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Abstract

This paper studies Zeilberger’s two prized constant term identities. For one of
the identities, Zeilberger asked for a simple proof that may give rise to a simple
proof of Andrews theorem for the number of totally symmetric self complementary
plane partitions. We obtain an identity reducing a constant term in 2k variables
to a constant term in k variables. As applications, Zeilberger’s constant terms are
converted to single determinants. The result extends for two classes of matrices, the
sum of all of whose full rank minors is converted to a single determinant. One of
the prized constant term problems is solved, and we give a seemingly new approach
to Macdonald’s constant term for root system of type BC.

1 Introduction

In 1986 [6], Mills, Robbins and Rumsey defined a class of objects called totally symmetric

self complementary plane partitions (denoted TSSCPP for short) and conjectured that
the number tn of TSSCPPs of order n is given by

tn = An :=

n−1
∏

i=0

(3i + 1)!

(n + i)!
, (1)

∗The author would like to thank Doron Zeilberger for suggesting this subject, and thank the referee
for valuable suggestions improving this exposition. Part of this work was done during the author’s stay
at the Center for Combinatorics, Nankai University. This work was supported by the Natural Science
Foundation of China.
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which also counts the number of alternating sign matrices, a famous combinatorial struc-
ture, of order n. In 1994, Andrews [1] proved the conjecture by using Stembridge’s Pfaffian
representation [8] derived from Doran’s combinatorial characterization [2] of tn. At the
same time, Zeilberger suggested a constant term approach in [11], as we describe below.

We only need Doran’s description of tn in [2]: tn equals the sum of all the n×n minors

of the n × (2n − 1) matrix

((

i − 1

j − i

))

1≤i≤n,1≤j≤2n−1

. The sum can be transformed to

a constant term by simple algebra manipulation. Thus, combining equation (1), we can
obtain the following identity:

Identity 1.

CT
x

∏

1≤i<j≤n(1 − xi

xj
)
∏n

i=1(1 + x−1
i )i−1

∏n
i=1(1 − xi)

∏

1≤i<j≤n(1 − xixj)
=

n−1
∏

i=0

(3i + 1)!

(n + i)!
.

Zeilberger observed that a simple proof of this identity will give rise to a simple proof
of Andrews’ TSSCPP theorem. He offered a prize asking for a direct constant term proof.
A prize is also offered for the following identity.

Identity 2.

1

n!
CT

x

∏

1≤i6=j≤n(1 − xi

xj
)
∏n

i=1(1 + x−1
i )m

∏n
i=1(1 − xi)

∏

1≤i<j≤n(1 − xixj)
=

n−1
∏

j=0

m
∏

i=1

2i + j

i + j
.

In 2007, I had a chance to meet Doron Zeilberger and to discuss the advantage of
using partial fraction decomposition and the theory of iterated Laurent series in dealing
with the q-Dyson related problems. See, e.g., [3, 4]. Thereafter he suggested that I shall
consider the above two identities. In this paper, only Identity 2 is given a direct constant
term proof. In addition, a conjecture is given as a generalization of Identity 1.

The paper is organized as follows. Section 1 is this introduction. Section 2 includes the
main results of this paper. By using partial fraction decomposition, we derive a constant
term reduction identity that reduces a constant term in 2k variables to a constant term
in k variables. Applications are given in Section 3. For two classes of matrices, the sum
of all full rank minors are converted to a single determinant. We also make a conjecture
generalizing Identitie 1. Section 4 completes the proof of Identity 2. We also include a
method to evaluate Macdonald’s constant term for root system of type BC.

2 Constant term reduction identities

In this paper, we only need to work in the ring of Laurent series Q((x1, x2, . . . , xn)). For
π ∈ Sn we use the usual notation πf(x1, x2, . . . , xn) := f(xπ1

, xπ2
, . . . , xπn

). The easy but
useful SS-trick (short for Stanton-Stembridge trick) states that if f ∈ Q((x1, x2, . . . , xn)),
then

CT
x

f(x1, x2, . . . , xn) =
1

n!
CT

x

∑

π∈Sn

πf(x1, x2, . . . , xn).
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See, e.g., [10, p. 9]. We will often use the SS-trick without mentioning.
We need some notations. Define

Bk(x) := det
(

x−j
i − xj

i

)

1≤i,j≤k
=

∑

π∈Sk

sgn(π)π(x−1
1 − x1) · · · (x−k

k − xk
k), (2)

B̄k(x) := det
(

xj−1
i + x−j

i

)

1≤i,j≤k
=

∑

π∈Sk

sgn(π)π(1 + x−1
1 ) · · · (xk−1

k + x−k
k ). (3)

Then it is well-known that

Bk =
∏

1≤i≤k

1 − x2
i

xk
i

∏

1≤i<j≤k

(xi − xj)(1 − xixj), (4)

B̄k =
∏

1≤i≤k

1 + xi

xk
i

∏

1≤i<j≤k

(xi − xj)(1 − xixj). (5)

A rational function Q is said to be gratifying in x1, x2, . . . , xn if we can write

Q = Q(x1, . . . , xn) =

∏

1≤i6=j≤n(1 − xi

xj
)P (x−1

1 , . . . , x−1
n )

∏n
i=1(1 − xi)

∏

1≤i<j≤n(1 − xixj)
, (6)

where P (x1, . . . , xn) is a polynomial.
Now we can state our main result as the following. The proof will be given later.

Theorem 3. Let Q be as in (6) with P a symmetric polynomial. If n = 2k, then

CT
x

Q(x) =
(2k)!

2k
CT

x
P (x1, . . . , xk, x

−1
1 , . . . , x−1

k )B̄k(x)

k
∏

i=1

(xi
i + x1−i

i ) (7)

= (2k − 1)!! CT
x

P (x1, . . . , xk, x
−1
1 , . . . , x−1

k )B̄k(x)2

k
∏

i=1

xi; (7′)

if n = 2k + 1, then

CT
x

Q(x) =
(2k + 1)!

(−2)k
CT

x
P (x1, . . . , xk, x

−1
1 , . . . , x−1

k , 1)Bk(x)

k
∏

i=1

(x−i
i − xi

i) (8)

= (−1)k(2k + 1)!! CT
x

P (x1, . . . , xk, x
−1
1 , . . . , x−1

k , 1)Bk(x)2. (8′)

Note that the operator CTx is valid since CTxi
F = F if F is free of xi. We give the

following nice form as a consequence.

Corollary 4. Let p(z) be a univariate polynomial in z. If n = 2k then

1

n!
CT

x

∏

1≤i6=j≤n(1 − xi

xj
)
∏n

i=1 p(x−1
i )

∏n
i=1(1 − xi)

∏

1≤i<j≤n(1 − xixj)
= CT

x
B̄k(x)

k
∏

i=1

xi
ip(xi)p(x−1

i ); (9)

the electronic journal of combinatorics 18(2) (2011), #P11 3



If n = 2k + 1 then

1

n!
CT

x

∏

1≤i6=j≤n(1 − xi

xj
)
∏n

i=1 p(x−1
i )

∏n
i=1(1 − xi)

∏

1≤i<j≤n(1 − xixj)
= p(1) CT

x
Bk(x)

k
∏

i=1

xi
ip(xi)p(x−1

i ). (10)

Proof. By applying Theorem 3 with P (x) =
∏2k

i=1 p(xi), the left-hand side of (9) becomes

CT
x

2−k det
(

xj−1
i + x−j

i

)

1≤i,j≤k

k
∏

i=1

(xi
i + x1−i

i )
k

∏

i=1

p(xi)p(x−1
i )

= 2−k det

(

CT
xi

(xj−1
i + x−j

i )(xi
i + x1−i

i )p(xi)p(x−1
i )

)

1≤i,j≤k

= det

(

CT
xi

(xi+j−1
i + xi−j

i )p(xi)p(x−1
i )

)

1≤i,j≤k

= CT
x

B̄k(x)
k

∏

i=1

xi
ip(xi)p(x−1

i ).

Here we used the fact CTx xip(x)p(x−1) = CTx x−ip(x)p(x−1). Similarly, by applying

Theorem 3 with P (x) =
∏2k+1

i=1 p(xi), the left-hand side of (10) becomes

p(1) CT
x

(−2)−k det
(

x−j
i − xj

i

)

1≤i,j≤k

k
∏

i=1

(x−i
i − xi

i)

k
∏

i=1

p(xi)p(x−1
i )

= p(1)(−2)−k det

(

CT
xi

(x−j
i − xj

i )(x
−i
i − xi

i)p(xi)p(x−1
i )

)

1≤i,j≤k

= p(1) det

(

CT
xi

(xi−j
i − xi+j

i )p(xi)p(x−1
i )

)

1≤i,j≤k

= p(1) CT
x

Bk(x)

k
∏

i=1

xi
ip(xi)p(x−1

i ).

In order to prove Theorem 3, we need some notations. The degree degx1
Q of a rational

function Q in x1 is defined to be the degree of the numerator minus the degree of the
denominator in x1. If degx1

Q < 0, then we say that Q is proper in x1. The partial fraction
decomposition of a proper rational function has no polynomial part. The following lemma
is by direct application of partial fraction decomposition.

Lemma 5. If Q is gratifying in x1, x2, . . . , xn, then

CT
x1

Q(x1, . . . , xn) = A0 + A2 + · · ·+ An,

where A0 = Q(1 − x1)
∣

∣

x1=1
, Ar = Q(1 − x1xr)

∣

∣

x1=1/xr
, 2 ≤ r ≤ n. Moreover, A0 is

gratifying in x2, . . . , xn, and Ar is gratifying in x2, . . . , xr−1, xr+1, . . . , xn.
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Proof. Assume Q is given by (6). We claim that Q is proper in x1. This can be easily
checked by observing that for m being free of x1, the degree (in x1) of (1− x1m) is 1 and
the degree of 1 − m/x1 and 1 − m are both 0.

Now the partial fraction decomposition of Q can be written in the following form.

Q =
p0(x1)

xd
1

+
A0

1 − x1
+

n
∑

r=2

Ar

1 − x1xr
,

where d is a nonnegative integer, p0(x1) is a polynomial of degree less than d, and
A0, A2, . . . , An are independent of x1 given by A0 = Q(x)(1 − x1)

∣

∣

x1=1
, Ar = Q(x)(1 −

x1xr)
∣

∣

x1=x−1
r

for r ≥ 2. Now clearly we have

CT
x1

Q(x) = A0 + A2 + · · ·+ An.

This proves the first part of the lemma.
For the second part, we need to rewrite Ar in the right form. For r = 0 we have

A0 =

∏n
j=2(1 − x1

xj
)
∏n

i=2(1 − xi

x1
)
∏

2≤i6=j≤n(1 − xi

xj
)P (x−1

1 , . . . , x−1
n )

∏n
i=2(1 − xi)

∏n
j=2(1 − x1xj)

∏

2≤i<j≤n(1 − xixj)

∣

∣

∣

∣

∣

x1=1

=

∏n
j=2(1 − 1

xj
)
∏n

i=2(1 − xi)
∏

2≤i6=j≤n(1 − xi

xj
)P (1, x−1

2 , . . . , x−1
n )

∏n
i=2(1 − xi)

∏n
j=2(1 − xj)

∏

2≤i<j≤n(1 − xixj)

=

∏

2≤i6=j≤n(1 − xi

xj
)P ′(x−1

2 , . . . , x−1
n )

∏n
i=2(1 − xi)

∏

2≤i<j≤n(1 − xixj)
,

where P ′(x2, . . . , xn) is a polynomial in x2, . . . , xn given by

P ′(x−1
2 , . . . , x−1

n ) = P (1, x−1
2 , . . . , x−1

n )

n
∏

i=2

(1 − x−1
i ).

Thus A0 is gratifying in x2, . . . , xn as desired.
For r ≥ 2, without loss of generality, we may assume r = n. We have

An =

∏n
j=2(1 − x1

xj
)
∏n

i=2(1 − xi

x1
)
∏

2≤i6=j≤n(1 − xi

xj
)P (x−1

1 , . . . , x−1
n )

(1 − x1)
∏n

i=2(1 − xi)
∏n

j=2,j 6=n(1 − x1xj)
∏

2≤i<j≤n(1 − xixj)

∣

∣

∣

∣

∣

x1=1/xn

=

∏n
j=2(1 − 1

xnxj
)
∏n

i=2(1 − xixn)
∏

2≤i6=j≤n(1 − xi

xj
)P (xn, x−1

2 , . . . , x−1
n )

(1 − 1
xn

)
∏n

i=2(1 − xi)
∏n−1

j=2 (1 − xj

xn
)
∏

2≤i<j≤n(1 − xixj)

After massive cancelation, we obtain

An =
P ′′(x−1

2 , . . . , x−1
n−1)

∏

2≤i6=j≤n−1(1 − xi

xj
)

∏n−1
i=2 (1 − xi)

∏

2≤i<j≤n−1(1 − xixj)
,
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where P ′′(x2, . . . , xn−1) is a polynomial in x2, . . . , xn−1 given by

P ′′(x−1
2 , . . . , x−1

n−1)

P (xn, x−1
2 , . . . , x−1

n )
=

(1 − 1
x2

n
)(1 − x2

n)
∏n−1

j=2 (1 − 1
xnxj

)
∏n−1

j=2 (1 − xn

xj
)

(1 − 1
xn

)(1 − xn)

=
(1 + xn)2

xn

n−1
∏

j=2

(1 − 1

xnxj
)(1 − xn

xj
).

Thus An is gratifying in x2, . . . , xn−1 as desired.

To evaluate the constant term of a gratifying Q, we can iteratively apply Lemma 5.
This will result in a big sum of simple terms. We shall associate to each term a partial
matching to keep track of them. To be precise, we describe this as follows.

Start with Q associated with the empty matching. At every step we have a set of
terms, each associated with a partial matching consisting of blocks of size 1 or 2. For a
term R associated with M , we can see from iterative application of Lemma 5 that R is
gratifying in all variables except for those with indices in M . If M is a full matching, i.e.,
of [n] := {1, 2, . . . , n}, then put R into the output; otherwise suppose the smallest such
variable is xi. Then applying Lemma 5 with respect to xi gives a sum of terms. One term
is similar to A0, associate to it with M ∪ {{i}}, and the other terms are similar to Ar,
associate to it M ∪ {{i, r}}.

If we denote by QM the term corresponding to M , then we have

QM = Q(1 − xi1xj1) · · · (1 − xisxjs
)(1 − xis+1

) · · · (1 − xis+r
)
∣

∣

∣

1≤e≤s<f≤s+r

xie=x−1

je
,xif

=1
,

where {ie, je} and {if} are all the 2-blocks and 1-blocks.
Observing that in the A0-terms the factor (1 − xj) appears in the numerator, we see

that QM = 0 if M has two singleton blocks.
The above argument actually gives the following result.

Proposition 6. If Q is gratifying in x1, . . . , xn, then

CT
x

Q =
∑

M

CT
x

QM ,

where the sum ranges over all full matchings with at most one singleton block.

This result becomes nice when Q is symmetric. We need the following lemma, which
is by straightforward calculation.

Lemma 7. Let Q be as in (6) with P = 1. If n = 2k, then we have

Q{{1,k+1},...,{k,2k}} = B̄k(xk+1, . . . , x2k)
2xk+1xk+2 · · ·x2k; (11)

If n = 2k + 1, then we have

Q{{1,k+1},...,{k,2k},{2k+1}} = (−1)kBk(xk+1, . . . , x2k)
2. (12)
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Note that we have the following alternative expressions:

Q{{1,k+1},...,{k,2k}} = B̄k(xk+1, . . . , x2k)B̄k(x
−1
k+1, . . . , x

−1
2k ),

Q{{1,k+1},...,{k,2k},{2k+1}} = Bk(xk+1, . . . , x2k)Bk(x
−1
k+1, . . . , x

−1
2k ).

Proof of Theorem 3. If n = 2k, then Proposition 6 states that

CT
x

Q =
∑

M

CT
x

QM ,

where M ranges over all complete matchings of [n], i.e., every block has exactly two
elements. There are (2k − 1)!! = (2k − 1)(2k − 3) · · ·1 such M . Since QM are all Laurent
series and Q is symmetric in all variables, they have the same constant terms. Therefore

CT
x

Q = (2k − 1)!! CT
xk+1,...,x2k

QM0
, (13)

where M0 is taken to be {{1, k + 1}, . . . , {k, 2k}}. It is an exercise to show that

QM0
= P (xk+1, . . . , x2k, x

−1
k+1, . . . , x

−1
2k )B̄k(xk+1, . . . , x2k)

2xk+1 · · ·x2k.

This gives (7′) immediately after renaming the parameters. By applying the SS-trick,
Lemma 7, and equation (3), we obtain

CT
x

QM0
= k! CT

x
P (x1, . . . , xk, x

−1
1 , . . . , x−1

k )B̄k

k
∏

i=1

(xi
i + x1−i

i ).

The above formula and (13) yield (7).
If n = 2k + 1, then by a similar argument, we have

CT
x

Q = (2k + 1)!! CT
xk+1,...,x2k

QM1
,

where M1 is taken to be {{1, k + 1}, . . . , {k, 2k}, {2k + 1}} and we have

QM1
= (−1)kP (xk+1, . . . , x2k, x

−1
k+1, . . . , x

−1
2k , 1)Bk(xk+1, . . . , x2k)

2.

Thus (8) and (8′) follow in a similar way.

3 Applications: a determinants reduction identity

Zeilberger obtained the following more general transformation in [11].

Theorem 8 (Zeilberger). Let f(x) and g(x) be polynomials and let M be the n×((deg f)+
(n − 1) deg(g) + 1) matrix with entries given by

Mi,j = CT
x

f(x)g(x)i−1

xj−1
.

Then the sum of all n × n minors of M equals

1

n!
CT

x

∏n
i=1 f(x−1

i )
∏

1≤i<j≤n(xi − xj)(g(x−1
i ) − g(x−1

j ))
∏n

i=1(1 − xi)
∏

1≤i<j≤n(1 − xixj)
. (14)
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He considered two cases: i) g(x) = x(1 + x), and ii) g(x) = 1 + x, both with f(x) =
(1 + x)m. Case i) with m = 0 corresponds to Identity 1 and Case ii) corresponds to
Identity 2.

We start with Case ii), which is easier to simplify. Observe that

(xi − xj)(g(x−1
i ) − g(x−1

j )) = (xi − xj)(x
−1
i − x−1

j ) = (1 − xi/xj)(1 − xj/xi).

Then by applying Corollary 4 with p(x) = f(x), we obtain:

Theorem 9. Let M be as in Theorem 8 with g(x) = 1 + x. Then the sum of all n × n
minors of M equals











det
(

CT
x

(xi+j−1 + xi−j)f(x)f(x−1)
)

1≤i,j≤k
if n = 2k;

f(1) det
(

CT
x

(xi−j − xi+j)f(x)f(x−1)
)

1≤i,j≤k
if n = 2k + 1.

In particular, when f(x) = (1 + x)m, the left hand side of (2) becomes















det

((

2m

m + 1 − i − j

)

+

(

2m

m − i + j

))

1≤i,j≤k

if n = 2k;

2m det

((

2m

m − i + j

)

−
(

2m

m − i − j

))

1≤i,j≤k

if n = 2k + 1.

These determinants should be easy to evaluate, but Zeilberger prefered to avoid using
“determinants” technique. This leads to the proof in Section 4.

Case i) is a little complicated. One can summarize a formula as in Theorem 9, but we
will assume f(x) = (1 + x)m for brevity. Note that in [11], the exponent i− 1 for 1 + x−1

i

was correct in the proof, but was replaced by the wrong exponent n− i in the formula for
C.

Denote (14) with f(x) = (1 + x)m and g(x) = x(1 + x) by LHS. We have

LHS =
1

n!
CT

x

∏n
r=1(1 + x−1

r )m
∏

1≤i<j≤n(xi − xj)(x
−1
i (1 + x−1

i ) − x−1
j (1 + x−1

j ))
∏n

i=1(1 − xi)
∏

1≤i<j≤n(1 − xixj)

=
1

n!
CT

x

∏

1≤i<j≤n(xi − xj)(x
−1
i − x−1

j )
∏n

i=1(1 − xi)
∏

1≤i<j≤n(1 − xixj)
P (x−1),

where P (x−1) given by

P (x−1) =
n

∏

r=1

(1 + x−1
r )m

∏

1≤i<j≤n

(x−1
i − x−1

j )−1(x−1
i + x−2

i − x−1
j − x−2

j )

is symmetric in the x’s.
By noticing (xi − xj)(x

−1
i − x−1

j ) = (1 − xi/xj)(1 − xj/xi), we shall apply Theorem 3

with P given above. Let us consider the n = 2k case first. For clarity we use g(x−1
i ) for
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x−1
i + x−2

i . By using (7′) and dividing the product for 1 ≤ i < j ≤ n into the following
three parts: i) 1 ≤ i < j ≤ k, ii) k + 1 ≤ i < j ≤ 2k, iii) 1 ≤ i ≤ k < j ≤ 2k, and then
splitting part iii) as i = j − k, i < j − k, and i > j − k, we have

LHS =
1

2kk!
CT

x
B̄k(x)2

k
∏

i=1

xi

n
∏

r=1

(1 + x−1
r )m

∏

1≤i<j≤n

g(x−1
i ) − g(x−1

j )

x−1
i − x−1

j

∣

∣

∣

ℓ=1,...,k

xk+ℓ=xℓ

=
1

2kk!
CT

x
B̄k(x)B̄k(x

−1)
k

∏

r=1

(1 + x−1
r )m(1 + xr)

m
k

∏

i=1

g(x−1
i ) − g(xi)

x−1
i − xi

×
∏

1≤i<j≤k

(g(x−1
i ) − g(x−1

j ))(g(xi) − g(xj))(g(x−1
i ) − g(xj))(g(xi) − x−1

j )

(x−1
i − x−1

j )(xi − xj)(x
−1
i − xj)(xi − x−1

j )

=
1

2kk!
CT

x

B̄k(x)B̄k(x
−1)

∏

1≤i≤k(1 + xi)
2m(x−1

i + 1 + xi)
∏

1≤i<j≤k Ui,j
∏

1≤i≤k xm
i

∏

1≤i<j≤k(x
−1
i − x−1

j )(xi − xj)(1 − xixj)(1 − x−1
i x−1

j )

=
1

2kk!
CT

x

∏

1≤i≤k

(x−1
i + 1 + xi)(1 + xi)

2m+2

xm+1
i

∏

1≤i<j≤k

Ui,j

where Ui,j is given by

Ui,j = (g(x−1
i ) − g(x−1

j ))(g(xi) − g(xj))(g(x−1
i ) − g(xj))(g(xi) − g(x−1

j )).

Since Ui,j is invariant under replacing xi by x−1
i or xj by x−1

j , we can write it in terms of
zi and zj where zr = xr + 2 + x−1

r = x−1
r (1 + xr)

2:

Ui,j =
(

1 − 3 zizj + zizj
2 + zi

2zj

)

(zi − zj)
2 .

A crucial observation is that we can write

Ui,j = zizj(z
−1
i (zi − 1)3 − z−1

j (zj − 1)3)(zi − zj). (15)

Thus

LHS =
1

2kk!
CT

x

∏

1≤i≤k

zm+1
i (zi − 1)

∏

1≤i<j≤k

Ui,j

=
1

2kk!
CT

x

∏

1≤i≤k

zm+k
i (zi − 1)

∏

1≤i<j≤k

(z−1
i (zi − 1)3 − z−1

j (zj − 1)3)(zi − zj)

=
1

2k
CT

x

∏

1≤i≤k

zm+k
i (zi − 1)z

−(i−1)
i (zi − 1)3(i−1)

∏

1≤i<j≤k

(zi − zj)

Therefore we have the following determinant representation.

LHS =
1

2k
det

(

CTx zm+k+j−i(z − 1)3i−2
)

1≤i,j≤k
(16)

=
1

2k
det

(

CTx(x
−1(1 + x)2)m+k+j−i(x + 1 + x−1)3i−2

)

1≤i,j≤k
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The n = 2k + 1 case is very similar. We only have the extra factor

2m
k

∏

i=1

(xi + x2
i − 2)(x−1

i + x−2
i − 2) = 2m

k
∏

i=1

(2zi + 1)(zi − 4).

We have, similarly by the use of (15),

LHS =
2m

2k
det

(

CTx zm+k+j−i(z − 1)3i−2(2z + 1)(z − 4)
)

1≤i,j≤k
(17)

The two determinants in (16, 17) might be easy for experts by “determinants” techniques.
Here we only make the following conjecture.

Conjecture 10. Let M be the n × (2n + m − 1) matrix with entries given by

Mi,j =

(

m + i − 1

j − i

)

, 1 ≤ i ≤ n, 1 ≤ j ≤ 2n + m − 1,

Then the sum of all n × n minors of M equals























k
∏

i=1

(2i − 2)! (2 i + 2 m − 1)! (3 m + 4 i − 2)2i−2 (3 m + 4 i)2i−1

(m + 4 i − 4)! (m + 4 i − 2)!
, if n = 2k;

2m
k

∏

i=1

(2i − 1)!(2m + 2i + 3)!(3m + 4i)2i−1(3m + 4i + 2)2i

(m + 4i − 2)!(m + 4i)!(2m + 2i + 1)3
, if n = 2k + 1.

Here (n)k is the rising factorial n(n + 1) · · · (n + k − 1).

4 By Jacobi’s Change of Variable Formula

We first complete the proof of Identity 2 by transforming the constant term into known
constant terms. Here, we mean Macdonald’s constant terms for root system of type BC,
which is defined to be the constant term of the following:

Mn(x; a, b, c) :=
∏

1≤i≤n

(1 − xi)
a

(

1 − 1

xi

)a

(1 + xi)
b

(

1 +
1

xi

)b

∏

1≤i<j≤n

[(

1 − xi

xj

) (

1 − xj

xi

)

(1 − xixj)

(

1 − 1

xixj

)]c

. (18)

This includes type D (set a = b = 0), C (set b = 0), B (set a = b) as special cases. The
constant term was evaluated by Macdonald [5].

Proof of Identity 2. Denote by LHS the left-hand side of Identity 2. Apply Theorem 3
with P (x) = (1 + x1)

m · · · (1 + xn)m.
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i) If n = 2k, then by (7′) we have the following.

LHS =
1

2kk!
CT

x

k
∏

i=1

(1 + xi)
m(1 + x−1

i )mB̄k(x)2
k

∏

i=1

xi

=
1

2kk!
CT

x
Mk(x; 0, m + 1, 1);

ii) If n = 2k + 1 then similarly by (8′) we have

LHS =
1

(2)kk!
CT

x
2m(−1)k

k
∏

i=1

(1 + xi)
m(1 + x−1

i )mBk(x)2

=
2m−k

k!
CT

x
Mk(x; 1, m + 1, 1).

The remaining part is routine. We omit the details.

Before realizing Macdonald’s constant term identity applies, we discovered a different
approach. This leads to a new way, as far as I know, to evaluate Macdonald’s constant
term Mn(x; a, b, c) for root system of type BC by using two well-known results. One result
is Jacobi’s change of variable formula. See, e.g., [9].

Theorem 11 (Jacobi’s Residue Formula). Let y = f(x) ∈ C((x)) be a Laurent series and

let b be the integer such that f(x)/xb is a formal power series with nonzero constant term.

Then for any formal series G(y) such that the composition G(f(x)) is a Laurent series,

we have

CT
x

G(f(x))
x

f

∂f

∂x
= b CT

y
G(y). (19)

The other result is the well-known Morris constant term identity [7].

Theorem 12 (Morris Identity). For k ∈ P, b ∈ N, a ∈ C, we have

CT
x

n
∏

l=1

(1 − xl)
a

(

1 − 1

xl

)b
∏

1≤i6=j≤n

(

1 − xi

xj

)k

=
n−1
∏

l=0

(a + b + kl)!(k(l + 1))!

(a + kl)!(b + kl)!k!
. (20)

We make the change of variable by yi = xi(1 + xi)
−2 with b = 1. Then xi has to

be chosen to be xi = 1−2yi−
√

1−4yi

2yi
, which is the well-known Catalan generating function

(minus 1). Direct calculation shows that

xi

yi

∂yi

∂xi
=

1 − xi

1 + xi
=

√

1 − 4yi.

Thus Jacobi’s formula gives

CT
xi

G(yi(xi)) = CT
xi

G(yi(xi))
1√

1 − 4yi

1 − xi

1 + xi

= CT
yi

G(yi)√
1 − 4yi

. (21)
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We also need the following crucial observation.

(yi − yj)
2

y2
i y

2
j

= (1 − xi

xj
)(1 − xj

xi
)(1 − xixj)(1 − 1

xixj
). (22)

Now we can compute as follows.

CT
x

Mn(x; a, b, c) = CT
x

∏

1≤i≤n

(

1 − 4yi

yi

)a (

1

yi

)b
∏

1≤i<j≤n

[

(yi − yj)
2

y2
i y

2
j

]c

= CT
y

∏

1≤i≤n

(1 − 4yi)
a−1/2 (yi)

−a−b−(n−1)c
∏

1≤i6=j≤n

(

1 − yi

yj

)c

Now make another change of variables by letting yi = ti/4. We have

CT
x

Mn(x; a, b, c) = 4n(a+b+(n−1)c) CT
t

∏

1≤i≤n

(1 − ti)
a−1/2 (ti)

−a−b−(n−1)c
∏

1≤i6=j≤n

(

1 − ti
tj

)c

This corresponds to the Morris identity for parameters −1
2
−b−(n−1)c, a+b+(n−1)c, c.
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