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Abstract

By combining Abel’s lemma on summation by parts with Zeilberger’s algorithm,

we give an algorithm, called the Abel-Zeilberger algorithm, to find recurrence re-

lations for definite summations. The role of Abel’s lemma can be extended to the

case of linear difference operators with polynomial coefficients. This approach can

be used to verify and discover identities involving harmonic numbers and derange-

ment numbers. As examples, we use the Abel-Zeilberger algorithm to prove the

Paule-Schneider identities, an identity of Andrews and Paule, and an identity of

Calkin.

1. Introduction

The main idea of this paper is to combine the classical lemma of Abel and Zeilberger’s algo-
rithm for hypergeometric sums to verify and to discover identities on non-hypergeometric
sums. Abel’s lemma [1] on summation by parts is stated as follows.

Lemma 1.1 For two arbitrary sequences {ak} and {bk}, we have

n−1
∑

k=m

(ak+1 − ak)bk =
n−1
∑

k=m

ak+1(bk − bk+1) + anbn − ambm.

For a sequence {τk}, define the forward difference operator ∆ by

∆τk = τk+1 − τk.
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Then Abel’s lemma may be written as

n−1
∑

k=m

bk∆ak = −
n−1
∑

k=m

ak+1∆bk + anbn − ambm. (1.1)

Graham, Knuth and Patashnik [12] reformulated Abel’s lemma in terms of finite cal-
culus to evaluate indefinite sums. Recently, Chu [8] utilized Able’s lemma to prove basic
hypergeometric identities including Bailey’s very well poised 6ψ6-series identity by finding
pairs (ak, bk). Applying Abel’s lemma to the pairs (ak, bk), one obtains contiguous rela-
tions for the basic hypergeometric sums. Chen, Chen and Gu [5] presented a systematic
approach to finding pairs (ak, bk) by using the q-Gosper algorithm.

Let us illustrate how to combine Abel’s lemma and Gosper’s algorithm to prove iden-
tities involving harmonic numbers. The k-th harmonic number Hk is given by

Hk =

k
∑

j=1

1

j
. (1.2)

Note that by definition, Hk = 0 whenever k ≤ 0. Let fk be a hypergeometric term, i.e.,
fk+1/fk is a rational function of k. We consider the sum

n−1
∑

k=m

fkHk. (1.3)

We can use Gosper’s algorithm [10] to determine whether there exists a hypergeometric
term ak such that ∆ak = fk. If such ak exists, by Abel’s lemma we get

n−1
∑

k=m

fkHk =

n−1
∑

k=m

Hk∆ak = −

n−1
∑

k=m

ak+1

k + 1
+ anHn − amHm. (1.4)

Hence we can transform a sum involving harmonic numbers to a hypergeometric sum. We
call the above procedure the Abel-Gosper algorithm.

The same idea applies to a definite sum

S(n) =

n
∑

k=0

F (n, k)Hk,

where F (n, k) is a proper hypergeometric term such that F (n, k) = 0 for k > n. In
this case, we can apply Zeilberger’s algorithm to find a hypergeometric term G(n, k) and
polynomials p0(n), . . . , pd(n) such that

d
∑

j=0

pj(n)F (n+ j, k) = G(n, k + 1) −G(n, k).
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Taking

fk =

d
∑

j=0

pj(n)F (n+ j, k)

and
ak = G(n, k)

in (1.4) and summing over k from 0 to n + d, we deduce that

d
∑

j=0

pj(n)S(n+ j) = −

n+d
∑

k=0

G(n, k + 1)

k + 1
+G(n, n + d+ 1)Hn+d+1. (1.5)

Moreover, we see that the sum on the right hand side of (1.5) is again a hypergeometric
sum.

In order to apply the above approach to general holonomic sequences, we extend Abel’s
lemma by replacing the difference operator ∆ with a linear operator L of the form

Lak = r0(k)ak + r1(k)ak+1 + · · ·+ rd(k)ak+d,

where each ri(k) is a rational function of k. The extended version of Abel’s lemma reads

n−1
∑

k=m

bkL
∗ak =

n−1
∑

k=m

akLbk − T (n) + T (m), (1.6)

where L∗ is the dual operator of L defined by

L∗ak = r0(k)ak + r1(k − 1)ak−1 + · · · + rd(k − d)ak−d,

and

T (k) =
d
∑

i=1

i
∑

j=1

ri(k − j)ak−jbk+i−j .

Let f(n, k) be a hypergeometric term and let g(n, k) be a function satisfying two
recurrence relations

g(n, k + d) = r1(n, k)g(n, k) + · · · + rd(n, k)g(n, k + d− 1) + u(n, k), (1.7)

and
g(n+ 1, k) = s(n, k)g(n, k) + v(n, k), (1.8)

where the coefficients ri(n, k) and s(n, k) are rational functions and u(n, k), v(n, k) are
hypergeometric terms. Notice that g(n, k) is not necessarily a hypergeometric term. By
iteration of (1.8), we deduce that

g(n+ i, k) = si(n, k)g(n, k) + vi(n, k),
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where si(n, k) is a rational function and vi(n, k) is a hypergeometric term. As in Zeil-
berger’s algorithm, we aim to find k-free polynomials pi(n) and a hypergeometric term
a(n, k) such that

I
∑

i=0

pi(n)si(n, k)f(n+ i, k) = L∗a(n, k), (1.9)

where L∗ is the linear operator given by

L∗a(n, k) = −r1(n, k)a(n, k) − · · · − rd(n, k − d+ 1)a(n, k + d− 1) + a(n, k + d).

The polynomials pi(n) and the hypergeometric term a(n, k) can be found by using
Abramov’s algorithm [2] or the convergence argument due to Chen, Paule and Saad [6].
Let

S(n) =
∑

k

f(n, k)g(n, k).

Applying the extended version of Abel’s lemma (1.6), from (1.9) one can derive a recur-
rence relation for S(n),

d
∑

j=0

pj(n)S(n+ j) =
∑

k

h(n, k) + T (n), (1.10)

where pj(n) are polynomials given in (1.9), h(n, k) is a hypergeometric term. The above
procedure for finding the recurrence relation (1.10) is called the Abel-Zeilberger algorithm.

We remark that (1.6) is equivalent to the statement

bkL
∗ak = akLbk + ∆(−T (k)), (1.11)

where ∆ is the difference operator with respect to k. Using this relation, we may transform
the sum

∑

k bkL
∗ak to the sum

∑

k akLbk. Thus the Abel-Zeilberger algorithm can be
viewed as a procedure to transform a non-hypergeometric sum to a hypergeometric sum.
Notice that in the Abel-Zeilberger algorithm, bk is set to be g(n, k) and ak = a(n, k) is
determined by (1.9).

It should be mentioned that based on Karr’s difference field theory [11], Schneider
developed an algorithm for the following problem over recurrence terms in difference
fields [14,15]. Given a summand tk, we wish to find a summand t′k and a function gk such
that

tk = t′k + ∆gk, (1.12)

and the sum
∑

k t
′
k is easier to compute compared with

∑

k tk. Observe that (1.11) can
be formulated in the form of (1.12) by setting

tk = bkL
∗ak, t′k = akLbk, and gk = −T (k).

Therefore, we may use Schneider’s algorithm instead of (1.11) to transform the sum
∑

k bkL
∗ak to the sum

∑

k akLbk. However, it should be noted that Schneider’s algorithm
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relies on the computation of gk. In the Abel-Zeilberger algorithm, once ak and bk are
found, then t′k = akLbk and gk is determined by ak and bk. This means that in our case
there is no need to compute gk.

The paper is organized as follows. In Section 2, we give examples to demonstrate how
to transform indefinite sums involving harmonic numbers to hypergeometric sums by us-
ing Abel-Gosper algorithm. Section 3 shows how to apply the Abel-Zeilberger algorithm
to find recurrence relations of definite sums involving harmonic numbers and derange-
ment numbers. This method applies to the Paule-Schneider identities, an identity due to
Andrews and Paule, and an identity of Calkin.

2. The Abel-Gosper algorithm

In this section, we give examples to illustrate how to combine Abel’s lemma and Gosper’s
algorithm to evaluate indefinite summations. We shall focus on sums involving harmonic
numbers.

We begin with a simple example. Consider the sum

S(n) =
n
∑

k=1

Hk.

Expressing 1 as ∆k, we obtain

S(n) =

n
∑

k=1

Hk∆k = −

n
∑

k=1

(k + 1)∆Hk + (n + 1)Hn+1 −H1 = (n+ 1)Hn − n. (2.1)

The following result is due to Spieß [16]. Here we give a derivation based on Abel’s
lemma.

Theorem 2.1 Let Hk be the k-th harmonic number and u(n) be a polynomial of degree

m in n. Then
n
∑

k=0

u(k)Hk = p(n)Hn − q(n), n = 0, 1, 2, . . . , (2.2)

where p(n) and q(n) are both polynomials of degree m+1 in n. Moreover, p(n) is divisible

by n+ 1.

Proof. It is well-known that there exists a polynomial f(k) of degree m + 1 in k such
that ∆f(k) = u(k) and the constant term of f(k) is zero. Therefore, we may write
f(k) = kg(k), where g(k) is a polynomial of degree m. From (1.4) it follows that

n
∑

k=0

u(k)Hk =
n
∑

k=0

∆(kg(k))Hk = −
n
∑

k=0

g(k + 1) + (n+ 1)g(n+ 1)Hn+1.
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Since the sum
∑n

k=0 g(k + 1) is a polynomial of degree m+ 1 in n and

(n+ 1)g(n+ 1)Hn+1 = (n + 1)g(n+ 1)Hn + g(n+ 1),

we arrive at (2.2).
Setting u(n) = 1 in (2.2), we obtain (2.1). When u(n) = nm for m = 1, 2, 3, we have

n
∑

k=1

kHk =
n(n + 1)

2
Hn −

(n− 1)n

4
, (2.3)

n
∑

k=1

k2Hk =
n(n+ 1)(2n+ 1)

6
Hn −

(n− 1)n(4n+ 1)

36
, (2.4)

n
∑

k=1

k3Hk =
n2(n + 1)2

4
Hn −

(n− 1)n(n+ 1)(3n− 2)

48
. (2.5)

The same idea applies to the bonus problem 69 proposed by Graham, Knuth and
Patashnik [12, Chapter 6].

Example 2.2 Find a closed form for

n
∑

k=1

k2Hn+k.

The above sum can be rewritten as

2n
∑

k=n+1

(k − n)2Hk =

2n
∑

k=1

(k − n)2Hk −

n
∑

k=1

(k − n)2Hk. (2.6)

Expanding the summands and applying formulas (2.1), (2.3), (2.4), we obtain that

n
∑

k=1

k2Hn+k =
n(n+ 1)(2n+ 1)

6
(2H2n −Hn) −

n(n+ 1)(10n− 1)

36
. (2.7)

We remark that Chyzak [9] and Schneider [15] proved (2.7) by an extension of Zeil-
berger’s algorithm and Karr’s algorithm.

Example 2.3 Evaluate the sum

n−1
∑

k=0

1

4k

(

2k

k

)

Hk.
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By Gosper’s algorithm, we find that

∆
2k

4k

(

2k

k

)

=
1

4k

(

2k

k

)

.

Therefore,

n−1
∑

k=0

1

4k

(

2k

k

)

Hk = −2

n−1
∑

k=0

1

4k+1

(

2k + 2

k + 1

)

+
2n

4n

(

2n

n

)

Hn

= 2 −
n+ 1

4n

(

2n + 2

n+ 1

)

+
2n

4n

(

2n

n

)

Hn.

Example 2.4 We have

n
∑

k=0

H2
k = (n+ 1)H2

n − (2n+ 1)Hn + 2n. (2.8)

Proof. Setting ak = k and bk = H2
k in (1.1), we deduce that

n
∑

k=0

H2
k = −

n
∑

k=0

(k + 1)∆H2
k + (n+ 1)H2

n+1

= −2
n
∑

k=0

Hk −
n
∑

k=0

1

k + 1
+ (n+ 1)H2

n+1

= −2(n+ 1)Hn + 2n−Hn+1 + (n+ 1)H2
n+1 (By (2.1))

= (n+ 1)H2
n − (2n+ 1)Hn + 2n.

Similarly, by setting bk = H3
k in (1.1), we deduce the following identities, see [9, 16],

n
∑

k=0

H3
k = (n+ 1)H3

n −
3

2
(2n+ 1)H2

n + 3(2n+ 1)Hn +
1

2
H(2)

n − 6n, (2.9)

n
∑

k=0

(2k + 1)H3
k = (n+ 1)2H3

n −
3

2
n(n+ 1)H2

n +
3n2 + 3n+ 1

2
Hn −

3

4
n(n + 1). (2.10)

3. The Abel-Zeilberger algorithm

In this section, we use Abel’s lemma and Zeilberger’s algorithm to find recurrence relations
for the definite sum of the form

S(n) =

n
∑

k=0

F (n, k)Hk,

where F (n, k) is a hypergeometric term in n and k. We shall give two examples. First,
we consider an identity due to Chu and De Donno [7].
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Example 3.1 For n ≥ 0, we have

n
∑

k=0

(

n

k

)2

Hk = (2Hn −H2n)

(

2n

n

)

. (3.1)

Proof. Applying Zeilberger’s algorithm to
(

n

k

)2
, we obtain

(n+ 1)

(

n+ 1

k

)2

− 2(2n+ 1)

(

n

k

)2

= G(n, k + 1) −G(n, k),

where

G(n, k) = (−3 − 3n+ 2k)

(

n

k − 1

)2

.

Let

S(n) =
n
∑

k=0

(

n

k

)2

Hk.

Substituting F (n, k) =
(

n

k

)2
and G(n, k) = (−3 − 3n+ 2k)

(

n

k−1

)2
into (1.5), we find that

(n+ 1)S(n+ 1) − 2(2n+ 1)S(n) =

n+1
∑

k=0

3n− 2k + 3

k + 1

(

n

k

)2

=
4n+ 1

n+ 1

(

2n

n

)

, (3.2)

where the second equality can be justified by applying Zeilberger’s algorithm.
It is easy to verify that

R(n) = (2Hn −H2n)

(

2n

n

)

satisfies the same recurrence relation (3.2). Since S(0) = R(0) = 0, we get (3.1). This
completes the proof.

Paule and Schneider [13] considered the following sums

T (α)
n =

n
∑

k=0

(1 + α(n− 2k)Hk)

(

n

k

)α

, α = 1, 2, . . . . (3.3)

They found closed forms of T
(α)
n for 1 ≤ α ≤ 4 and derived recurrence relations of T

(α)
n

for 5 ≤ α ≤ 9. As will be seen, we can combine Abel’s lemma and Zeilberger’s algorithm
to compute the sums T

(α)
n . For example, let us consider the case α = 3.

Example 3.2 Let T
(3)
n be defined by (3.3). For n ≥ 0, we have

T (3)
n = (−1)n.
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Proof. Let

F (n, k) = (n− 2k)

(

n

k

)3

.

By Zeilberger’s algorithm, we find that

F (n, k) + F (n+ 1, k) = G(n, k + 1) −G(n, k),

where

G(n, k) = (2n− k + 2)

(

n

k − 1

)3

.

Let

S(n) = T (3)
n =

n
∑

k=0

(1 + 3(n− 2k)Hk)

(

n

k

)3

.

By (1.5), we deduce that

S(n) + S(n+ 1) = −3

n+1
∑

k=0

2n− k + 1

k + 1

(

n

k

)3

+

n
∑

k=0

(

n

k

)3

+

n+1
∑

k=0

(

n+ 1

k

)3

.

By Zeilberger’s algorithm, we find that the right hand side, denoted by R(n), satisfies

(n+ 1)R(n) + (n+ 2)R(n+ 1) = 0.

Since R(0) = 0, we have R(n) = 0 for n = 0, 1, . . .. It is clear that S(0) = 1. Thus we
have S(n) = (−1)n. This completes the proof.

Moreover, as a consequence of (1.5), we have the following property.

Theorem 3.3 Let T
(α)
n be given by (3.3) and

U (α)
n =

n
∑

k=0

(n− 2k)

(

n

k

)α

.

Assume that the minimal recurrence relation for U
(α)
n computed by Zeilberger’s algorithm

is
d
∑

i=0

pi(n)U
(α)
n+i = 0.

Then the sum
d
∑

i=0

pi(n)T
(α)
n+i (3.4)

is a hypergeometric sum.

the electronic journal of combinatorics 18(2) (2011), #P17 9



We find that the sum (3.4) equals zero for α = 1, 2, . . . , 9 and we conjecture that it
holds for any nonnegative integer α. We note that this conjecture implies the conjecture
of Schneider and Paule [13], which says that T

(α)
n satisfies the minimal recurrence relation

for U
(α)
n computed by Zeilberger’s algorithm.

Notice that in the applications of Abel’s lemma, the idea lies in the fact that ∆Hk is a
hypergeometric term. In fact, there are other sequences satisfying similar properties that
lead us to consider an extension of Abel’s lemma.

Let {ak} be a sequence of numbers. We consider a linear operator L of the form

Lak = r0(k)ak + r1(k)ak+1 + · · ·+ rd(k)ak+d,

where each rj(k) is a rational function of k. We associate the operator L with a dual
operator L∗ defined by

L∗ak = r0(k)ak + r1(k − 1)ak−1 + · · · + rd(k − d)ak−d.

In the above notation, Abel’s lemma can be extended as follows.

Lemma 3.4 For two arbitrary sequences {ak} and {bk}, we have

n−1
∑

k=m

bkL
∗ak =

n−1
∑

k=m

akLbk − T (n) + T (m), (3.5)

where

T (k) =
d
∑

i=1

i
∑

j=1

ri(k − j)ak−jbk+i−j . (3.6)

Proof. It is easy to verify that

n−1
∑

k=m

bkL
∗ak =

n−1
∑

k=m

d
∑

i=0

ri(k − i)ak−ibk

=

d
∑

i=0

n−1−i
∑

k=m−i

ri(k)akbk+i

=

n−1
∑

k=m

r0(k)akbk +

d
∑

i=1

[

n−1
∑

k=m

+

m−1
∑

k=m−i

−

n−1
∑

k=n−i

]

ri(k)akbk+i

=

n−1
∑

k=m

akLbk +

d
∑

i=1

m−1
∑

k=m−i

ri(k)akbk+i −

d
∑

i=1

n−1
∑

k=n−i

ri(k)akbk+i,

as claimed.
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Let f(n, k) be a bivariate hypergeometric term and g(n, k) be a bivariate function.
Assume that there exist rational functions rj(n, k) such that

Lg(n, k) =
d
∑

j=0

rj(n, k)g(n, k + j)

is a bivariate hypergeometric term. In order to find a recurrence relation of order I for
the sum

S(n) =

ℓ
∑

k=m

f(n, k)g(n, k),

we proceed to find k-free polynomials pi(n), which are not all zeros, together with hyper-
geometric terms a(n, k) and w(n, k) such that

I
∑

i=0

pi(n)f(n+ i, k)g(n+ i, k) = g(n, k)L∗a(n, k) + w(n, k). (3.7)

Summing (3.7) over k and applying the extended version of Abel’s lemma, we deduce that

I
∑

i=0

pi(n)S(n+ i) =

I
∑

i=0

ℓ
∑

k=m

pi(n)f(n+ i, k)g(n+ i, k)

=
ℓ
∑

k=m

(g(n, k)L∗a(n, k) + w(n, k))

=

ℓ
∑

k=m

a(n, k)Lg(n, k) +

ℓ
∑

k=m

w(n, k) − T (ℓ+ 1) + T (m), (3.8)

where T (k) is given by (3.6). Notice that in the last expression, the two summands are
hypergeometric.

To solve equation (3.7), we shall restrict our attention to the functions g(n, k) satisfying
the condition

g(n+ 1, k) = s(n, k)g(n, k) + v(n, k),

where s(n, k) is a rational function and v(n, k) is a hypergeometric term. By induction,
it is easy to show that there exist rational functions si(n, k) and hypergeometric terms
vi(n, k) such that

g(n+ i, k) = si(n, k)g(n, k) + vi(n, k). (3.9)

Now we can solve the following equation for pi(n) and a(n, k) by a variation of Zeil-
berger’s algorithm

I
∑

i=0

pi(n)f(n+ i, k)si(n, k) = L∗a(n, k). (3.10)
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It can be checked that a(n, k) is similar to f(n, k), that is,

R(n, k) =
a(n, k)

f(n, k)

is a rational function of n and k. Hence (3.10) is equivalent to

I
∑

i=0

pi(n)
f(n+ i, k)

f(n, k)
si(n, k) =

d
∑

j=0

f(n, k − j)

f(n, k)
rj(n, k − j)R(n, k − j). (3.11)

Since f(n, k) is hypergeometric, both f(n+i, k)/f(n, k) and f(n, k−j)/f(n, k) are rational
functions. Therefore, (3.11) is a non-homogenous linear recurrence equation on R(n, k)
with parameters pi(n), which can be solved by using Abramov’s algorithm [2] or by the
convergence argument due to Chen, Paule and Saad [6].

Once we find a solution (p0(n), . . . , pI(n), a(n, k)) of equation (3.10), it is easy to check
that

(p0(n), . . . , pI(n), a(n, k), w(n, k))

is a solution of equation (3.7), where

w(n, k) =
I
∑

i=0

pi(n)f(n+ i, k)vi(n, k). (3.12)

It should be noted that we do not have an upper bound on I. So it is not guaranteed
that the algorithm will succeed in finding a recurrence relation. In practice, we only need
to consider small values of I. In summary, the Abel-Zeilberger algorithm can be described
as follows.

Input: The order I of the recurrence relation, a hypergeometric term f(n, k) and a
function g(n, k) satisfying two recurrence relations

g(n, k + d) = r1(n, k)g(n, k) + · · ·+ rd(n, k)g(n, k + d− 1) + u(n, k), (3.13)

and
g(n+ 1, k) = s(n, k)g(n, k) + v(n, k), (3.14)

where ri(n, k) and s(n, k) are rational functions, and u(n, k) and v(n, k) are hyper-
geometric terms.

Output: k-free polynomials pi(n) (0 ≤ i ≤ I), hypergeometric terms t1(n, k), t2(n, k)
and a function T (k) satisfying

I
∑

i=0

pi(n)S(n+ i) =

ℓ
∑

k=m

t1(n, k) +

ℓ
∑

k=m

t2(n, k) − T (ℓ+ 1) + T (m),

where

S(n) =

ℓ
∑

k=m

f(n, k)g(n, k).
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The algorithm consists of the following steps.
Step 1. For 0 ≤ i ≤ I, compute the rational functions si(n, k) and the hypergeometric
terms vi(n, k) defined by (3.9) based on the recurrence relations

si+1(n, k) = s(n+ i, k)si(n, k),

vi+1(n, k) = s(n + i, k)vi(n, k) + v(n+ i, k),

with the initial values s0(n, k) = 1 and v0(n, k) = 0.
Step 2. Let

Lg(n, k) = −r1(n, k)g(n, k) − · · · − rd(n, k)g(n, k + d− 1) + g(n, k + d). (3.15)

According to (3.11), establish an equation on pi(n) and R(n, k) = a(n, k)/f(n, k). That
is, set

Pi(n, k) =
f(n+ i, k)

f(n, k)
si(n, k) and Qj(n, k) =

f(n, k − j)

f(n, k)
rj(n, k − j),

so that (3.11) takes the form

I
∑

i=0

pi(n)Pi(n, k) =
d
∑

j=0

Qj(n, k)R(n, k − j). (3.16)

Step 3. Solve equation (3.16) for R(n, k) and pi(n) (0 ≤ i ≤ I) by using Abramov’s
algorithm.
Step 4. Compute w(n, k) based on (3.12). For L given by (3.15), compute T (k) according
to (3.6). Finally, set

t1(n, k) = a(n, k)u(n, k) and t2(n, k) = w(n, k).

Then (pi(n), t1(n, k), t2(n, k), T (k)) is the desired output.
Here we give two examples. The first involves the n-th derangement number Dn as

given by

Dn = n!

n
∑

k=0

(−1)k

k!
.

Using MacMahon’s partition analysis, Andrews and Paule [3] obtained the following iden-
tity. We shall give a derivation by applying the Abel-Zeilberger algorithm.

Example 3.5 For n ≥ N ≥ n− k, we have

∑

j≥0

(

k

j

)

(k + n− j)!

(k +N − j)!
Dk+N−j = (−1)n

∑

j≥0

(−1)j

(

n

j

)

(j + k)!. (3.17)
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Proof. Substituting k +N − j for j, the left hand side of (3.17) can be rewritten as

S(N, n) =
k+N
∑

j=N

(

k

j −N

)

(n+ j −N)!

j!
Dj .

Because of the recurrence relation

Dn = nDn−1 + (−1)n,

we may take

f(N, j) =

(

k

j −N

)

(n+ j −N)!

j!
and g(N, j) = Dj

as the input of the Abel-Zeilberger algorithm. Then we obtain

S(N, n) − S(N + 1, n) =
∑

j≥N

(−1)j

(

k

j −N

)

(n+ j −N)!

(j + 1)!
. (3.18)

Denote the right hand side by G(k). By Zeilberger’s algorithm, we find that for k ≥ 0,

(1 +N − n+ k)G(k) − (2 + k +N)G(k + 1) = 0,

which implies that G(k) = 0 for k ≥ n−N ≥ 0. Thus we get S(N, n) = S(N + 1, n). In
particular,

S(N, n) = S(n, n) =
∑

j≥n

(

k

j − n

)

Dj.

Applying the Abel-Zeilberger algorithm to

f(n, j) =

(

k

j − n

)

and g(n, j) = Dj,

we find

(n+ 1)S(n, n) + (n+ k + 1)S(n+ 1, n+ 1) − S(n+ 2, n+ 2) =
∑

j≥n

(−1)j

(

k + 1

j − n

)

= 0.

By Zeilberger’s algorithm, we find that the right hand side of (3.17) satisfies the same
recurrence relation. Finally, from the identity

k
∑

j=0

(

k

j

)

Dj = k!,

we deduce that S(0, 0) = k! and S(1, 1) = (k + 1)! − k!, which coincides with the initial
values of the right hand side of (3.17). Thus (3.17) holds for n ≥ N ≥ n− k.
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We remark that in the above proof we obtain a recurrence relation of order 1 for the
sum S(N, n), that is, S(N, n) = S(N + 1, n), and the creative telescoping for ΠΣ-fields
gives a recurrence relation of order 2.

To conclude this paper, we consider the following sums,

S(α)
n =

n
∑

k=0

(

k
∑

j=0

(

n

j

)

)α

.

For α = 1, 2 and 3, closed forms for S
(α)
n have been derived by Andrews and Paule [3]

by using the method of MacMahon’s partition analysis. Indeed, these formulas can be
derived by using the Abel-Zeilberger algorithm.

Example 3.6 We have

S(1)
n =

n
∑

k=0

k
∑

j=0

(

n

j

)

= n2n−1 + 2n, (3.19)

and

S(2)
n =

n
∑

k=0

(

k
∑

j=0

(

n

j

)

)2

=
(n

2
+ 1
)

22n −
n

2

(

2n

n

)

. (3.20)

Proof. Let

f(n, k) = 1, g(n, k) =

k
∑

j=0

(

n

j

)

.

It is clear that

g(n, k + 1) = g(n, k) +

(

n

k + 1

)

and g(n+ 1, k) = 2g(n, k) −

(

n

k

)

. (3.21)

Applying the Abel-Zeilberger algorithm to f(n, k) and g(n, k), we find that

S(1)
n =

n
∑

k=0

(C − k)

(

n

k + 1

)

− T (n + 1) + T (0),

where T (k) = (C + 1 − k)g(n, k) and C is a constant. Setting C = −1, we get T (0) = 0.
Thus

S(1)
n = −

n
∑

k=0

(k + 1)

(

n

k + 1

)

+ (n+ 1)g(n, n+ 1)

= −n
n
∑

k=0

(

n− 1

k

)

+ (n+ 1)
n+1
∑

j=0

(

n

j

)

= −n2n−1 + (n+ 1)2n

= n2n−1 + 2n.
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Now we consider the evaluation of S
(2)
n . Let f(n, k), g(n, k) be given as above, and let

h(n, k) = g(n, k)2. From (3.21), we see that

h(n, k + 1) = h(n, k) + u(n, k),

h(n+ 1, k) = 4h(n, k) + v(n, k),

where

u(n, k) = 2

(

n

k + 1

)

g(n, k) +

(

n

k + 1

)2

,

v(n, k) = −4

(

n

k

)

g(n, k) +

(

n

k

)2

.

It should be mentioned that there is no need to impose the condition for u(n, k) and
v(n, k) to be hypergeometric in the Abel-Zeilberger algorithm. This means that we can
apply the Abel-Zeilberger algorithm to f(n, k) and h(n, k) to deduce that

S(2)
n =

n
∑

k=0

(C − k)

(

2

(

n

k + 1

)

g(n, k) +

(

n

k + 1

)2
)

+ (n−C)h(n, n+ 1) + (C + 1)h(n, 0),

where C is a constant. Setting C = n/2 − 1 and applying the Abel-Zeilberger algorithm,
we find that

n
∑

k=0

(n/2 − 1 − k)

(

n

k + 1

)

g(n, k) =
n
∑

k=0

−n + k + 1

2

(

n

k + 1

)2

−
n

2
g(n, 0).

Hence

S(2)
n =

n
∑

k=0

(−n+ k + 1)

(

n

k + 1

)2

− n +
n
∑

k=0

(n

2
− 1 − k

)

(

n

k + 1

)2

+
(n

2
+ 1
)

22n +
n

2

= −
n

2

n
∑

k=0

(

n

k + 1

)2

+
(n

2
+ 1
)

22n −
n

2

= −
n

2

((

2n

n

)

− 1

)

+
(n

2
+ 1
)

22n −
n

2

=
(n

2
+ 1
)

22n −
n

2

(

2n

n

)

.

Using the same argument, one can derive Calkin’s identity [4]

S(3)
n = n23n−1 + 23n − 3n2n−2

(

2n

n

)

. (3.22)
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