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Abstract

This paper focuses on two binomial identities. The proofs illustrate the power
and elegance in enumerative/algebraic combinatorial arguments, modern machine-
assisted techniques of Wilf-Zeilberger and the classical tools of generatingfunctionol-

ogy.
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1 Introduction

Conjecturing and proving identities of the form A = B (where A is sum of ‘nice’ terms
(such as binomial) and B is a closed form or a sum of ‘nice’ terms) is among ancient
and attractive mathematical problems. There are several types of proof techniques from
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various areas of mathematics that can be used to prove such identities. Among these tech-
niques, we mention three here: enumerative combinatorics, generatingfunctionology and
the the Wilf-Zeilberger (WZ) method. Enumerative combinatorics deals with counting
the number of certain combinatorial objects. It gives meaning and understanding of such
objects, and provides an elegant and creative way of verification. Many problems that
arise in applications have a relatively simple combinatorial interpretation. For example
the binomial coefficient

(

n

k

)

counts the number of different ways of selecting k objects
from a set of n objects. Even though this method gives combinatorial interpretations, it
is at times challenging to find combinatorial descriptions for identities that have multiple
parameters or involve non-integral values. For an introduction on combinatorial argument
techniques, see, among others, [1, 2]. Another classical method for proving identities is
the generatingfunctionology technique which is time-tested since Euler. It uses formal
series expansions and is flexible enough to be applied to many situations. Formal series
expansions satisfy additive and multiplicative properties making them one of the most
widely used methods for proving identities. However, this approach involves tedious al-
gebraic manipulations and lacks to give meaning of the identities. A classical book that
discusses the generatingfunctionology method is [7]. The WZ method is one of the most
recent, efficient, computer-assisted/automated revolutionary technique for proving iden-
tities. Among its powerful features are its instant generation of elegant and short proofs
and its ability to validate identities for non- integral values of free parameters (such as,
real, complex, even indeterminates) as well as broader generalizations. For a superb ex-
position of the WZ method see, among others, the books [5, 4] which are devoted to this
and other methods. For an abridged (10 minutes) introduction to the WZ proof style see
[6].

In this paper we present proofs of two identities using the above mentioned methods.
The paper is organized as follows. In Section 2 we state the main identities. In Section
3 we provide combinatorial proofs. In Section 4 we present computer generated proofs
of the main identities. In Section 5 we provide proofs of the identities using generating
functions. Throughout this paper we denote the set {k, k + 1, k + 2, . . .} for k ∈ Z by
Nk. We use the convention that

(

a

b

)

= 0 for b < 0 or a < b. For a formal power series
F (x) =

∑∞
n=0 fnxn, we denote the coefficient of xn by [xn]F (x).

2 Main Identities

Theorem 1. If n, m ∈ N0 then

m
∑

r=0

2n−r

(

n

r

)(

m

r

)

=

n
∑

r=0

(

n + m − r

m

)(

n

r

)

. (1)
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Theorem 2. If n ∈ N0 and m ∈ N1, then

n
∑

k=0

(

m+n

k

)

2n
(

m+n

m

) =

n
∑

k=0

(−1)km
(

n

k

)

2k(m + k)
. (2)

Remark. The sums in Theorem 1 are called Delannoy numbers in the literature.

3 Combinatorial Proofs of the Main Identities

3.1 Proof of Theorem 1

We show that both sides of equation (1) count the number of ways of forming two teams
with m and n positions, respectively, formed by people of only three nationalities (Amer-
ican, Canadian, and Mexican) such that the total number of Canadians is m, and team
one does not have any Americans.

Answer 1: For 0 ≤ r ≤ m, there are
(

m

r

)

ways to put r Mexicans on team one. The
remaining m − r positions on team one will then be filled by Canadians. There are

(

n

r

)

ways to put r Canadians on team two. We then decide position by position whether each
of the remaining n − r positions will be filled by an American or a Mexican. There are
2n−r ways to do this. Therefore, the are

(

m

r

)(

n

r

)

2n−r ways to a form two teams with r

Mexicans on team one. Thus
∑m

r=0

(

m

r

)(

n

r

)

2n−r ways to form the two teams.

Answer 2: For 0 ≤ r ≤ n, there are
(

n

r

)

ways to put r Americans on team two. Of
the remain n + m − r positions, choose m positions to be filled by Canadians. There are
(

n+m−r

m

)

ways to do this. We then assign Mexicans to the remain n − r positions. Thus
∑n

r=0

(

n+m−r

m

)(

n

r

)

ways to form the two teams. Hence the identity follows.

3.2 Proof of Theorem 2

We first divide both sides of equation (2) by 2n and split up the sum on the right to get
an equivalent identity:

∑n

k=0

(

m+n

k

)

4n
(

m+n

m

) =

∑n

k=0

(−1)k(n

k)m

2k(m+k)

2n
=

2
∑⌊n

2
⌋

k=0

( n

2k)m

22k(m+2k)
−
∑n

k=0

(n

k)m

2k(m+k)

2n

=

∑⌊n
2
⌋

k=0

( n

2k)m

22k(m+2k)

2n−1
−

∑n

k=0

(n

k)m

2k(m+k)

2n

We break the proof of this identity into the following interesting lemmas.

the electronic journal of combinatorics 18(2) (2011), #P14 3



Lemma 1. If n ∈ N0 and m ∈ N1, then

∑n

k=0

(n

k)m

2k(m+k)

2n
=

(

3

4

)n
(

1 −
n
∑

k=1

2k−1
(

m+n−k

m

)

3k
(

m+n

m

)

)

Proof. Suppose we have m + n tiles divided into two groups, the first group containing
the first m and the second containing the last n. We color each of the first m tiles green.
Then we randomly color each of the n remaining tiles either yellow or blue, with each
color equally likely. Then for the n tiles, colored yellow or blue, we randomly choose not
to change the color, or repaint it red, with each action being equally likely. There are 3n

possible final colorings of the m + n tiles, but 4n ways to pick the colors of all m + n tiles
and the previous colorings of the red tiles, each of which are equally likely events.

We claim that if we randomly color the m + n tiles this way, and randomly select one
of the non-red tiles from all m + n tiles, then the probability that there are no blue tiles
showing and that the tile we selected is green is equal to both

∑n

k=0

(n

k)m

2k(m+k)

2n
and

(

3

4

)n
(

1 −

n
∑

k=1

2k−1
(

m+n−k

m

)

3k
(

m+n

m

)

)

.

There are 2n ways to pick the set of red tiles. Each of the n tiles can be red or not red,
giving a 1

2
probability of becoming red. Suppose that there are k yellow and blue tiles

(thus n − k red tiles). Then the probability that there are no blue tiles and we pick a
green tile is m

2k(m+k)
. There are

(

n

k

)

ways of picking n − k red tiles. Therefore, summing
over k, the probability that there are no blue tiles and we pick a green tile is

n
∑

k=0

(n

k)m

2k(m+k)

2n
.

Now we calculate the following probabilities: the probability that there are no blue tiles
and the probability that we pick a green tile given that there are no blue tiles.

For each non-green tile, there is a 1
2

chance the tile ends up red, and a 1
2

chance that it is
blue if it is not red. So each tile has a 1

4
chance of becoming blue, and a 3

4
chance of not

being blue. So clearly the probability that there are no blue tiles is
(

3
4

)n
.

Note that, as shown above, for any individual tile the probability that it is yellow is 1
4
,

the probability that it is blue is 1
4
, and the probability that it is red is 1

2
. So if we know

only that a tile is not blue, then the probability that the tile is red is 2
3
.

Let p2(n) denote the probability that the tile we pick is green. Clearly p2(0) = 1.

Now consider the following algorithm of randomly selecting a non-red tile. We randomly
select one of the m + n tiles. If it is not red it is our tile and the algorithm terminates. If
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the tile is red we throw it out and repeat the algorithm on the remaining m + n− 1 tiles.
This algorithm has at most n+1 steps so it always terminates by choosing a non-red tile.
At every step of the algorithm, each non-red tile is equally likely to be chosen, so this
algorithm randomly selects a non-red tile with each non-red tile equally likely. We use
this algorithm to recursively calculate p2(n).

On the first step there is a m
m+n

chance we pick a green tile. There is a n
m+n

chance that

we pick a non-green tile, and a 2
3

chance that tile is red. Repeating the algorithm with
n + 1 non-green tiles, we get

p2(n) =
m

m + n
+

n

m + n

2

3
p2(n − 1).

Let q2(n) = 1 − p2(n). Then q2(0) = 0, and

p2(n) = 1 −
n

m + n
+

n

m + n

2

3
p2(n − 1).

Thus

q2(n) =
n

m + n

(

1 −
2

3
p2(n − 1)

)

=
n

m + n

(

1

3
+

2

3
q2(n − 1)

)

.

It is clear by induction that

q2(n) =

n
∑

k=1

2k−1
(

m+n−k

m

)

3k
(

m+n

m

) .

Therefore, the probability that we pick a green tile given that there are no blue tiles is

1 −

n
∑

k=1

2k−1
(

m+n−k

m

)

3k
(

m+n

m

) ,

and the probability that there are no blue tiles and that we pick a green tile is

(

3

4

)n
(

1 −
n
∑

k=1

2k−1
(

m+n−k

m

)

3k
(

m+n

m

)

)

.

Hence,
∑n

k=0

(n

k)m

2k(m+k)

2n
=

(

3

4

)n
(

1 −

n
∑

k=1

2k−1
(

m+n−k

m

)

3k
(

m+n

m

)

)

.

We now seek to evaluate

∑⌊n
2
⌋

k=0

( n

2k)m

22k(m+2k)

2n−1
.

Assume n ≥ 1, (when n = 0 we can directly calculate the desired identity). Suppose we
have m + n tiles divided into two groups, the first group containing the first m and the

the electronic journal of combinatorics 18(2) (2011), #P14 5



second containing the last n. We color each of the first m tiles green. Then we randomly
color each of the n remaining tiles either yellow or blue, with each equally likely. Select
randomly a subset with an even number of elements from the n blue/yellow tiles under the
following conditions: all such subsets are equally likely, leave the color of every tile in the
selected subset unchanged and change the color of the remaining tiles in the blue/yellow
tiles to red. We claim that if we randomly color the tiles this way, and then randomly
select one of the non-red tiles, the probability that there are no blue tiles showing and
that the tile we selected is green is equal to

∑⌊n
2
⌋

k=0

( n

2k)m

22k(m+2k)

2n−1
and

(

1

4n

)

(

3n + 1 −
n−1
∑

k=1

2k−1

(

m+n−k

m

)

(

m+n

m

) (3n−k − 1)

)

.

First, given n tiles, there are 2n−1 ways to pick an even number of tiles to keep blue or
yellow (this is why we require n ≥ 1). If 2k tiles remain blue or yellow, the probability
that there are no blue tiles and that we pick a green tile is m

(m+2k)22k . When we sum this
probability over all 2k, we get that the probability that there are no blue tiles and we
pick a green tile is

∑⌊n
2
⌋

k=0

( n

2k)m

22k(m+2k)

2n−1
.

Now we prove the following lemma:

Lemma 2. After the above procedure, if there are no blue tiles, and we pick a random

non-green tile, the probability that we get a red tile is 2

(

1 + 3n−1

1 + 3n

)

.

Proof: Let r(n) denote the desired probability. nr(n) equals the expected value of the
number of red tiles. Thus,

nr(n) =

∑⌊n
2
⌋

k=0(n − 2k)
(

n

2k

)

2n−2k

∑⌊n
2
⌋

k=0 2n−2k
(

n

2k

)

.

Hence,

r(n) =

∑⌊n
2
⌋

k=0

(

n−1
2k

)

2n−2k

∑⌊n
2
⌋

k=0

(

n

2k

)

2n−2k
= 2

∑⌊n−1

2
⌋

k=0

(

n−1
2k

)

2n−1−2k

∑⌊n
2
⌋

k=0

(

n

2k

)

2n−2k
=

2an−1

an

,

where an =

⌊n
2
⌋

∑

k=0

(

n

2k

)

2n−2k.

Now using the identity
(

A

B

)

2A−B =
∑A

k=B

(

A

k

)(

k

B

)

we get

an =

⌊n
2
⌋

∑

k=0

(

n

2k

)

2n−2k =

⌊n
2
⌋

∑

k=0

n
∑

j=2k

(

n

j

)(

j

2k

)

.
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By reversing the order of summation,

an =
n
∑

j=0

⌊ j

2
⌋

∑

k=0

(

n

j

)(

j

2k

)

=
n
∑

j=0

(

n

j

) ⌊ j

2
⌋

∑

k=0

(

j

2k

)

.

Now for j ≥ 1,
∑⌊ j

2
⌋

k=0

(

j

2k

)

= 2j−1. Therefore,

an =
n
∑

j=1

(

n

j

)

2j−1 + 1 =
n
∑

j=0

(

n

j

)

2j−1 +
1

2
=

∑n

j=0

(

n

j

)

2j + 1

2
.

By the binomial theorem, it follows that an =
3n + 1

2
. Thus, r(n) = 2

(

1 + 3n−1

1 + 3n

)

.

Lemma 3. Under the restriction that the number of blue or yellow tiles is even, the
probability that there are no blue tiles and that we pick a green tile is

(

1

4n

)

(

3n + 1 −
n−1
∑

k=1

2k−1

(

m+n−k

m

)

(

m+n

m

) (3n−k − 1)

)

.

Proof. This probability is equal to the product of probability that there are no blue tiles
and the probability that we pick a green tile, given that there are no blue tiles.

The probability that there are no blue tiles is

∑⌊n
2
⌋

k=0

(

n

2k

)

1
22k

2n−1
=

∑⌊n
2
⌋

k=0

(

n

2k

)

2n−2k

22n−1
=

an

22n−1
=

3n + 1

4n
.

Now let p1(n) be the probability that we pick a green tile given that there are no blue tiles.

The total probability that we pick a green tile and there are no blue tiles is

(

3n + 1

4n

)

p1(n).

Clearly p1(0) = 1, but also note that p1(1) = 1 since when n = 1 we must have 1 red tile
and 0 blue or yellow tiles.

We use the same algorithm as in the first lemma to randomly pick a green or yellow tile.
We pick a random tile: if it is not red we are done; if it is red, we toss it out and repeat
the algorithm. On the first step of the algorithm one of the following happens: we pick
a green tile with m

m+n
probability, we pick a red tile with r(n) n

m+n
chance and repeat the

algorithm; otherwise we have picked a yellow tile and the algorithm terminates. Thus, we
have

p1(n) =
m

m + n
+ r(n)

n

m + n
p1(n − 1).
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Let q1(n) = 1 − p1(n). By Lemma 2, we have

p1(n) =
m

m + n
+ 2

(

1 + 3n−1

1 + 3n

)

n

m + n
p1(n − 1)

0 = 1 −
n

n + m
− p1(n) +

(

2 + 3n−12

1 + 3n

)

n

m + n
p1(n − 1).

Therefore,

q1(n) =
n

n + m

(

3n−1 − 1

3n + 1
+

(

2 + 3n−12

1 + 3n

)

q1(n − 1)

)

=

(

n

n + m

)(

3n−1 − 1

3n + 1

)

+

(

n

n + m

)(

2 + 3n−12

1 + 3n
q1(n − 1)

)

.

From p1(1) = 1 we know q1(1) = 0, and an easy induction implies

q1(n) =
n−1
∑

k=1

2k−1

(

m+n−k

m

)

(

m+n

m

)

3n−k − 1

3n + 1
.

Hence, the probability that there are no blue tiles and that we pick a green tile is

(

3n + 1

4n

)

p1(n) =

(

3n + 1

4n

)

(

1 −

n−1
∑

k=1

2k−1

(

m+n−k

m

)

(

m+n

m

)

3n−k − 1

3n + 1

)

=

(

1

4n

)

(

3n + 1 −

n−1
∑

k=1

2k−1

(

m+n−k

m

)

(

m+n

m

) (3n−k − 1)

)

.

This proves that

∑⌊n
2
⌋

k=0

( n

2k)m

22k(m+2k)

2n−1
=

(

1

4n

)

(

3n + 1 −
n−1
∑

k=1

2k−1

(

m+n−k

m

)

(

m+n

m

) (3n−k − 1)

)

.
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Combining all lemmas, we get

∑n

k=0

(−1)k(n

k)m

2k(m+k)

2n
=

∑⌊n
2
⌋

k=0
( n

2k)m

22k(m+2k)

2n−1
−

∑n

k=0

(n

k)m

2k(m+k)

2n

=

(

1

4n

)

(

3n + 1 −

n−1
∑

k=1

2k−1

(

m+n−k

k

)

(

m+n

m

) (3n−k − 1)

)

−

(

3

4

)n
(

1 −

n
∑

k=1

2k−1
(

m+n−k

m

)

3k
(

m+n

m

)

)

=
1 −

∑n−1
k=1 2k−1 (m+n−k

m )
(m+n

m )
(3n−k − 1) +

∑n

k=1 2k−1 (m+n−k

m )
(m+n

m )
3n−k

4n

=

(

m+n

m

)

−
∑n−1

k=1 2k−1
(

m+n−k

m

)

(3n−k − 1) +
∑n

k=1 2k−1
(

m+n−k

m

)

3n−k

4n
(

m+n

m

)

=

(

m+n

m

)

+
∑n−1

k=1 2k−1
(

m+n−k

m

)

+ 2n−1

4n
(

m+n

m

)

=

(

m+n

m

)

+
∑n

k=1 2k−1
(

m+n−k

m

)

4n
(

m+n

m

)

=

(

m+n

m

)

+
∑n−1

k=0 2k
(

m+n−1−k

m

)

4n
(

m+n

m

) .

Lemma 4.

n−1
∑

k=0

2k

(

m + n − 1 − k

m

)

=

n−1
∑

k=0

(

m + n

k

)

.

Proof: We claim both quantities count the number of ways to pick at least m+1 integers
from the first m + n integers. If we sum over the number of objects picked, we get

m+n
∑

k=m+1

(

m + n

k

)

.

Reversing the order of summation yields

n−1
∑

k=0

(

m + n

m + n − k

)

=
n−1
∑

k=0

(

m + n

k

)

.

If we sum over the placement of the (m + 1)-th relatively smallest integer in the set we
get

m+n
∑

k=m+1

2m+n−k

(

k − 1

m

)

.
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Reversing the order of summation yields

n−1
∑

k=0

2k

(

m + n − k − 1

m

)

.

Therefore,
n−1
∑

k=0

2k

(

m + n − 1 − k

m

)

=
n−1
∑

k=0

(

m + n

k

)

.

Now we have

∑n

k=0

(−1)k(n

k)m

2k(m+k)

2n
=

(

m+n

m

)

+
∑n−1

k=0

(

m+n

k

)

4n
(

m+n

m

) =

∑n

k=0

(

m+n

k

)

4n
(

m+n

m

) .

Therefore,
n
∑

k=0

(−1)k
(

n

k

)

m

2k(m + k)
=

∑n

k=0

(

m+n

k

)

2n
(

m+n

m

) .

This completes the proof of Theorem 2.

4 Automated Proofs

4.1 Proof of Theorem 1

Since the summands on the left and right sides of equation (1) vanish outside the intervals
[0, m] and [0, n], the identity is equivalent to

∑

r∈Z

2n−r

(

n

r

)(

m

r

)

=
∑

r∈Z

(

n + m − r

m

)(

n

r

)

. (3)

Suppressing the free parameter m, let us denote the left and right sides of equation
(3) by S(n) and T (n), respectively. Let F1(n, r) denote the summand of S(n), i.e.,
F1(n, r) = 2n−r

(

n

r

)(

m

r

)

. Applying Zeilberger’s algorithm to F1, we get the recurrence
equation:

−(n+2)F1(n+2, r)+(3n+m+5)F1(n+1, r)−2(n+1)F1(n, r) = G1(n, r+1)−G1(n, r)
(4)

where

G1(n, r) = 2n+2−rr

(

n + 1

r − 1

)(

m

r

)

.

Summing both sides of equation (4) over all integers r yields

−(n + 2)S(n + 2) + (3n + m + 5)S(n + 1) − 2(n + 1)S(n) = 0.
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Now let F2(n, r) denote the summand of T (n). Applying Zeilberger’s algorithm to F2,
we get the recurrence equation:

−(n+2)F2(n+2, r)+(3n+m+5)F2(n+1, r)−2(n+1)F2(n, r) = G2(n, r+1)−G2(n, r)

where

G2(n, r) =
(2(n + 2)m + (n + 2 − m)r − r2)r

m(n + 2)

(

n + m − r + 1

m − 1

)(

n + 2

r

)

.

Summing both sides of this recurrence equation over all integers r yields

−(n + 2)T (n + 2) + (3n + m + 5)T (n + 1) − 2(n + 1)T (n) = 0.

Therefore, S(n) and T (n) satisfy the same linear recurrence relation. In addition, S(0) =
T (0) = 1 and S(1) = T (1) = m + 2. Thus S(n) = T (n) for all n ∈ N0.

4.2 Proof of Theorem 2

Let F (n, k) =

(

m + n

k

)(

m + n

m − 1

)−1
1

2n(n + 1)
and f(n) =

∑n

k=0 F (n, k).

Applying Zeilberger’s algorithm to F , we get the recurrence equation:

(m + n + 1)F (n + 1, k)−(n + 1)F (n, k)

=
(k + 1)

(

m+n

k+1

)

(2k − 2m − 2n)
(

m+n

m−1

)

2n
−

k
(

m+n

k

)

(2k − 2m − 2n − 2)
(

m+n

m−1

)

2n
.

We sum both sides from k = 0 to n to get

(m + n + 1)(f(n + 1) − F (n + 1, n + 1)) − (n + 1)f(n) =
(n + 2)

(

m+n

n+2

)

(2 − 2m)
(

m+n

m−1

)

2n
.

Using the rsolve command in Maple, we find that

f(n) =
2m(m − 1)!n!

(m + n)!
−

1

2n+1(n + 1)

∞
∑

k=0

(

m+n+k

k

)

(

n+k+1
k

)

2k
.

Now let T (n, k) = (−1)k
(

n

k

)

1
2k(m+k)

and t(n) =
∑n

k=0 T (n, k).

We input T (n, k) into Zeilberger’s algorithm to get the following recurrence:

(−2n − 2m − 4)T (n + 2, k) + (3n + 5 + m)T (n + 1, k) − (n + 1)T (n, k)

=
2(k + 1)(−1)k+1

(

n

k+1

)

(n + 1)

(k − n)(k − n − 1)2k+1
−

2k(−1)k
(

n

k

)

(n + 1)

(k − n − 1)(k − n − 2)2k
.
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We sum both sides from k = 0 to n − 1 to get

(−2n − 2m − 4)(t(n + 2) − T (n + 2, n + 2) − T (n + 2, n + 1) − T (n + 2, n))

+ (3n + 5 + m)(t(n + 1) − T (n + 1, n + 1) − T (n + 1, n)) − (n + 1)(t(n) − T (n, n))

=
n(−1)n(n + 1)

2n
.

Using the rsolve command in Maple, we find that

t(n) =
2m(m − 1)!n!

(m + n)!
−

1

2n+1(n + 1)

∞
∑

k=0

(

m+n+k

k

)

(

n+k+1
k

)

2k
.

Therefore, f(n) = t(n) for all n ∈ N0.

Remark. Those recurrences pertinent to Section 4 are automatically generated by the
Maple package EKHAD which is freely available from [3]. Alternatively, one can also use the
built-in SumTools package in Maple that contains programs that implement Zeilberger’s
algorithm.

5 Proofs with Generatingfunctionology

5.1 Proof of Theorem 1

We show that the left and right sides of equation (1) represent the coefficient of xm in the
expansion of F (x) = (x + 2)n(x + 1)m. Now

F (x) =

(

∞
∑

k=0

(

n

k

)

2n−kxk

)(

∞
∑

k=0

(

m

k

)

xk

)

=

∞
∑

k=0

(

k
∑

r=0

(

n

r

)

2n−r

(

m

k − r

)

)

xk

Therefore, [xm]F (x) =

m
∑

r=0

(

n

r

)

2n−r

(

m

m − r

)

=

m
∑

r=0

2n−r

(

n

r

)(

m

r

)

.

But F (x) can also be written as

F (x) = (1 + (x + 1))n(x + 1)m =
n
∑

k=0

(

n

k

)

(x + 1)n+m−k =
∞
∑

k=0

n+m−k
∑

j=0

(

n

k

)(

n + m − k

j

)

xj .

Therefore, [xm]F (x) =
n
∑

k=0

(

n

k

)(

n + m − k

m

)

. Hence the identity follows.
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5.2 Proof of Theorem 2

Equation (2) is equivalent to

n
∑

k=0

(

m + n

k

)

=

n
∑

k=0

(−1)k

(

m + n

m

)(

n

k

)

m

m + k
2n−k. (5)

Suppressing the free parameter m, let pn and qn denote the left and right sides of equation
(5), respectively. Let P (x) =

∑

n≥0 pnx
n and Q(x) =

∑

n≥0 qnxn. We need to show

that P (x) = Q(x). Pascal’s relation
(

n+m

k

)

=
(

n+m−1
k

)

+
(

n+m−1
k−1

)

implies that pn =
(

n+m−1
n

)

+ 2pn−1. That means P (x) − 2xP (x) =
∑

n≥0

(

n + m − 1

n

)

xn =
1

(1 − x)m
, hence

P (x) =
1

(1 − 2x)(1 − x)m
.

Swapping the order of summation in Q(x) as
∑

k≥0

∑

n≥k we get

Q(x) =
∑

k≥0

(−1)km

(m + k)2k

∑

n≥k

(

n + m

m

)(

n

k

)

(2x)n

=
∑

k≥0

(−1)km

(m + k)2k

(

m + k

k

)

∑

n≥k

(

m + n

m + k

)

(2x)n

=
∑

k≥0

(−1)km

(m + k)2k

(

m + k

k

)

(2x)k

(1 − 2x)k

=
1

(1 − 2x)m+1

∑

k≥0

(

m + k − 1

k

)

(−x)k

(1 − 2x)k

=
1

(1 − 2x)m+1

(

1 +
x

1 − 2x

)−m

= P (x).

Remark. The expansion 1
(1−y)m =

∑

n≥0

(

m+n−1
n

)

yn has been utilized repeatedly.
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