡ 0 (mod q) for m ∈ {j : pj > q},

and if q ∈ Ck, say q = pn, we have to add also

c∗1 + S(n) ≡ 0 (mod q).

In the first case there exists a solution (mod q) if and only if S(m) does not cover all
residue classes. This is c). In the second case we also need S(m) 6≡ S(n) (mod pn) and
this is b).

Finally note that once we have checked that the repeated equations are coherent, the
Chinese remainder theorem can be used to find an arithmetic progression of possibilities
for c∗1. 2

We know, thanks to the second part of Proposition 3.2, that the sequence of primes
cannot be periodic. But the situation is even more restrictive; it cannot repeat blocks.

Corollary 3.4 If p1, . . . , pk are distinct primes, then C2k = {p1, p2, . . . , pk, p1, p2, . . . , pk}
is not a Rowland’s chain.

Proof: Note that λ = S(n+k)−S(n) is constant for 1 ≤ n ≤ k. Then Proposition 3.3 a)
implies that this value is divisible by every pn, and hence λ is a multiple of p1p2 . . . pk.
But this is impossible, since this product is greater than λ. 2

In the most of the cases Proposition 3.3 imposes severe restrictions to construct Row-
land’s chains with few given distinct primes and large k. But on the other hand it is
possible to find rather long chains for special choices of the primes. For instance, using
the first five odd primes there are no chains of length greater than 10 but we have

C27 = {3, 5, 3, 23, 3, 5, 3, 653, 3, 5, 3, 23, 3, 5, 3, 3603833, 3, 5, 3, 23, 3, 5, 3, 653, 3, 5, 3}

of length 27 that only involves the primes 3, 5, 23, 653 and 3603833. In fact it is maximal
for this set of primes (there is another valid maximal chain of the same length). It
corresponds to c∗1 = 1550303031682203.

the electronic journal of combinatorics 18(2) (2011), #P10 9



Remark: The proof of Corollary 3.4 gives lcm(p1, p2, . . . , pk) |
∑k

j=1(pj − 1), even
admitting repeated primes. We expect that also in this case consecutive identical blocks
cannot appear because Proposition 3.3 would impose too strong conditions. On the other
hand, we think that it is possible to concatenate arbitrarily long identical blocks inserting
one prime between them (see the chain C27).
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