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Abstract

Periodicity is a fundamental property of many combinatorial games. It is sought
vigorously, yet remains elusive in important cases, such as for some octal games,
notably Grundy’s game. Periodicity is important, because it provides poly-time
winning strategies for many games. In particular, subtraction games, impartial and
partizan, have been proved to be periodic. Our main purpose here is to exhibit
constructively a class of subtraction games which is demonstratively aperiodic and
yet is shown to have linear-time winning strategies.
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1 Prologue

Throughout we deal with two-player impartial games where the two players move al-
ternately. We are mainly concerned with normal play, but we consider misère play in
Section 4. Normal play means that the player first unable to move loses and the opponent
wins. In misère play the outcome is reversed: the player making the last move loses, and
the opponent wins.

In the theory of impartial combinatorial games, the notion of periodicity or its exten-
sion is central. Thus octal games have a poly-time winning strategy if the Sprague-Grundy
function – to be discussed in Section 3 – is periodic [2]. The question whether certain octal
games are periodic is still open. The most famous among them is Grundy’s game: given
a pile of tokens, divide it into two unequal parts. The player first unable to play (because
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all piles have size 6 2) loses and the opponent wins. In many other games periodicity
also plays an important role. Zeilberger showed that this is the case for chomp [6], [7].
See also [3]. Similarly, subtraction games have been proved to be periodic, both impartial
[2] and partizan subtraction games [5].

The main purpose of this paper is to produce a class of aperiodic subtraction games.

In Section 2 we introduce the game Mark and provide a linear-time winning strategy
for it, in normal play. In Section 3 we provide a linear-time winning strategy for the sum
of Mark games, by characterizing the structure of the Sprague-Grundy function for the
game. In Section 4 we provide a linear-time winning strategy for Mark played in misère.
The variation UpMark of Mark is analyzed in Section 5. In Section 6 we discuss briefly
the generalization Mark-t of Mark, and prove that it is aperiodic, lending justification
to the title of this paper. We wrap up with an Epilogue in Section 7.

2 The game Mark

Given a nonnegative integer n. In the game Mark, two players alternate in moving from
n. Either n → n− 1 or n → bn/2c. In other words, we can either reduce n by 1, or halve
it, rounding down. We use normal play, as defined at the beginning of the Prologue. In
particular, if n = 0, then the first player loses and the second wins.

Let S ( Z>0, mex S = min(Z>0 \ S) (the least nonnegative integer not in S). Notice
that if S is the empty set, then mex S = 0. Define two infinite sequences of integers
A = ∪n>1an, B = ∪n>0bn recursively by

an = mex{ai, bi : 0 6 i < n} (n > 0), (1)

bn = 2an (n > 0). (2)

The first few terms of the sequences A and B are depicted in the following table. They
are the sequences A003159 and A036554 respectively in the useful and helpful OEIS –
“Online Encyclopedia of Integer Sequences”, created and maintained by the famous guru
Neil Sloane.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

an 0 1 3 4 5 7 9 11 12 13 15 16 17 19 20 21 23 25 27 28 29 31 33 35

bn 0 2 6 8 10 14 18 22 24 26 30 32 34 38 40 42 46 50 54 56 58 62 66 70

Proposition 1. The sequences A, B are complementary: A ∪B = Z>0, A ∩B = ∅.

Proof. In view of (1), no nonnegative integer can be missing from the union. Suppose
that an = bm for some m, n ∈ Z>1. Then n > m implies that an is the mex of a set
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containing bm = an, a contradiction; and n 6 m implies bm = 2am > 2an = 2bm so m = 0,
a contradiction. �

A position u in a game is an N -position if the player moving from u (the Next player)
has a winning strategy. It’s a P -position if the opponent of the player moving from u (the
Previous player) can win. Notice that for normal play, the empty game is a P -position.
The set of all N -positions of a game is denoted by N , and the set of all its P -positions is
denoted by P . A moment’s reflection will convince one that a position u is in N if it has
an option in P , whereas u is in P only if all its options are in N .

Theorem 1. For the game Mark, P = B, N = A.

Proof. Since the game is acyclic, it suffices to show two properties: I. A player moving
from any bn ∈ B always lands in a position in A; II. Given any position an ∈ A, there
exists a move into B.

I. A move of type 1 from bn ∈ B results in bn − 1, which is odd, hence not in B,
since, by definition, B consists of even integers only. Since A and B are complementary,
bn − 1 ∈ A. A move of type 2 from bn ∈ B results in bn/2 = an ∈ A.

II. Let c ∈ Z>1. Observe that by (2), c ∈ A if and only if 2c ∈ B. Further, c ∈ B if
and only if 2c ∈ A. Indeed, let c ∈ B. If 2c ∈ B, then c ∈ A by (2), a contradiction. Let
2c ∈ A. If c ∈ A, then 2c ∈ B by (2), a contradiction. Now let an ∈ A. If an is odd, then
ban/2c = (an − 1)/2. Then either an − 1 ∈ B, or else (an − 1)/2 ∈ B by the preceding
observation. If an is even, then an/2 is in B by this observation. �

Notation 1. The vile numbers are those whose binary representations end in an even
number of 0s, and the dopey numbers are those that end in an odd number of 0s. Their
names are inspired by the evil and odious numbers, those that have an even and an odd
number of 1’s in their binary representation respectively. To indicate that we count 0s
rather than 1s, and only at the tail end, the “ev” and “od” are reversed to “ve” and
“do” in “vile” and “dopey”. “Evil” and “odious” were coined by Elwyn Berlekamp, John
Conway and Richard Guy [2]. Let V be the set of all vile numbers, D the set of all dopey
numbers.

Notation 2. For any positive integer n we use the notation R(n) to denote the usual
binary representation of n.

Theorem 2. P = D, N = V .

Proof. It suffices to show: I. A player moving from any d ∈ D always lands in a position
in V ; II. Given any position v ∈ V , there exists a move into D.

I. We may assume d > 0. Then R(d) = bn . . . bm102t−1, where bn . . . bm is a (possibly
empty) binary word, and t ∈ Z>1. A move of type 1 transforms the suffix 102t−1 of R(d)
into 012t−1, so d− 1 is vile. A move of type 2 deletes the trailing 0, so d/2 is vile.

II. The suffix of R(v) has the form 102t for some t > 0. If t > 0, then a move of type 2
deletes the trailing 0, so v/2 is dopey. So assume t = 0. Then the suffix of R(v) has the
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form 0r1s for some r > 0, s > 1. If s > 1, then a move of type 1 results in the suffix
0r1s−10, so v − 1 is dopey. So assume s = 1. Since the result is clear if v = 1, we may
assume that the suffix of R(v) has the form 10r1, r > 0. Then the suffix of R(v − 1) is
10r+1. Thus v − 1 is dopey if r is even. If r is odd, then a move of type 2 transforms v
into bv/2c = (v − 1)/2. The latter is dopey, since R(bv/2c) has a suffix of the form 10r.
�

Note 1. The recursive construction of (1), (2) seems to be computationally inefficient.
The importance of Theorem 2 lies in the fact that it provides an easy linear-time winning
strategy for Mark.

Note 2. Since bn = 2an, R(bn) is just a left shift of R(an); that is, R(bn) = R(an)0.
Notation: LR(an) = R(bn) for every n > 0. This holds also for some results in the sequel,
but we don’t comment on it further.

The spite of a positive integer n is a mapping Z>1 → {odious, evil}; we have spite(n) =
odious if n is odious, spite(n) = evil if n is evil.

The following theorem is of independent interest, but it is also conducive to providing
a linear-time algorithm for computing the g-function introduced in the next section.

Theorem 3. The elements of A alternate in spite: a2n−1 odious, a2n evil for all (n > 1);
the same holds for B: b2n−1 odious, b2n evil for all (n > 1).

Proof. Clearly a1 = 1 and b1 = 2 are odious. Let a ∈ A, a > 1. Since a is vile
(Theorem 2), the suffix of R(a) has the form 102t, t > 0. We consider two cases.

(i) t > 0. Then R(a+1) has the suffix 102t−11, so a+1 is vile, a+1 ∈ A, and R(a+1)
has precisely one 1-bit more then R(a), so spite(a + 1) 6= spite(a).

(ii) t = 0. Then the suffix of R(a) has the form 01s, s > 0. This case subdivides into
the following two subcases.

(ii1) s = 2r is even (r > 0), so the suffix of R(a) has the form 012r. Then R(a + 1)
has the suffix 102r, a + 1 is vile so a + 1 ∈ A, and R(a + 1) has precisely 2r− 1 less 1-bits
than R(a). Thus spite(a + 1) 6= spite(a).

(ii2) s = 2r − 1 is odd (r > 0), so the suffix of R(a) has the form 012r−1. Then the
suffix of R(a + 1) has the form 102r−1, so a + 1 is dopey, and it has 2r− 2 less 1-bits than
a. Then R(a+2) has the suffix 102r−21, hence a+2 is vile so a+2 ∈ A is the successor of
a ∈ A, and R(a+2) has 2r−3 less 1 bits than R(a). Hence also in this case spite(a+2) 6=
spite(a).

Since R(bn) = R(an)0 for all n > 1, the result for B follows immediately from that of
A. �

3 Sums of Games, Including Mark

We begin with some definitions and background material.
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If in a game there is a move u → v, we say that position v is a follower or option of
position u.

The sum of games is a collection of games such that a move consists of selecting one of
the component games and making a legal move in it. In normal play, which we consider
here, the player first unable to move (no component game has any move left) loses and the
opponent wins. It is easy to see that the P , N tool of the component games is too weak
to compute the P , N positions of the sum. The Sprague-Grundy function, g-function for
short, enables us to compute the P , N positions of the sum. The notion of sum of games
is fundamental in the theory of combinatorial game theory.

If u is any position in a game Γ, then g(u) = mex g(F (u)), where F (u) denotes the
set of all options of u. In particular, g(∅) = 0. Now g(u) = 0 if u ∈ P of Γ, g(u) > 0
if u ∈ N of Γ. Given component games Γ1, . . . , Γm and positions ui ∈ Γi, i = 1, . . . ,m
then the position u = (u1, . . . , um) of the sum game Γ has g-function σ(u) =

∑′m
i=1g(ui),

where
∑′ denotes Nim-sum (sum over GF(2), also known as Xor). In particular, u ∈ P

if σ(u) = 0, u ∈ N if σ(u) > 0. See [2].
For studying the structure of the g-function on Mark, we resort to the language of

combinatorics on words. We view g(0)g(1)g(2) . . . as an infinite ternary word W . Since
every position u in Mark has at most two options, g(u) 6 2. The first few g-values of
Mark are shown in the following table.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

g 0 1 0 2 1 2 0 1 0 2 0 1 2 1 0 2 1 2 0 1 2 1 0 2

The structure of W can be revealed by demonstrating the structure of its subwords
(also called factors). We preface the structure theorem by an auxiliary result.

Proposition 2. Let k, t ∈ Z>1, and let R(k) = bn . . . bm01t, where bn . . . bm is a (possibly
empty) binary word. Then

spite(k)=spite(k + 1) if t is odd, and spite(k) 6= spite(k + 1) if t is even.

Proof. We have R(k + 1) = bn . . . bn−i10t, so R(k + 1) has t − 1 less 1-bits than R(k).
Thus the spite is preserved if and only if t = 2r + 1 is odd. �

When we talk about the 0s of W , we mean the set {n : g(n) = 0}. Similarly about
the 1s and 2s.

Theorem 4. (i) The 0s of W are dopey and alternate in spite.
(ii) Every odious 0 is preceded by 1 and followed by 2; every evil 0 is preceded by 2 and
followed by 1. The subwords 102 and 201 alternate, where possibly the trailing character
of one subword coincides with the leading character of its neighbor: 10201, 20102.
(iii) All 1s of W are odious and all 2s are evil. Both are vile.
(iv) The only subwords between two consecutive 0s are 010, 01210 (if the leading 0 is evil);
and 020, 02120 (if the leading 0 is odious).
(iv) Each of the subwords listed in (ii) and (iii) appear infinitely often in W .
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Note 3. Sequence A091855 of the OEIS seems to confirm that the 1s of W comprise
all vile-odious numbers, and sequence A091785 seems to confirm that the 2s comprise all
vile-evil numbers, so A091855 ∪ A091785=A003159.

Note 4. Items (i) and (iii) provide a linear-time strategy for computing the g-function
of every positive integer. This gives a linear-time winning strategy for sums of Mark
games.

Proof. (i) The 0s are the P -positions. By Theorems 2 and 3, they are dopey and alternate
in spite.

Items (ii), (iii) are proved simultaneously by induction on n, where n is the size of the
prefix g(0) · · · g(n−1) of W . The statements can be verified directly for small n. Suppose
they hold for all m < n. We consider three cases.

(a) g(n) = 0.
(a1) n odious. Since n is even, also n/2 is odious, so by induction, g(n/2) = 1. Now
g(b(n + 1)/2c) = g(n/2) = 1. Hence g(n + 1) = 2. Since n is dopey, n − 1 is odious by
Proposition 2, so by induction, g(n − 1) = 1. Further, Theorem 3 implies that n + 1 is
evil.
(a2) n evil. Since n is even, also n/2 is evil, so by induction, g(n/2) = 2. Now g(b(n +
1)/2c) = g(n/2) = 2. Hence g(n+1) = 1. Since n is dopey, n−1 is evil by Proposition 2,
so by induction, g(n− 1) = 2. Further, Theorem 3 implies that n + 1 is odious.

(b) g(n) = 1. Then g(n− 1) ∈ {0, 2}.
(b1) g(n− 1) = 0. By induction, n− 1 is evil. Also by induction g(n− 2) = 2 and n− 2
is evil. Therefore Theorem 3 implies that n is odious.
(b2) g(n− 1) = 2. By induction, n− 1 is evil, so by Theorem 3, n is odious.

(c) g(n) = 2. Then g(n− 1) ∈ {0, 1}.
(c1) g(n − 1) = 0. By induction, n − 1 is odious, g(n − 2) = 1 and n − 2 is odious.
Therefore Theorem 3 implies that n is evil.
(c2) g(n− 1) = 1. By induction, n− 1 is odious, so by Theorem 3, n is evil.

This completes the induction proof of (ii), (iii), noting that all 1s and 2s are vile by
Theorem 2, and 102 and 201 alternate since the odious and evil 0s alternate by (i).

(iv) The only possible chains between two consecutive 0s have the form 01212 . . . 210,
and 02121 . . . 120. We first show that there cannot be more than three nonzero characters
in any of these chains. Suppose g(n) = 0. Then n is even. If there are at least four
nonzero characters following n, then we must have g((n + 2)/2) = g(1 + n/2) = 0, and
also g((n + 4)/2) = g(2 + n/2) = 0. Thus two adjacent numbers, one being a follower
of the other have g-value 0, a contradiction. We have shown that there can be at most
three consecutive nonzero characters in W . The fact that the listed subwords are the only
possibilities may be left to the reader.

(v) The subwords 01210 and 02120 appear infinitely often by (ii), since there are
infinitely many odious 0s and infinitely many evil 0s. It is straightforward to see that at
every n = 12t−10 begins a subword of the form 01210 or 02120, and at every n = 12t0
begins a subword of the form 010 or 020. �
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4 Misère Mark

Mark in misère play is dubbed MiMark (Misère Mark). For MiMark define two
infinite sequences of integers A = ∪n>1an by (1), and

B = ∪n>0bn where b0 = 1 and bn = 2an (n > 1), (3)

which is the same as (2), except for specifying the value of b0 and replacing n > 0 by
n > 1. The initial entries are displayed in the following table.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

an 0 2 3 5 7 8 9 11 12 13 15 17 19 20 21 23 25 27 28 29 31 32 33 35

bn 1 4 6 10 14 16 18 22 24 26 30 34 38 40 42 46 50 54 56 58 62 64 66 70

The sequence A is A053661 in OEIS, which is identical to A003159 except for the
replacement of vile by dopey powers of 2. The sequence B is A171945, which is identical
with A036554 except for an opposite replacement of powers of 2. Incidentally, the two
sequences A053661 and A171944 of OEIS are identical (except for the first term of each).

It is easy to see that the sequences A, B are complementary. The proof is as in
Proposition 1. Moreover,

Theorem 5. For MiMark, P = B, N = A.

The proof is the same as that of Theorem 1, except that (2) is replaced by (3).
However, Theorem 2 undergoes a metamorphosis. Let

V ′ := (V \ {22k : k > 0}) ∪ {22k+1 : k > 0},
D′ := (D \ {22k+1 : k > 0}) ∪ {22k : k > 0}.

In other words, V ′ consists of all vile numbers, except that the powers of 2 are swapped:
all odd powers replace all even powers. Similarly, D′ consists of all dopey numbers, except
that all even powers of 2 replace all odd powers of 2.

Theorem 6. For MiMark, P = D′, N = V ′.

Proof. It suffices to show: I. A player moving from any d ∈ D′ always lands in a position
in V ′; II. Given any position v ∈ V ′, there exists a move into D′.

I. We may assume d > 0. We consider two cases.
(i) R(d) = bn . . . bm102t−1, where bn . . . bm is a nonempty binary word, and t ∈ Z>1. A
move of type 1 transforms the suffix 102t−1 of R(d) into 012t−1, so d − 1 is vile. A move
of type 2 deletes the trailing 0, so d/2 is vile.
(ii) R(d) = 102t. Since 1 ∈ P , we may assume t > 0. A move of type 1 transforms R(d)
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into 012t−1, so d− 1 is vile. A move of type 2 deletes the trailing 0, so d/2 is dopey. Both
options are in V ′.

II. We consider again two cases.
(i) R(v) = bn . . . bm102t for some t > 0, where bn . . . bm is a nonempty binary word. If
t > 0, then a move of type 2 deletes the trailing 0, so v/2 is dopey. So assume t = 0.
Then the suffix of R(v) has the form 0r1s for some r > 0, s > 1. If s > 1, then a move of
type 1 results in the suffix 0r1s−10, so v − 1 is dopey. So assume s = 1. Since v > 1, we
may assume that the suffix of R(v) has the form 10r1, r > 0. Then the suffix of R(v− 1)
is 10r+1. Thus v − 1 is dopey if r is even. If r is odd, then a move of type 2 transforms v
into bv/2c = (v − 1)/2. The latter is dopey, since R(bv/2c) has a suffix of the form 10r.
(ii) R(v) = 102t+1 for some t > 0. A move of type 2 deletes the trailing 0, so v/2 is vile
and in D′. �

Again, Theorem 6 provides a linear-time winning strategy for MiMark.

5 UpMark

UpMark is the same as Mark, in normal play, except that halving is rounded up rather
than down. Since the followers of 1 are 0 and 1, the game is loopy. To avoid loops, we
define 1 to be the end position.

For UpMark define two infinite sequences of integers A = ∪n>1an by (1), and B =
∪n>0bn by b0 = 1 and

bn = 2an − 1 (n > 1). (4)

An initial segment of the sequences is depicted in the following table. The sequence
A is A171945 of OEIS, and B is A171947.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

an 0 2 4 5 6 8 10 12 13 14 16 17 18 20 21 22 24 26 28 29 30 32 34 36

bn 1 3 7 9 11 15 19 23 25 27 31 33 35 39 41 43 47 51 55 57 59 63 67 71

It is easy to see that the sequences A, B are complementary. The proof is as in
Proposition 1.

Theorem 7. For the game UpMark, P = B, N = A.

Proof. As in he proof of Theorem 1, it suffices to show: I. A player moving from any
bn ∈ B always lands in a position in A; II. Given any position an ∈ A, there exists a move
into B.
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I. A move of type 1 from bn ∈ B results in bn − 1, which is even, hence not in B,
since, by definition, B consists of odd integers only. Since A and B are complementary,
bn − 1 ∈ A. A move of type 2 from bn ∈ B results in dbn/2e = (bn + 1)/2 = an ∈ A.

II. Let c ∈ Z>1. Observe that by (4),

c ∈ A ⇐⇒ 2c− 1 ∈ B. (5)

Further,

c ∈ B ⇐⇒ 2c− 1 ∈ A. (6)

Indeed, let c ∈ B. If 2c − 1 ∈ B, then c ∈ A by (5), a contradiction. Let 2c − 1 ∈ A.
If c ∈ A, then 2c − 1 ∈ B by (5), a contradiction. Now let an ∈ A. If an is odd,
an = 2d − 1 ∈ A, then d ∈ B by (6), and d = (an + 1)/2 = dan/2e. So assume that
an = 2d is even. If an − 1 = 2d− 1 ∈ B, we are done. Otherwise, an − 1 = 2d− 1 ∈ A, so
d = an/2 ∈ B by (6). �

Theorem 8. For UpMark, A consists of all numbers an for which R(an) ends in 0 (even
numbers) or in 102k−11, k > 1; B consists of 1 and all numbers bn for which R(bn) ends
in 102k1, k > 1, or in 101k, k > 1. The members of B alternate in spite: b2n is odious,
b2n−1 is evil for all n > 1.

Proof. Let A′ be the set of all numbers an such that R(an) ends in 0 or in 102k−11, k > 1;
B′ the set of all numbers bn such that R(bn) ends in 102k1, k > 1, or in 1k, k > 1. By
Theorem 7, it suffices to show:
I. Every move from any bn ∈ B′, n > 1, leads to a position in A′; II. for every position
an ∈ A′ there exists a move to a position in B′.

I. We obviously have bn → bn − 1 ∈ A′, since bn − 1 is even. If R(bn) ends in 102k1,
k > 1, then R(bn + 1) ends in 102k−110, so R((bn + 1)/2) = R(dbn/2e) ends in 102k−11,
hence dbn/2e ∈ A′. If R(bn) ends in 1k, k > 1, then R(bn+1) ends in 10k, and R((bn+1)/2)
ends in 0, so again dbn/2e ∈ A′.

II. (a) If R(an) ends in 10k, k > 1, then R(an − 1) ends in 1k, k > 1, so an − 1 ∈ B′.
(b) Suppose R(an) ends in 1k0, k > 1. If k > 1, then R(an/2) ends in 1k, so an/2 ∈ B′.

We may thus assume that k = 1. Then R(an) ends in 10c10, c > 1. If c is even, then
R(an/2) ends in 10c1, so an/2 ∈ B′. If c is odd, then R(an − 1) ends in 10c+11, so
an − 1 ∈ B′.

(c) Suppose R(an) ends in 102k−11, k > 1. If k = 1, then R((an + 1)/2) ends in 11, so
(an + 1)/2 ∈ B′. For k > 1, it is straightforward to verify that then R((an + 1)/2) ends
in 102c1, c ∈ Z>1, so again (an + 1)/2 ∈ B′.

Thus A′ = A, B′ = B.
Since spite(b1) = evil, it suffices to show that spite (bn+1) 6= spite(bn) for all n > 1.

We consider two cases.
(i) R(bn) ends in 101k, k > 1. Then R(bn + 1) ends in 10k, and bn + 1 has k − 1 less

1-bits than bn. Further, R(bn +2) ends in 10k−11, and bn +2 has k− 2 less 1-bits than bn.
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Moreover, bn +2 = bn+1 ∈ B if k is odd, and then spite (bn+1) 6= spite(bn). Now R(bn +3)
ends in 10k−210 and bn + 3 has k− 2 less 1-bits than bn. Then R(bn + 4) ends in 10k−211,
so for k even, bn + 4 = bn+1 ∈ B, and spite (bn+1) 6= spite(bn).

(ii) R(bn) ends in 102k1, k > 1. Then R(bn + 1) ends in 102k−110, and R(bn + 2) ends
in 102k−111. Thus bn + 2 = bn+1 and spite (bn+1) 6= spite(bn). �

Theorem 8 also provides a linear-time winning strategy for UpMark. The proof about
the alternating spite immediately implies the following result.

Corollary 1. (i) If 2t−1 ∈ P, then 2t+1 ∈ P if and only if spite(2t+1) 6= spite(2t−1).
(ii) spite(2t + 1) = spite(2t− 1) if and only if R(2t− 1) ends in 012k, k > 1. If R(2t− 1)
ends in 012k, k > 1, then R(2t + 3) ends in 11, and 2t + 3 ∈ P.

6 Mark-t

For every t > 2 we define Mark-t as the game of removing one of 1, 2, . . . , t − 1 from a
given positive integer n, or moving n to bn/tc, where Mark-2 = Mark. Letting an be
given by (1) and bn = tan, n > 0, we then have P = B, N = A, where A = ∪n>1an,
B = ∪n>0bn. Moreover, P = D, N = V , where now D is the set of all dopey numbers in
the t-ary numeration system, and V is the set of all vile numbers in the t-ary numeration
system. The proofs are very similar to the above for the case t = 2 and are therefore
omitted. In particular, there is a linear-time winning strategy for Mark-t for every t > 2.
The following table depicts the first few N -positions (in the an row) and P -positions (the
bn row) for t = 4. The sequence A is A171948 of OEIS and B is A171949.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

an 0 1 2 3 5 6 7 9 10 11 13 14 15 16 17 18 19 21 22 23 25 26 27 29

bn 0 4 8 12 20 24 28 36 40 44 52 56 60 64 68 72 76 84 88 92 100 104 108 116

We conclude our results with a theorem that justifies the title of this paper.

Theorem 9. For every t > 2, the game Mark-t is aperiodic.

Proof. We use the notation P (n) for the statement: n ∈ P . If the game is periodic, so
are its P -positions, in particular. Suppose that there are constants r, n0 ∈ Z>1 such that
P (n) = P (n+ r) for all n > n0. Then also P (n) = P (n+ kr) for all n > n0 and all k > 1.
Let k > n0. We may assume that tkr ∈ P , since if tkr ∈ N , then t2kr ∈ P , so we replace
k by tk. We have, P (tkr) = P (tkr + (t − 1)tkr) = P (t2kr) by the assumed periodicity.
Now one of the followers of t2kr is tkr. Thus both t2kr and its follower tkr are in P , a
contradiction. �

Since the P -positions are aperiodic, so is, a fortiori, the g-function: the P s are but the
0s of g. Theorem 9 shows that there are aperiodic subtraction games. This of course does
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not contradict the theorems that subtraction games, impartial and partizan, are periodic,
since in the latter case the amount subtracted is restricted to a few constants, whereas
here the amount subtracted is a function of the size of the pile.

7 Epilogue

The genesis of this paper reverts back to [1], where the following puzzle was proposed:
“Nathan and Peter are playing a game. Nathan always goes first. The players take turns
changing a positive integer to a smaller one and then passing the smaller number back to
their opponent. On each move, a player may either subtract one from the integer or halve
it, rounding down if necessary. Thus, from 28 the legal moves are to 27 or to 14; from
27, the legal moves are to 26 or to 13. The game ends when the integer reaches 0. The
player who makes the last move wins. For example, if the starting integer is 15, a legal
sequence of moves might be to 7, then 6, then 3, then 2, then 1, and then to 0. (In this
sample game one of the players could have played better!) Assuming both Nathan and
Peter play according to the best possible strategy, who will win if the starting integer is
1000? 2000?”

The names Nathan and Peter presumably derive from N - and P -positions respectively.
We dubbed the game Mark because it is due to Mark Krusemeyer according to [1].

Since 15 ∈ N which has the follower 14 ∈ P , we indeed see, as hinted in [1], that
Nathan could have played better by moving 15 → 14 rather than 15 → 7, thus securing
his win. Now R(1000) = 1111101000 is dopey, and R(2000) = 11111010000 is vile, since
it is but the left shift of R(1000). Therefore Peter, who moves second, can win 1000 and
Nathan, who moves first, can win 2000.

In addition to analyzing the game Mark, and providing a linear-time winning strat-
egy for it, we also determined the structure of its Sprague-Grundy function, and gave a
linear-time algorithm for computing it. Further, we gave a linear-time winning strategy
for MiMark, which is Mark played in misère. We also analyzed the variation Up-
Mark of Mark, where rounding down was replaced by rounding up, again providing a
linear-time winning strategy. We further sketched a linear-time winning strategy for the
generalization Mark-t of Mark, and proved that this generalization is aperiodic.

The results of the present paper appeared in [4] without proof. There are some further
directions to be pursued, such as computing the g-function for Mark-t for every t > 2, a
strategy for playing Mark-t in misère play, a sum of Mark-t games in misère play, and
UpMark-t for every t > 2, permitting both rounding down and up, and, more generally,
permitting moves that depend on the pile sizes. One can also investigate partizan versions,
such as where one player can remove 1 or bn/2c, and the other 2 or bn/3c.
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