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Abstract

Unexpected product formulas for the number of standard Young tableaux of
certain truncated shapes are found and proved. These include shifted staircase
shapes minus a square in the NE corner, rectangular shapes minus a square in the
NE corner, and some variations.

1 Introduction

A truncated shape is obtained from a Ferrers diagram (in the English notation, where
parts decrease from top to bottom) by deleting cells from the NE corner. Interest in the
enumeration of standard Young tableaux of truncated shapes is enhanced by a recent
result [1, Prop. 9.7]: the number of geodesics between distinguished pairs of antipodes in

∗Two of the authors, RMA and YR, were partially supported by internal research grants from Bar-Ilan
University.
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the flip graph of triangle-free triangulations is equal to twice the number of Young tableaux
of a truncated shifted staircase shape. Motivated by this result, extensive computations
were carried out for the number of standard Young tableaux of these and other truncated
shapes. It was found that, in certain distinguished cases, all prime factors of these numbers
are relatively small, hinting at the existence of product formulas. In this paper, such
product formulas are proved for rectangular and shifted staircase shapes truncated by a
square, or nearly a square.

A different method to derive product formulas, for other families of truncated shapes,
has independently been developed by G. Panova [7].

The rest of the paper is organized as follows. Basic concepts are described in Section 2.
The general idea of pivoting is presented in Section 3. Section 4 contains detailed proofs
for truncated shifted staircase shapes, with Theorem 4.6 as the main result; while Section 5
contains an analogous development for truncated rectangular shapes, with Theorem 5.5
as the main result. Section 6 contains final remarks and open problems.

2 Preliminaries and Basic Concepts

A partition λ of a positive integer N is a sequence of non-negative integers (λ1, λ2, . . . , λm)
such that λ1 ≥ λ2 ≥ . . . ≥ λm ≥ 0 and the total size |λ| := λ1 + λ2 + . . . + λm is N .
The Ferrers diagram [λ] of shape λ is a left-justified array of N cells, with row i (from
top to bottom) containing λi cells. A standard Young tableau (SYT) T of shape λ is a
labeling by {1, 2, . . . , N} of the cells in the diagram [λ] such that every row is increasing
from left to right, and every column is increasing from top to bottom. The number of
SYT of shape λ is denoted by fλ.

Proposition 2.1 (The Frobenius-Young Formula) [4, 10] The number of SYT of shape
λ = (λ1, λ2, . . . , λm) with λ1 ≥ λ2 ≥ . . . ≥ λm ≥ 0 is

fλ =
(|λ|)!

∏m
i=1(λi + m − i)!

·
∏

1≤i<j≤m

(λi − λj − i + j).

Note that adding trailing zeros to λ (with m appropriately increased) does not affect
the right-hand side of the above formula.

A partition (λ1, λ2, . . . , λm) of N is strict if λ1 > λ2 > . . . > λm > 0. The corre-
sponding diagram of shifted shape λ is the array of N cells with row i containing λi cells
and indented i − 1 places. A standard Young tableau (SYT) T of shifted shape λ is a
labeling by {1, 2, . . . , N} of the cells in the diagram [λ] such that each row and column is
increasing. The number of SYT of shifted shape λ is denoted by gλ.

Proposition 2.2 (Schur’s Formula)[8][6, p. 267 (2)] The number of SYT of shifted
shape λ = (λ1, λ2, . . . , λm) with λ1 > λ2 > . . . > λm > 0 is

gλ =
(|λ|)!
m
∏

i=1

λi!
·
∏

1≤i<j≤m

λi − λj

λi + λj

.
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It is well known that both fλ and gλ also have hook length formulas, but the equivalent
formulas above will be more convenient for our calculations.

We shall frequently use the following two basic operations on partitions. The union
λ ∪ µ of two partitions λ and µ is simply their multiset union. We shall usually assume
that each part of λ is greater or equal than each part of µ. The sum of two partitions
λ = (λ1, . . . , λm) and µ = (µ1, . . . , µm) (with trailing zeros added in order to get the same
number of parts) is

λ + µ := (λ1 + µ1, . . . , λm + µm).

For any nonnegative integer m, let [m] := (m, m − 1, . . . , 1) be the corresponding
shifted staircase shape. Consider the truncated shifted staircase shape [m] \ κ, where a
partition κ = (κ1, ..., κk), with κi ≤ m − i for all 1 ≤ i ≤ k < m, is deleted from the
NE corner; namely, κ1 cells are deleted from the (right) end of the first row, κ2 cells are
deleted from the end of the second row, etc. Let N be the size of [m] \ κ. A standard
Young tableau (SYT) of truncated shifted staircase shape [m] \ κ is a labeling of the
cells of this shape by {1, . . . , N} such that labels increase across rows (from left to right),
down columns (from top to bottom) and down the main diagonal (from top left to bottom
right).

Example 2.3 There are four SYT of shape [4] \ (1):

1 2 3

4 5 6

7 8

9

,

1 2 4

3 5 6

7 8

9

,

1 2 3

4 5 7

6 8

9

,

1 2 4

3 5 7

6 8

9

.

Similarly, for nonnegative integers m and n, let (nm) = (n, . . . , n) (m parts) be the
corresponding rectangular shape. Consider the truncated rectangular shape (nm) \ κ,
where κ ⊆ (nm) is deleted from the NE corner; namely, κ1 cells are deleted from the end
of the first row, κ2 cells are deleted from the end of the second row, etc. Letting N be
the size of (nm) \ κ, a SYT of truncated shape (nm) \ κ is a labeling of the cells of this
shape by {1, . . . , N}, such that labels increase along rows (from left to right) and down
columns (from top to bottom).

Preliminary computer experiments hinted that a remarkable phenomenon occurs when
a square is truncated from a staircase shape: while the number of SYT of truncated
staircase shape [m]\ (kk) increases exponentially as a function of the size N =

(

m+1
2

)

−k2

of the shape, all the prime factors of this number are actually smaller than the size.
A similar phenomenon occurs for squares truncated from rectangular shapes 1. In this
paper, product formulas for these (and related) truncated shapes, explaining the above
factorization phenomenon, will be proved; see Corollaries 4.7, 4.8, 5.6 and 5.7 below.

1It should be noted that this factorization phenomenon does not hold in the general case. For example,
the number of SYT of truncated rectangular shape (76) \ (2), of size 40, has 5333 as a prime factor.
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3 Pivoting

The basic idea of the proofs in the following sections is to enumerate the SYT T of a
given shape ζ by mapping them bijectively to pairs (T1, T2) of SYT of some other shapes.
This will be done in two distinct (but superficially similar) ways, which will complement
each other and lead to the desired results.

The first bijection will be applied only to non-truncated shapes of two types: a rectan-
gle and a shifted staircase. Let N be the size of the shape ζ (of either of the aforementioned
types), and fix an integer 1 ≤ t ≤ N . Subdivide the entries in a SYT T of shape ζ into
those that are less than or equal to t and those that are greater than t. The entries ≤ t
constitute T1. To obtain T2, replace each entry i > t of T by N − i + 1, and suitably
transpose (actually, reflect in the line y = x) the resulting array. It is easy to see that
both T1 and T2 are SYT.

This is illustrated schematically in the case of a shifted staircase shape by the following
shifted SYT, where ζ = (5, 4, 3, 2, 1), N = 15 and t = 7.

T =

1 2 3 6 10

4 5 8 11

7 9 13

12 14

15

⇔ T1, T2 =
1 2 3 6

4 5

7

, 1 2 3 5 6

4 7 8

In terms of shapes we have

[ζ ] =

σ

τ ′

⇔ [σ], [τ ] =
σ

, τ

where τ ′ denotes the conjugate of the (strict) partition τ . It follows immediately from
this argument that

gζ =
∑

σ⊆ζ

|σ|=t

gσ g(ζ/σ)′ ,

where τ = (ζ/σ)′ is the conjugate of the shifted skew shape ζ/σ. The shape [τ ] is formed
by deleting the cells of [σ] from those of [ζ ] and then reflecting in the line y = x.

In the case of a rectangular shape we have

[ζ ] =
σ

τ ′

⇔ [σ], [τ ] =
σ

,

τ

with
f ζ =

∑

σ⊆ζ

|σ|=t

fσ f (ζ/σ)′ .

The second bijection will be applied to truncated shapes, where a partition is truncated
from the NE corner of either a rectangle or a shifted staircase. Given such a truncated
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shape ζ , choose a pivot cell P . This is a cell of ζ which belongs to its NE boundary,
namely such that there is no cell of ζ which is both strictly north and strictly east of the
cell P . If T is a SYT of shape ζ , let t be the entry of T in the pivot cell P . Subdivide
the other entries of T into those that are (strictly) less than t and those that are greater
than t. The entries less than t constitute T1. To obtain T2, replace each entry i > t of
T by N − i + 1, where N is the total number of entries in T , and suitably transpose the
resulting array. It is easy, once again, to see that both T1 and T2 are SYT.

By way of example, consider the truncated rectangular shape ζ = (4, 5, 7, 8, 8) and let
P be the cell in position (3, 5). Then for t = 17 the map from a SYT T of truncated
shape ζ to a corresponding pair (T1, T2) is illustrated by

T =

1 2 4 9

3 5 11 12 13

6 8 14 15 17 21 24

7 16 18 20 25 26 27 30

10 19 22 23 28 29 31 32

⇔ T1, T2 =

1 2 4 9

3 5 11 12 13

6 8 14 15

7 16

10

,

1 3

2 6 9

4 7 12

5 8

10 13

11 15

14

In terms of shapes we have

[ζ ] =

σ

P

τ ′

⇔ [σ], [τ ] =

σ

,

τ

where τ ′ is the conjugate of τ . Similarly for a truncated shifted staircase shape.
The particular shapes required in the sequel are the following:

µ

P

λ

ν′ µ′

µ

P

λ

ν′ µ′ (1)

and

µ+α

P

λ

ν′ (µ+β)′

µ+α

P

λ

ν′ (µ+β)′

(2)

A crucial property of these particular shapes is that their subdivision gives rise to shapes
µ ∪ λ and µ ∪ ν (or (µ + α) ∪ λ and (µ + β) ∪ ν) which are not truncated.
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A more explicit relation between λ and ν will be given later. For the time being it
suffices to observe that

gζ =
∑

λ⊆[m]

gµ∪λ gµ∪([m]/λ)′ (3)

and
f ζ =

∑

λ⊆(nm)

f (µ+α)∪λ f (µ+β)∪((mn)/λ)′ . (4)

Since ζ is a truncated shape, the notation on the LHS of the above equalities is to be
taken in a generalized sense.

4 Truncated Shifted Staircase Shapes

In this section, λ = (λ1, . . . , λm) (with λ1 > . . . > λm > 0 integers) will be a strict
partition, with gλ denoting the number of SYT of shifted shape λ. We shall use the union
operation on partitions, defined in Section 2.

For any nonnegative integer m, let [m] := (m, m − 1, . . . , 1) be the corresponding
shifted staircase shape. Schur’s formula (Proposition 2.2) implies the following.

Observation 4.1 The number of SYT of shifted staircase shape [m] is

g[m] = M ! ·
m−1
∏

i=0

i!

(2i + 1)!
,

where M := |[m]| =
(

m+1
2

)

.

We shall now use the first bijection outlined in Section 3.

Lemma 4.2 Let m and t be nonnegative integers, with t ≤
(

m+1
2

)

. Let T be a SYT of
shifted staircase shape [m], let T1 be the set of all cells in T with values at most t, and let
T2 be obtained from T \T1 by transposing the shape and replacing each entry i by M−i+1.
Then:

(i) T1 and T2 are shifted SYT.

(ii) Treating strict partitions as sets, [m] is the disjoint union of the shape of T1 and the
the shape of T2.

Proof. (i) is clear. In order to prove (ii), denote the shifted shapes of T1 and T2 by λ1

and λ2, respectively. The borderline between T1 and T \ T1 is a lattice path of length
exactly m, starting at the NE corner of the staircase shape [m] and using only S and W
steps. If the first step is S then the first part of λ1 is m, and the rest (of both λ1 and λ2)
corresponds to a lattice path in [m−1]. Similarly, if the first step is W then the first part
of λ2 is m, and the rest corresponds to a lattice path in [m − 1]. Thus exactly one of λ1,
λ2 has a part equal to m, and the whole result follows by induction on m.

�

the electronic journal of combinatorics 18(2) (2011), #P20 6



Corollary 4.3 For any nonnegative integers m and t with t ≤
(

m+1
2

)

,

∑

λ⊆[m]
|λ|=t

gλgλc

= g[m].

Here summation is over all strict partitions λ with the prescribed restrictions, and λc is
the complement of λ in [m] (where strict partitions are treated as sets). In particular, the
LHS is independent of t.

Lemma 4.4 Let λ and λc be strict partitions whose disjoint union (as sets) is [m], and
let µ = (µ1, . . . , µk) with µ1 > . . . > µk > m. Let ĝλ := gλ/|λ|!. Then

ĝµ∪λĝµ∪λc

ĝ[m] = ĝλĝλc

ĝµ∪[m]ĝµ.

Equivalently,
gµ∪λgµ∪λc

= c(µ, |λ|, |λc|) · gλgλc

,

where

c(µ, |λ|, |λc|) =
gµ∪[m]gµ

g[m]
·
|[m]|!(|µ| + |λ|)!(|µ|+ |λc|)!

(|µ| + |[m]|)!|µ|!|λ|!|λc|!

depends only on the sizes |λ| and |λc| and not on the actual partitions λ and λc.

Proof. By Proposition 2.2,

ĝµ∪λĝµ∪λc

ĝλĝλc =

(

∏

i

1

µi!

∏

i<j

µi − µj

µi + µj

)2

·
∏

i,j

µi − λj

µi + λj

∏

i,j

µi − λc
j

µi + λc
j

. (5)

By the assumption on λ and λc,

∏

j

µi − λj

µi + λj

∏

j

µi − λc
j

µi + λc
j

=

m
∏

j=1

µi − j

µi + j
(∀i).

Thus the RHS of (5) is independent of λ and λc. Substituting λ = [m] (and λc = [0], the
empty partition) yields

ĝµ∪λĝµ∪λc

ĝλĝλc =
ĝµ∪[m]ĝµ

ĝ[m]
,

which is the desired identity. The other equivalent formulation follows readily.
�

A technical lemma, which will be used to prove Theorems 4.6 and 5.5, is the following.

Lemma 4.5 Let t1, t2 and N be nonnegative integers. Then

N
∑

i=0

(

t1 + i

t1

)(

t2 + N − i

t2

)

=

(

t1 + t2 + N + 1

t1 + t2 + 1

)

.
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Proof. This is a classical binomial identity, which follows for example from computation
of the coefficients of xN on both sides of the identity

(1 − x)−(1+t1) · (1 − x)−(1+t2) = (1 − x)−(2+t1+t2).

�

Theorem 4.6 Let m be a nonnegative integer, denote M :=
(

m+1
2

)

, and let µ =
(µ1, . . . , µk) be a strict partition with µ1 > . . . > µk > m. Then

∑

λ⊆[m]

gµ∪λgµ∪λc

= gµ∪[m]gµ ·
(M + 2|µ| + 1)!|µ|!

(M + |µ|)!(2|µ|+ 1)!
.

Proof. Restrict the summation on the LHS to strict partitions λ of a fixed size |λ| = t.
By Lemma 4.4 and Corollary 4.3,

∑

λ⊆[m]
|λ|=t

gµ∪λgµ∪λc

= c(µ, t, M − t) ·
∑

λ⊆[m]
|λ|=t

gλgλc

= c(µ, t, M − t) · g[m].

Now sum over all t and use the explicit formula for c(µ, t, M − t) (from Lemma 4.4)
together with Lemma 4.5:

∑

λ⊆[m]

gµ∪λgµ∪λc

= gµ∪[m]gµ ·
M !

(|µ| + M)!|µ|!
·

M
∑

t=0

(|µ| + t)!(|µ| + M − t)!

t!(M − t)!

= gµ∪[m]gµ ·

(

|µ| + M

|µ|

)−1

·

M
∑

t=0

(

|µ| + t

|µ|

)(

|µ| + M − t

|µ|

)

= gµ∪[m]gµ ·

(

|µ| + M

|µ|

)−1

·

(

2|µ| + M + 1

2|µ| + 1

)

.

�

We shall apply this theorem to several special cases. In each case the result will
follow from an application of equation (3) to one or the other of the shapes illustrated
in diagram (1), where the union of λ and ν is the shifted staircase shape [m]. Using
Lemma 4.2, we can now state explicitly the relation between these partitions, mentioned
before equation (3): ν = ([m]/λ)′ = λc.

First, take µ = (m+k, . . . , m+1) (k parts), for k ≥ 1. This corresponds to truncating
a k × k square from the NE corner of a shifted staircase shape [m + 2k], but adding back
the SW corner of this square; see the first shape in diagram (1).

Corollary 4.7 The number of SYT of truncated shifted staircase shape [m+2k]\(kk−1, k−
1) is

g[m+k]g(m+k,...,m+1) ·
N !|µ|!

(N − |µ| − 1)!(2|µ|+ 1)!
,

where N =
(

m+2k+1
2

)

− k2 + 1 is the size of the shape and |µ| = k(2m + k + 1)/2.
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The special case k = 1 (with µ = (m + 1)) gives back the number g[m+2] of SYT of
shifted staircase shape [m + 2]:

g[m+1] ·
N !(m + 1)!

(N − m − 2)!(2m + 3)!
= N ! ·

m+1
∏

i=0

i!

(2i + 1)!
= g[m+2],

where N = (m + 2)(m + 3)/2 is the size of the shape. This agrees, of course, with
Observation 4.1.

The special case k = 2 (with µ = (m + 2, m + 1)) corresponds to truncating a small
shifted staircase shape [2] = (2, 1) from the shifted staircase shape [m + 4]. Thus, the
number of SYT of truncated shifted staircase shape [m + 4] \ [2] is

g[m+2]g(m+2,m+1) ·
N !(2m + 3)!

(N − 2m − 4)!(4m + 7)!

=
m+1
∏

i=0

i!

(2i + 1)!
·

(2m + 3)!

(m + 2)!(m + 1)!(2m + 3)
·
N !(2m + 3)!

(4m + 7)!

= N ! ·
2

(4m + 7)!(m + 2)
·

m−1
∏

i=0

i!

(2i + 1)!
,

where N =
(

m+5
2

)

− 3 = (m + 2)(m + 7)/2 is the size of the shape.

Now take µ = (m + k + 1, . . . , m + 3, m + 1) (k parts), for k ≥ 2. This corresponds
to truncating a (k − 1) × (k − 1) square from the NE corner of a shifted staircase shape
[m + 2k]; see the second shape in diagram (1).

Corollary 4.8 The number of SYT of truncated shifted staircase shape [m + 2k] \ ((k −
1)k−1) is

g(m+k+1,...,m+3,m+1,...,1)g(m+k+1,...,m+3,m+1) ·
N !|µ|!

(N − |µ| − 1)!(2|µ| + 1)!
,

where N =
(

m+2k+1
2

)

− (k − 1)2 is the size of the shape and |µ| = k(2m + k + 3)/2 − 1.

In particular, take k = 2 and µ = (m+3, m+1). This corresponds to truncating the NE
corner cell of a shifted staircase shape [m + 4]. The corresponding enumeration problem
was actually the original motivation for the current work, because of its combinatorial
interpretation, as explained in [1]. Thus, the number of SYT of truncated shifted staircase
shape [m + 4] \ (1) is

g(m+3,m+1,...,1)g(m+3,m+1) ·
N !(2m + 4)!

(N − 2m − 5)!(4m + 9)!

=
N ! · 4(2m + 3)

(4m + 9)! · (m + 3)
·

m−1
∏

i=0

i!

(2i + 1)!
,

where N =
(

m+5
2

)

− 1 = (m + 3)(m + 6)/2 is the size of the shape. For m = 0 (N = 9)
this number is 4, as shown in Example 2.3.
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5 Truncated Rectangular Shapes

In this section, λ = (λ1, . . . , λm) (with λ1 ≥ . . . ≥ λm ≥ 0 integers) will be a partition with
(at most) m parts. Two partitions which differ only in trailing zeros will be considered
equal. Denote by fλ the number of SYT of regular (non-shifted) shape λ.

For any nonnegative integers m and n, let (nm) := (n, . . . , n) (m times) be the corre-
sponding rectangular shape. The Frobenius-Young formula (Proposition 2.1) implies the
following.

Observation 5.1 The number of SYT of rectangular shape (nm) is

f (nm) = (mn)! ·
FmFn

Fm+n

,

where

Fm :=
m−1
∏

i=0

i!.

Recall from Section 2 the definition of the sum λ + µ of two partitions λ and µ. Note
that if either λ or µ is a strict partition then so is λ + µ.

Lemma 5.2 Let m, n and t be nonnegative integers, with t ≤ mn. Let T be a SYT of
rectangular shape (nm), let T1 be the set of all cells in T with values at most t, and let T2

be obtained from T \T1 by transposing the shape and replacing each entry i by mn− i+1.
Then:

(i) T1 and T2 are SYT.

(ii) Denote by λ1 and λ2 the shapes of T1 and T2, respectively, and treat strict partitions
as sets. Then the strict partition [m+n] is the disjoint union of the strict partitions
λ1 + [m] and λ2 + [n].

Proof. (i) is clear; let us prove (ii). The borderline between T1 and T \ T1 is a lattice
path of length exactly m + n, starting at the NE corner of the rectangular shape (nm),
using only S and W steps, and ending at the SW corner of this shape. If the first step is
S then the first part of λ1 + [m] is m + n, and the rest (of both λ1 + [m] and λ2 + [n])
corresponds to a lattice path in nm−1. Similarly, if the first step is W then the first part
of λ2 + [n] is m + n, and the rest corresponds to a lattice path in (n− 1)m. Thus exactly
one of the strict partitions λ1 + [m] and λ2 + [n] has a part equal to m+n, and the whole
result follows by induction on m + n.

�

Corollary 5.3 For any nonnegative integers m, n and t with t ≤ mn,

∑

λ⊆(nm)
|λ|=t

fλfλc

= f (nm).

the electronic journal of combinatorics 18(2) (2011), #P20 10



Here summation is over all partitions λ with the prescribed restrictions, and λc is such
that λc + [n] is the complement of λ + [m] in [m + n] (where strict partitions are treated
as sets). In particular, the LHS is independent of t.

Lemma 5.4 Let λ and λc be partitions such that [m + n] is the disjoint union of λ + [m]
and λc + [n], and let µ = (µ1, . . . , µk) be an arbitrary partition (µ1 ≥ . . . ≥ µk ≥ 0). Let
f̂λ := fλ/|λ|!. Then

f̂ (µ+(nk))∪λf̂ (µ+(mk))∪λc

= f̂λf̂λc

f̂µ+(m+n)k

f̂µ.

Equivalently,
f (µ+(nk))∪λf (µ+(mk))∪λc

= d(µ, |λ|, |λc|) · fλfλc

,

where

d(µ, |λ|, |λc|) = fµ+((m+n)k)fµ ·
(|µ| + nk + |λ|)!(|µ|+ mk + |λc|)!

(|µ| + (m + n)k)!(|µ|)!(|λ|)!(|λc|)!
.

Proof. From the assumptions it follows that λ is contained in (nm). We may thus assume
that it has m (nonnegative) parts. Similarly, λc is contained in (mn) and we may assume
that it has n (nonnegative) parts. Thus ((µ+(nk))∪λ has k+m parts and (µ+(mk))∪λc

has k + n parts. By Proposition 2.1,

f̂ (µ+(nk))∪λf̂ (µ+(mk))∪λc

f̂λf̂λc
=

·

(

k
∏

i=1

1

(µi + m + n + k − i)!

∏

i<j

(µi − µj − i + j)

)2

·

·
∏

i,j

(µi + n − λj − i + k + j)
∏

i,j

(µi + m − λc
j − i + k + j).

By the assumption on λ and λc,

∏

j

(µi + n − λj − i + k + j)
∏

j

(µi + m − λc
j − i + k + j) =

m+n
∏

j=1

(µi − i + k + j) (∀i).

Since
1

(µi + m + n + k − i)!
·

m+n
∏

j=1

(µi − i + k + j) =
1

(µi + k − i)!
(∀i),

an application of Proposition 2.1 to fµ and to fµ+((m+n)k) gives the desired result.
�

Theorem 5.5 Let m and n be nonnegative integers, and let µ = (µ1, . . . , µk) be a parti-
tion (µ1 ≥ . . . ≥ µk ≥ 0). Then

∑

λ⊆(nm)

f (µ+(nk))∪λf (µ+(mk))∪λc

= fµ+((m+n)k)fµf (nm) ·

·

(

mn + 2|µ| + mk + nk + 1

mn

)

·
(|µ| + mk)!(|µ| + nk)!

(|µ| + mk + nk)!(|µ|)!
.
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Proof. Restrict the summation to partitions λ of a fixed size |λ| = t. By Lemma 5.4 and
Corollary 5.3,

∑

λ⊆(nm)
|λ|=t

f (µ+(nk))∪λf (µ+(mk))∪λc

= d(µ, t, M − t) ·
∑

λ⊆(nm)
|λ|=t

fλfλc

= d(µ, t, M − t) · f (nm).

Now sum over all t and use the explicit formula for d(µ, t, M − t) (from Lemma 5.4)
together with Lemma 4.5, to obtain the explicit formula above.

�

Again, we shall apply this theorem in several special cases. In each case the result is a
special case of equation (4) with appropriately chosen ζ of one or the other of the shapes
illustrated in diagram (2). Note that, by Lemma 5.2, ν = ((nm)/λ)′ = λc.

First, let α = (nk), β = (mk) and µ = (0k) (the empty partition with k “parts”).
This corresponds to truncating a k × k square from the NE corner of a rectangular
shape ((n + k)m+k), but adding back the SW corner of this square; see the first shape in
diagram (2).

Corollary 5.6 The number of SYT of truncated rectangular shape ((n+k)m+k)\(kk−1, k−
1) is

f ((m+n)k)f (nm) ·

(

mn + mk + nk + 1

mn

)

·
(mk)!(nk)!

(mk + nk)!
=

N !(mk)!(nk)!

(mk + nk + 1)!
·
FmFnFk

Fm+n+k

,

where N = (m + k)(n + k) − k2 + 1 = mn + mk + nk + 1 is the size of the shape and Fn

is as in Observation 5.1.

For k = 1 we obtain

f (n+1)m+1

=
N !m!n!

(m + n + 1)!
·

FmFn

Fm+n+1
= N ! ·

Fm+1Fn+1

Fm+n+2
,

in accordance with Observation 5.1.
For k = 2 we obtain that the number of SYT of truncated rectangular shape ((n +

2)m+2) \ (2, 1) is
N !(2m)!(2n)!

(2m + 2n + 1)!
·

FmFn

Fm+n+2
,

where N = (m + 2)(n + 2) − 3 = mn + 2m + 2n + 1 is the size of the shape.

Now take α = (nk), β = (mk) and µ = (1k−1, 0), for k ≥ 2. This corresponds
to truncating a (k − 1) × (k − 1) square from the NE corner of a rectangular shape
((n + k)m+k); see the second shape in diagram (2).

Corollary 5.7 The number of SYT of truncated rectangular shape ((n + k)m+k) \ ((k −
1)k−1) is

f ((m+n+1)k−1,m+n)f (nm) ·

(

mn + mk + nk + 2k − 1

mn

)

·
(mk + k − 1)!(nk + k − 1)!

(mk + nk + k − 1)!(k − 1)!
=
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=
N !(mk + k − 1)!(nk + k − 1)!(m + n + 1)!k

(mk + nk + 2k − 1)!
·
FmFnFk−1

Fm+n+k+1
,

where N = (m + k)(n + k) − (k − 1)2 = mn + mk + nk + 2k − 1 is the size of the shape
and Fn is as in Observation 5.1.

In particular, letting k = 2 and µ = (1, 0) implies that the number of SYT of truncated
rectangular shape ((n + 2)m+2) \ (1) is

N !(2m + 1)!(2n + 1)! · 2

(2m + 2n + 3)!(m + n + 2)
·

FmFn

Fm+n+2

,

where N = (m + 2)(n + 2) − 1 = mn + 2m + 2n + 3 is the size of the shape and Fn is as
in Observation 5.1.

6 Final Remarks and Open Problems

Most recently, the numbers of SYT of some other truncated shapes have been shown to
have nice product formulas. Using complex analysis and volume computations, G. Panova
proved such a formula for a rectangular shape minus a staircase in the NE corner [7].
Computer experiments indicate that there are other shapes with a similar property.

The number of SYT of a rectangular shape (nm) (n 6= m), with two cells truncated
from the NE corner, seems in general to have large prime factors. Nevertheless, the
situation is different for n = m.

Conjecture 6.1 For n ≥ 2

f (nn)\(2) =
(n2 − 2)!(3n − 4)!2 · 6

(6n − 8)!(2n − 2)!(n − 2)!2
·

F 2
n−2

F2n−4
,

where

Fm :=
m−1
∏

i=0

i!.

This empirical formula has been verified for n ≤ 13.

On the basis of further computations we conjecture that, if either κ = (kk−1) or
κ = (kk−2, k − 1) then, for n large enough, both f (nn)\κ and g[n]\κ have no prime factor
larger than the size of the shape.

Question 6.2

(i) Find and characterize the truncated (and other “unusual”) shapes for which the
number of SYT has no prime factor larger than the size of the shape.

(ii) Give explicit product formulas for the number of SYT of such shapes.
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