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Abstract

To each permutation matrix we associate a complex permutation polynomial

with roots at lattice points corresponding to the position of the ones. More
generally, to an alternating sign matrix (ASM) we associate a complex alternating

sign polynomial. On the one hand visualization of these polynomials through
polynomiography, in a combinatorial fashion, provides for a rich source of algo-
rithmic art-making, interdisciplinary teaching, and even leads to games. On the
other hand, this combines a variety of concepts such as symmetry, counting and
combinatorics, iteration functions and dynamical systems, giving rise to a source
of research topics. More generally, we assign classes of polynomials to matrices
in the Birkhoff and ASM polytopes. From the characterization of vertices of
these polytopes, and by proving a symmetry-preserving property, we argue that
polynomiography of ASMs form building blocks for approximate polynomiography
for polynomials corresponding to any given member of these polytopes. To this
end we offer an algorithm to express any member of the ASM polytope as a
convex of combination of ASMs. In particular, we can give exact or approximate
polynomiography for any Latin Square or Sudoku solution. We exhibit some images.

Keywords: Alternating Sign Matrices, Polynomial Roots, Newton’s Method,
Voronoi Diagram, Doubly Stochastic Matrices, Latin Squares, Linear Programming,
Polynomiography

1 Introduction

Polynomials are undoubtedly one of the most significant objects in all of mathematics
and the sciences, particularly in combinatorics. There are famous polynomials or classes
of polynomials in many fields of mathematics. While working with a real or complex
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polynomial does not necessarily require dealing with its roots, the roots define the poly-
nomial and are thus implicitly present in any application. For many years this author’s
research has been devoted to the study of polynomial root-finding and their algorithmic
visualization via iteration functions for which a term has been coined, polynomiography.
For instance, the behavior of Newton’s method in the complex plane as applied to the
cubic roots of unity, initially investigated by Cayley [4] in 1879, is well-known to give
rise to a fractal image, which in our terminology is a polynomiograph, or more precisely a
fractal polynomiograph. Newton’s iteration function is only one member of infinite classes
of iteration functions and some particular applications of these lead to polynomiographs
that are not fractal in nature. This and other reasons justify the definition and legiti-
macy of polynomiography as a new foundation for polynomial root-finding visualization;
see [8] for detailed explanation. In subsequent sections we will define a particular class of
iteration functions with significant properties.

This article focuses on polynomiography as applied to a polynomial that we associate
to a permutation matrix, an alternating sign matrix (ASM), and more generally to any
matrix in the convex hull of permutation matrices, or in the convex hull of the alternating
sign matrices. These convex hulls are known as the Birkhoff polytope and the ASM
polytope, respectively. The latter has recently been characterized by Striker [20]. Our
inspiration behind defining these polynomials lies in the many beautiful results on ASMs
presented at Doron Zeilberger’s 60th birthday celebration in 2010, in honor of his many
accomplishments, including his proof [21] of the famous conjecture of Mills, Robbins, and
Rumsey [14], that the number of n × n alternating sign matrices is

n−1∏

j=0

(3j + 1)!

(n + j)!
.

The inspiration for the article was sparked by the idea that perhaps by association of
certain complex polynomials to permutation matrices, and more generally to ASMs, even
for small size matrices, we will have at our disposal a very large class of complex poly-
nomials that could lend themselves to aesthetically pleasing polynomiographs and much
else. A preliminary version of this idea, but only for permutation matrices was presented
in [9]. While many famous classes of polynomials have real coefficients, association of
polynomials to ASMs allows defining complex polynomials that are interesting from the
point of view of polynomiography and possibly other perspectives.

Specifically, in Section 2 we first introduce the Basic Family of iteration functions,
summarize their basic convergence properties, and briefly describe polynomiography. In
Section 3, we consider permutation matrices and to each such matrix of order n we asso-
ciate a complex polynomial of degree n with roots at lattice points corresponding to the
positions of the ones in the matrix. We refer to these as complex permutation polynomials.
In Section 4, we consider this in more generality and associate to alternating sign matri-
ces the class of complex alternating sign polynomials. More generally, we assign classes
of polynomials to the Birkhoff polytope, and the ASM polytope. In Section 5, we con-
sider doubly stochastic matrices and associate doubly stochastic polynomials. In Section
6, we prove a symmetry-preserving property of the Basic Family that will be used in two
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different senses: first, it is used to justify the definition of doubly stochastic polynomials
and their polynomiography; second, it is used to develop approximate polynomiography
for doubly stochastic matrices and ASMs. In Section 7, we consider polynomiography for
Latin Squares and Sudoku matrix solutions, where even for small values of n this gives
rise to the application of our result to a very large number of vertices. In Section 8, we
consider an approach for assigning approximate polynomiography to doubly stochastic
matrices based on the decomposition of the corresponding doubly stochastic matrix as
the convex combination of permutation matrices. We also describe an algorithm for de-
riving such decomposition. In Section 9, we associate polynomiography to matrices in the
ASM polytope. Furthermore, we extend the decomposition algorithm for doubly stochas-
tic matrices to ASMs. In this section, we also define a concept of diagonally scaling for
alternating sign matrices, allowing the assignment of polynomials and polynomiography
to even more general matrices than those of ASM polytope. We consider some examples
and give the corresponding polynomiography.

On the one hand, visualization of these polynomials through polynomiography, in a
combinatorial fashion, provides for a rich source of algorithmic art-making, interdisci-
plinary teaching, and even leads to games. On the other hand, this combines a variety of
concepts such as symmetry, counting and combinatorics, iteration functions and dynam-
ical systems, giving rise to a source of research topics.

2 The Basic Family and Polynomiography

In this section we describe the Basic Family of iteration functions for polynomial root-
finding and summarize their relevant properties. Let p(z) be a given complex polynomial
of degree n. Set D0(z) = 1, and for each m ≥ 2 define the m × m matrix determinant

Dm(z) = det




p′(z) p′′(z)
2!

. . . p(m−1)(z)
(m−1)!

p(m)(z)
(m)!

p(z) p′(z)
. . .

. . . p(m−1)(z)
(m−1)!

0 p(z)
. . .

. . .
...

...
...

. . .
. . . p′′(z)

2!

0 0 . . . p(z) p′(z)




. (1)

The Basic Family then is the collection of iteration functions

Bm(z) = z − p(z)
Dm−2(z)

Dm−1(z)
, m = 2, 3, . . . (2)

Specific members, B2(z) and B3(z), are Newton and Halley iteration functions, re-
spectively. These two by themselves posses a rich and interesting history, see [8]. The
Basic Family was studied by Schröder [18]; see also [8] for several different but equivalent
formulations, as well as many other properties. The determinant Dm(z) can be shown to
also satisfy the recurrence

Dm(z) =
n∑

i=1

(−1)i−1p(z)i−1p(i)(z)

i!
Dm−i(z). (3)
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The following theorem summarizes some relevant properties of the Basic Family. The
theorem can be viewed as a particular case of a determinantal Taylor’s theorem.

Theorem 1 ([5], [8]) Let p(z) be a complex polynomial of degree n, and θ a root. For
each m ≥ 2, the following expansion is valid

Bm(z) = z − p(z)
Dm−2(z)

Dm−1(z)
= θ + (−1)m

m+n−2∑

k=m

D̂m−1,k(z)

Dm−1(z)
(θ − z)k, (4)

where for each m ≥ 1 and each k = m + 1, . . . , m + n − 1,

D̂m,k(z) = det




p′′(z)
2!

p′′′(z)
3!

. . . p(m)(z)
(m)!

p(k)(z)
k!

p′(z) p′′(z)
2!

. . . p(m−1)(z)
(m−1)!

p(k−1)(z)
(k−1)!

p(z) p′(z)
. . .

...
...

...
...

. . . p′′(z)
2!

p(k−m+2)(z)
(k−m+2)!

0 0 . . . p′(z) p(k−m+1)(z)
(k−m+1)!




. (5)

In particular, the expansion formula (4) implies there exists a disk centered at θ such
that for any z0 in this disk the sequence of fixed point iteration

zk+1 = Bm(zk), k = 0, 1, . . .

is well-defined, and it converges to θ. If θ is a simple root, the order of convergence is m.
More specifically,

lim
k→∞

(θ − zk+1)

(θ − zk)m
= (−1)m D̂m−1,m(θ)

p′(θ)m−1
.

Definition 1 For a given complex number w, the Basic Sequence is defined as

{Bm(w), m = 2, 3, · · ·}.

The Voronoi cell of θ, V (θ), is the set of all points in the Euclidean plane that are closer
to θ than any other root of p(z). The following theorem describes one of the powerful
properties of the Basic Family.

Theorem 2 ([6], [8]) For any root θ of p(z) and any w in the Voronoi cell V (θ), the Basic
Family is pointwise convergent to θ, i.e. the corresponding Basic Sequence satisfies:

lim
m→∞

Bm(w) = θ.

Theorem 2 establishes the pointwise convergence of the Basic Family on each Voronoi
cell. However, recently uniform convergence has been proven, thus describing a more
accurate and powerful description for this convergence. For this and other recent results
on the Basic Family; see [10].
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To each given polynomial p(z) we associate polynomiography. Polynomiography is
the systematic study of the visualization of the process of solving a polynomial equation
using iteration functions; see [8]. An individual image under this visualization is called
a polynomiograph. It is a two-dimensional computer-generated image that may or may
not exhibit fractal behavior. We can think of a polynomiograph as a matrix of computer
pixels having a color decided upon by a particular polynomial root-finding algorithm,
e.g. Newton’s iteration function, or even the collection of the Basic Family as applied
to a single polynomial. A color can be identified by a number and it is based on the
convergence properties of orbits, basins of attraction, basic sequences, and other criteria.
These terms are defined formally below. In a simplest approach, the color of a pixel is
dependent upon the root whose basin of attraction contains the location of the pixel.

The individual use of a Basic Family member Bm(z) in solving the polynomial equation
p(z) = 0 consists of the fixed point iteration zk+1 = Bm(zk), where z0 is a starting complex
number. The sequence {zk}∞k=0 is called the orbit of z0. The basin of attraction of a root
θ is the set of all points whose orbit under the iterations of Bm(z) converges to θ. It is
an open set and a part of the so-called Fatou set of Bm(z). The basin of attraction of
each root consists of the union of connected components, called Fatou components. The
immediate basin of attraction of a root is the connected component that contains the root.
From the local convergence behavior of Bm(z) the immediate basin of attraction of a root
is well-defined. The boundary of the Fatou components forms the Julia set, known to
exhibit fractal behavior for general polynomials. For a precise definition of Fatou and
Julia sets with respect to general rational functions and their properties, see e.g. [1], [15],
and [8].

Polynomiographs could even inspire 3D images or structures. For a description of
polynomiography, its theoretical foundation, artistic applications, as well as various prac-
tical and educational applications, see [7], and especially [8]. Polynomiography as theory
and software is a novel mathematically inspired computer visualization medium with
potentially many applications in education, math, sciences, art and design. In a poly-
nomiograph, whether or not it would exhibit fractal patterns, there could lie either hidden
symmetries intrinsic in the choice of its corresponding polynomial, or symmetries that can
be created by design. Indeed polynomiography is a rich source for symmetry because in a
sense any symmetry in the shape of the roots of a given polynomial, e.g. line symmetry,
radial symmetry, rotational symmetry, or homothetic symmetry can be converted into a
corresponding form of symmetry in the polynomiographs. What this suggests is that we
can create many symmetries simply by the manipulation of a set of points. In this sense,
we can create symmetry in a minimalistic fashion. We can reach the very foundation of
symmetry in polynomiographs by examining the symmetries in the roots, as well as the
mathematical properties of iteration functions under consideration. In this article, we will
formally prove a symmetry-preserving property and make use of it in polynomiographies
that we will associate to ASMs.
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3 Permutation Matrices and Polynomiography

An n × n permutation matrix Π = (πij) is a matrix whose rows (and columns) form a
permutation of the identity matrix. To each permutation matrix, we associate a complex
polynomial defined as follows. First, set θij to be the complex number associated to the
(i, j) location, i, j ∈ {1, . . . , n}, i.e.

θij = i + ij, i =
√
−1. (6)

For a general n × n matrix A = (aij), set

A = (aij), aij = aj,(n+1−i). (7)

This matrix is analogous to the transpose, except that the i-th row of A corresponds to
the i-th column of A but written from bottom up. Now given the matrix Π = (πij) we
use the corresponding matrix Π = (πij) to associate a complex polynomial PΠ(z) to Π
defined as

PΠ(z) =
∏

πij=1

(z − θij), (8)

a polynomial of degree n referred as the complex permutation polynomial corresponding
to Π.

In this article, we first wish to create polynomiography with permutations polynomials.
As an example, for n = 2 the permutation matrices and their corresponding polynomials
are

(
1 0
0 1

)
,

(
0 1
1 0

)
, (z − (1 + 2i))(z − (2 + 1i)), (z − (1 + 1i))(z − (2 + 2i)).

We may associate many polynomiographs to these permutation polynomials. As an ex-
ample Figure 1 presents two corresponding polynomiographs.

Figure 1: Polynomiographs corresponding to two permutation matrices of order 2.

the electronic journal of combinatorics 18(2) (2011), #P24 6



For n = 3 the six permutation matrices and their corresponding polynomials are




1 0 0
0 1 0
0 0 1



 ,




1 0 0
0 0 1
0 1 0



 ,




0 1 0
1 0 0
0 0 1



 ,




0 0 1
1 0 0
0 1 0



 ,




0 1 0
0 0 1
1 0 0



 ,




0 0 1
0 1 0
1 0 0





(z − (1 + 3i))(z − (2 + 2i))(z − (3 + i)), (z − (1 + 3i))(z − (2 + 1i))(z − (3 + 2i)),
(z − (1 + 2i))(z − (2 + 3i))(z − (3 + i)), (z − (1 + 2i))(z − (2 + 1i))(z − (3 + 3i)),
(z − (1 + i))(z − (2 + 3i))(z − (3 + 2i)), (z − (1 + i))(z − (2 + 2i))(z − (3 + 3i)).

Figure 2: Polynomiographs corresponding to six permutation matrices of order 3.

Figure 2 gives polynomiographs corresponding to 6 permutation matrices of order 3.
These are just a few of the polynomiographies we can associate to these permutation
polynomials. Clearly, these polynomiographs exhibit the symmetries appearing in the
corresponding permutation matrices.

While the product of two permutation matrices is still a permutation matrix, one may
assign polynomiographies to the product of complex permutation polynomials and these
could introduce even more interesting images. We will consider a more general approach
in Section 5.

4 Alternating Sign Matrices and Polynomiography

In this section, we associate a polynomial to each n × n matrix A = (aij) that is an
alternating sign matrix (ASM), i.e. its entries are 0, or ±1; the sum of entries in each
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row and each column is one; and the nonzero entries in each row and column alternate in
sign. As in the case of a permutation matrix, we let

A = (aij), aij = aj,(n+1−i).

Given, θij = i + ij, we associate a polynomial to A defined as follows

PA(z) =
∏

aij=1

(z − θij) ×
∏

aij=−1

(z − θij)
2. (9)

In summary, this gives a generalization of the permutation case and θij is a simple root of
PA when aij = 1 and a double root when aij = −1. Rather than associating a polynomial
to A we could assign the rational function

RA(z) =
∏

aij=1

(z − θij)/
∏

aij=−1

(z − θij). (10)

Another alternative would be to associate the polynomial

QA(z) =
∏

aij=1

(z − θij) ×
∏

aij=−1

(z + θij). (11)

While these alternatives would be interesting and perhaps worth investigating, with
regard to polynomiography, working with RA(z) drastically reduces the practicality in
applying the Basic Family in an interesting fashion. For instance, we could apply Newton’s
method efficiently but its polynomiograph would be unremarkable. In the case of QA(z),
the disadvantage lies in that the roots fall outside of an n by n square. The use of double
roots allows us to keep the polynomial degree small, yet distinguish between simple and
double roots. We refer to the class of polynomials so defined as complex alternating sign

polynomials. Figure 3 gives a set of polynomiographs corresponding to the following ASM,
taken from the cover of Bressoud’s book [3].




0 0 1 0 0
0 1 −1 0 1
1 −1 0 1 0
0 1 0 0 0
0 0 1 0 0




.

The corresponding polynomial is the product of the terms written columnwise
(z−(1+3i)), (z−(2+2i))∗(z−(2+3i))2∗(z−(2+4i)), (z−(3+i))∗(z−(3+4i))2∗(z−(3+5i)),
(z − (z − (4 + 3i)) and (z − (5 + 4i)). This simplifies into

z11 − (30 + 36i)z10 − (180 − 979i)z9 + (11029 − 6201i)z8 − (99937 + 38130i)z7 +
(204672 + 597662i)z6 + (1381808 + 2274455i)z5 − (7912877− 1192177i)z4 + (12604344 +
11172954i)z3+(684870−23644850i)z2−(15679700−12355900i)z+(7510000+1580000i).
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Rather than working with this polynomial, a symmetry-preserving property in poly-
nomiography (Section 6) allows us to shift the roots while retaining the same polynomio-
graph. If we shift the origin to the location (3, 3) this results in the following polynomial
with smaller coefficients

(z−2i)∗(z+1−i)∗(z−i)2 ∗(z−2−i)∗(z+2)∗(z+1)2 ∗(z−1)∗(z+1+ i)∗(z+2i) =
z11 + (3 − 3i)z10 − 11iz9 − (14 + 18i)z8 − (49 + 18i)z7 − (99 − 23i)z6 − (88 − 115i)z5 +
(46 + 154i)z4 + (168 + 18i)z3 + (96 − 140i)z2 − (32 + 104i)z − (32 + 16i).

While the number of permutation matrices for n = 6, 7, 8, 9 are 720, 5040, 40320,
362880, the corresponding number of alternating sign matrices are 7436, 218348, 10850216,
911835460. In the following sections we extend polynomial assignment to more generality,
thereby getting an even larger number of matrices.

5 Doubly Stochastic Matrices and Polynomiography

Our motivation here is to assign polynomials and polynomiography to an even larger class
of matrices than the class of permutation matrices and eventually in subsequent sections,
even to the larger class than the class of alternating sign matrices. We begin with a
definition.

Definition 2 For each k = 1, . . . , n let Ωk denote the set of all n × n matrices whose
entries are from the set {0, 1, . . . , k} and such that the sum of the entries of each row and
column is k.

We wish to associate polynomials to matrices in Ωk. Since an element of Ωk is the
sum of k permutation matrices, each having a corresponding permutation polynomial, it
is natural to associate to such an element the polynomial that is the product of these
permutation polynomials. For instance, a matrix in Ω2 corresponds to the sum of two
permutation polynomials. There are 18 such matrices, six of which come directly from
scalar multiples of the corresponding size permutation matrices. These are




2 0 0
0 2 0
0 0 2




,




2 0 0
0 0 2
0 2 0




,




0 2 0
2 0 0
0 0 2




,




0 0 2
2 0 0
0 2 0




,




0 2 0
0 0 2
2 0 0




,




0 0 2
0 2 0
2 0 0








0 1 1
1 0 1
1 1 0




,




0 1 1
1 1 0
1 0 1




,




1 0 1
0 1 1
1 1 0




,




1 1 0
0 1 1
1 0 1




,




1 0 1
1 1 0
0 1 1




,




1 1 0
1 0 1
0 1 1








2 0 0
0 1 1
0 1 1




,




0 2 0
1 0 1
1 0 1




,




0 0 2
1 1 0
1 1 0




,




0 1 1
2 0 0
0 1 1




,




1 0 1
0 2 0
1 0 1




,




1 1 0
0 0 2
1 1 0








0 1 1
0 1 1
2 0 0




,




1 0 1
1 0 1
0 2 0




,




1 1 0
1 1 0
0 0 2




.
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Figure 3: Polynomiographs corresponding to ASM on the cover of Bressoud’s book [3].
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Figure 4: An enlarged polynomiograph.
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An n×n matrix A = (aij) is doubly stochastic (DS) if all entries are nonnegative reals
and the sum of the entries in each row equals the sum of the entries in each column and
the common sum is one. These are significant matrices with numerous applications as the
entries can be related to probabilities. We will now associate a corresponding polynomial
to each such matrix. Specifically, given a doubly stochastic matrix (DSM) A = (aij),
the corresponding doubly stochastic polynomial is defined as follows. Let A and θij be as
defined previously. Then set

PA(z) =
∏

aij>0

(z − aijθij).

As an example, for n = 2 the following are two special cases derived as linear combi-
nations of the 2 by 2 permutation matrices with corresponding polynomiographs.

1

2

(
1 0
0 1

)
+

1

2

(
0 1
1 0

)
, (z − (1 + i)

2
)(z − (1 + 2i)

2
)(z − (2 + i)

2
)(z − (2 + 2i)

2
)

1

3

(
1 0
0 1

)
+

2

3

(
0 1
1 0

)
, (z − 2(1 + i)

3
)(z − (1 + 2i)

3
)(z − (2 + i)

3
)(z − 2(2 + 2i)

3
).

Figure 5: Polynomiographs corresponding to two convex combinations.

The left-hand-side polynomiograph in Figure 4 when drawn in appropriate window,
would be similar to the polynomiograph of the polynomial having roots at 1 + i, 1 + 2i,
2+ i, 2+2i, in other words, the product of the complex permutation polynomials of order
two. More precisely, the figure would be a homothetic translation of a corresponding
polynomiograph for this product polynomial. This will be proved formally. First, this
is used to justify the definition of doubly stochastic polynomials and their polynomiog-
raphy; second, in conjunction with the Birkhoff-von Neumann theorem, it suggests that
polynomiography of permutation matrices form building blocks for approximate poly-
nomiography of doubly stochastic matrices. Permutation matrices and, more generally,
doubly stochastic matrices give rise to a rich source of symmetry and art-making via
polynomiography. In what follows we first prove an important property in the use of the
Basic Family.
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6 A Symmetry-Preserving Property

Consider a complex polynomial in its product form

p(z) = (z − z1)(z − z2) · · · (z − zn).

For a given real or complex scalar α, let

pα(z) = (z − αz1)(z − αz2) · · · (z − αzn).

Consider Newton’s iterate at z0 with respect to p(z). This is the same as α times Newton’s
iterate with respect to pα(z) at αz0. More precisely, if

Nα(z) = z − pα(z)

p′α(z)
, N(z) = N1(z),

then

Nα(αz) = αz − pα(αz)

p′α(αz)
= αN(z).

More generally, this property can be stated for each member of the Basic Family.

Theorem 3 Let α be a real or complex scalar. Let Dm,α(z) denote Dm(z) as applied to

pα(z), and

Bm,α(z) = z − pα(z)
Dm−2,α(z)

Dm−1,α(z)
,

then for any z we have

Bm,α(αz) = αBm(z).

Proof. For each k = 0, . . . , n we have

pk
α(αz) = αn−kpk(z).

Using the recurrence relation (3) it is easy to prove the identity

Dm,α(αz) = αm(n−1)Dm(z).

Thus
Dm−2,α(αz)

Dm−1,α(αz)
= α−n+1Dm−2(z)

Dm−1(z)
.

Since pα(αz) = αnp(z) the proof now follows. Q.E.D.

The implication of the theorem is the following.

Theorem 4 Under a fixed polynomiography technique two polynomiographs of p(z) and

Pα(z), except for a rotation, are homothetically equivalent.

Writing α in polar form as reiθ, the angle of rotation is θ and the homothetic ratio is
r.
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7 Polynomiography for Latin Squares and Sudoku

An n × n Latin Square L can be described as a matrix having entries from the set
{1, 2, . . . , n}, where in each row and each column there is precisely one occurrence of
each entry i. Since the sum of each row and each column is s = n(n + 1)/2, dividing
by this number results in a doubly stochastic matrix. Thus, by applying Theorem 4, we
conclude that the polynomiography of a Latin Square L is homothetically equivalent to
the polynomiography of the doubly stochastic matrix αL, where α = 1/s. There are a
huge number of Latin Squares even for small values of n. There are known lower bounds
on the number of n × n Latin Squares. Below we describe a way to estimate the number
of n × n Latin Squares.

Let E denote the n× n matrix of ones. This matrix can be decomposed into the sum
of n disjoint permutation matrices Π1, . . .Πn, where by disjoint we mean Πi and Πj do
not have a one in the same matrix entry. This decomposition can be achieved via a greedy
algorithm.

Pick any permutation Π1 and consider E1 = E−Π1. The sum of the entries in each row
of E1 is n − 1. Thus, E/(n − 1) is doubly stochastic and by the Birkhoff-von Neumann
theorem it can be written as a convex combination of permutation matrices. None of
these permutation matrices can have a positive entry where Π1 is one. This is clear, since
otherwise we get a positive entry in E1 where there is a zero, a contradiction. This means
we can pick another permutation matrix Π2 disjoint from Π1 and repeat this approach.
Rather than invoking the Birkhoff-von Neumann theorem we can select Π2 at random:
select a random positive entry in E1 and delete the corresponding row and columns. Then
repeat this for the (n − 1) × (n − 1) matrix that remains. In this fashion, we can select
a set of n locations in E1 that correspond to a permutation matrix Π2 disjoint from Π1.
From the repeated application of this approach, we obtain a decomposition of E as the
sum of n disjoint permutations. We can then label them as 1, . . . n. This labeling can be
achieved in n! ways. Therefore we have the following proposition.

Proposition 1 The number of Latin Squares is equal to n! times the number of ways

E can be written as the sum of n disjoint permutation matrices and where no two such

representations have an identical set of permutation matrices.

The number of permutation matrices and alternating sign matrices for n = 6; 7; 8; 9
were given earlier. In contrast, the number of Latin Squares is much larger. Even for n = 6
their number is already large, 812851200, and for n = 7; 8; 9 their number is respectively
(see [13, 19] or Wikipedia on Latin Squares), 61479419904000 ≈ 6.1 × 1013,

108776032459082956800 ≈ 1.08 × 1020, 5524751496156892842531225600≈ 5.5 × 1028.

As another source for polynomiography of special classes of doubly stochastic matrices,
we can consider Sudoku solution matrices. The number of these 9 × 9 matrices is known
to be (see Wikipedia on Mathematics of Sudoku)

6670903752021072936960 ≈ 6.67 × 1021.
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In summary, in this section we have shown how we may associate polynomiography
to a large class of doubly stochastic matrices. Our next goal is to associate approxi-
mate polynomiography to doubly stochastic matrices where this polynomiography can be
achieved efficiently from already computed polynomiographs of permutation matrices or
alternating sign matrices.

8 Approximate Polynomiography for a DSM

By the Birkhoff-von Neumann theorem, [2] and [16], every doubly stochastic matrix is the
convex combination of permutation matrices. Suppose we are given a doubly stochastic
matrix A as a convex combination of permutation matrices

A =
k∑

i=1

αiΠi,
k∑

i=1

αi = 1, αi ≥ 0,

where for each i = 1, . . . , k, Πi is a permutation matrix. Suppose that we have computed
distinct polynomiographs Pi, i = 1, . . . , k, corresponding to the permutation polynomial
pΠi

and where they all represent a rectangle with the same coordinates. We wish to
use these polynomiographs to efficiently compute an approximate polynomiograph for A
itself. We may assume that a common method in polynomiography is used to generate
the polynomiographs.

We can think of Pi as matrices of pixels with colors, where the color is a certain number
assigned based on the roots of pΠi

, and the particular polynomiography method used.
Suppose the roots corresponding to pΠi

are ri1, . . . , risi
, with assigned colors ci1, . . . , cisi

.
Suppose that for i = 1, . . . , k the color associated with a pixel with respect to Pi is ci, and
it is based on a root riji

of pΠi
. Suppose that the distance of the pixel to this root is di.

We wish to associate a color to this pixel based on a certain convex hull property. One
possible way is according to the function that takes into account the color that is a linear
combination of these, say a weighted color based on the proximity of the pixel to riji

:

( k∑

i=1

αi

ci

di

)( k∑

i=1

1

di

)
−1

.

The formula takes into account the shifting of roots of pΠi
when Πi is multiplied by αi

and it implies that when the pixel is closest to a root riji
, αici will be more prominent

than other colors. There are cases where a pixel may not belong to any basin of attraction
for one or more Pi, however using the convergence properties of the Basic Family it can
be argued that under certain modes of polynomiography, for instance using individual
Bm(z) when m is large, the above formula would be reasonably good. There are other
ways to define approximate polynomiographs, however we postpone detailed discussion
until later.
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8.1 Decomposition Algorithm for a DSM

Suppose A is a doubly stochastic matrix of order n. We wish to write it as a convex
combination of permutation matrices, a valid representation due to the Birkhoff von
Neumann theorem. In what follows, we describe an algorithm for computing such a
decomposition.

We wish to decompose A as the sum of permutations matrices. We offer a procedure
that is essentially the von Neumann proof of the Birkhoff-von Neumann theorem [16].
Let the smallest entry of A be denoted by δ1, corresponding to an entry ai1j1 . Next find
a permutation that contains the location (i1, j1). This can be done by considering the
bipartite graph G = (U, V, E), where U is the set of rows of A and V the set of columns,
and E consists of the edges (ui, vj) where aij > 1. Next, we find a perfect matching on
the edges of E that contains the edge (ui1 , vj1). A perfect matching is a set of edges
incident to all the vertices in G and where no two distinct edges have a common vertex.
This perfect matching corresponds to a permutation matrix Π1. Let A1 = A− δ1Π1. The
row and column sums in A1 are all 1 − δ1. If this number is zero, then A is already a
permutation matrix. If not, set A2 = 1

1−δ1
A1. Then A2 is doubly stochastic. Let δ2 be

the smallest entry of A2, and analogously, let Π2 a permutation matrix that contains the
location containing δ2. Let A3 = A2 − δ2Π2, and if 1 − δ2 is not zero, set A4 = 1

1−δ2
A3.

Repeating this process, we are able to write A as

A = δ1Π1 + (1 − δ1)δ2Π2 + · · ·+
k−2∏

i=1

(1 − δi)δk−1Πk−1 +
k∏

i=1

(1 − δk)Ak,

where Πi, i = 1, . . . , k − 1 is a permutation matrix, and (1− δi) > 0, for i = 1, . . . , k, also
Ak itself is a permutation matrix, say Πk. Summing over all entries in A gives n. Also,
summing over the right-hand side matrices, we must get n. From this we conclude

δ1 + (1 − δ1)δ2 + · · ·+
k−2∏

i=1

(1 − δi)δk−1 +
k∏

i=1

(1 − δk) = 1.

This procedure gives an algorithmic decomposition of A as a convex combination
of permutation matrices. In fact, the number of permutations in the decomposition is
bounded above by the number of positive entries in A.

9 Polynomiography for Matrices in the ASM Poly-

tope

The ASM polytope of order n is the convex hull of n × n alternating sign matrices. It
is denoted by ASMn and has been recently characterized by Striker [20]. Clearly this
polytope contains the convex hull of the n × n doubly stochastic polytope, the Birkhoff
polytope. Here we associate to an element A = (aij) in ASMn a polynomial as follows.
With A and θij as defined previously, see (6) and (7), let
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PA(z) =
∏

aij>0

(z − aijθij) ×
∏

aij<0

(z − aijθij)
2. (12)

Striker [20] has shown that the vertices of the ASMn are precisely n × n alternating
sign matrices. As in the case of doubly stochastic matrices it would be desirable to have
an algorithm that would decompose a given member of the ASM polytope into a convex
combination of alternating sign matrices. Given such decomposition, one can apply the
approximate polynomiography approach as described for doubly stochastic matrices. We
will describe such a decomposition algorithm. In fact, the algorithm is a direct gener-
alization of the one for doubly stochastic matrices described before. First, we describe
Striker’s description of ASMn.

Theorem 5 (Striker[20]) The convex hull of n × n alternating sign matrices consists of
all n × n real matrices X = (xij) such that:

0 ≤
i′∑

i=1

xij ≤ 1, ∀1 ≤ i′ ≤ n, 1 ≤ j ≤ n.

0 ≤
j′∑

j=1

xij ≤ 1, ∀1 ≤ j′ ≤ n, 1 ≤ i ≤ n.

n∑

i=1

xij = 1, ∀1 ≤ j ≤ n.

n∑

j=1

xij = 1, ∀1 ≤ i ≤ n.

To describe the decomposition algorithm, we first state a result that is a generalization
of a known result for the doubly stochastic polytope and follows from the fact that the
optimal solution of a linear program is attained at a vertex.

Proposition 2 Let A = (aij) lie in ASMn. Suppose for a given pair of indices i0, j0,

ai0j0 > 0. Then there exists an n × n alternating sign matrix B = (bij) such that bij 6= 0
implies aij 6= 0. Furthermore, such B can be computed as an optimal solution of the linear

program

max{xi0j0 : X = (xij) ∈ ASMn, xij = 0, if aij = 0}.

We next state a property of ASMn.

Theorem 6 Suppose A = (aij) lies in ASMn. Let

δ = ai0,j0 = min{aij : 1 ≤ i, j ≤ n, aij > 0}.

Let B = (bij) be an ASM where bi0,j0 = 1 and such that if bij 6= 0 then aij 6= 0. Then

X =
1

1 − δ
(A − δB) ∈ ASMn.
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Proof. We need to show that X = (xij) satisfies all the four types of constraints in
Theorem 5. Clearly, X satisfies the last two types of constraints in the theorem. We
show it satisfies the first types of constraints. The second types follow from a symmetry
argument. Consider a particular pair of indices i′ and j. Since A and B are in ASMn,
Theorem 5 implies

0 ≤
i′∑

i=1

aij ≤ 1, 0 ≤
i′∑

i=1

bij ≤ 1.

But since bij = 0,±1 it must be the case that either
∑i′

i=1 bij = 0, or
∑i′

i=1 bij = 1. Thus

i′∑

i=1

xij =
i′∑

i=1

aij − δ
i′∑

i=1

bij ≤ 1.

Next, we show
∑i′

i=1 xij ≥ 0. As argued above
∑i′

i=1 bij is either 0 or 1. If it is zero, then
since

∑i′

i=1 aij ≥ 0, we have
∑i′

i=1 xij ≥ 0. If
∑i′

i=1 bij = 1, then there must exist i ≤ i′ such
that aij > 0. But then by definition of δ we must have aij ≥ δ. This proves

∑i′

i=1 xij ≥ 0.
The proof is complete. Q.E.D.

Corollary 1 Suppose A = (aij) lies in ASMn, and has m positive entries. Then for

some index k ≤ m we can compute ASMs Xi, i = 1, . . . , k, and constants 0 < δi < 1,
i = 1, . . . , k, such that

A = δ1X1 + (1 − δ1)δ2X2 + · · ·+
k−2∏

i=1

(1 − δi)δk−1Xk−1 +
k∏

i=1

(1 − δk)Xk,

where

δ1 + (1 − δ1)δ2 + · · ·+
k−2∏

i=1

(1 − δi)δk−1 +
k∏

i=1

(1 − δk) = 1.

In particular, A is a convex combination of X1, . . . , Xk.

Proof. The justification is analogous to the case of a doubly stochastic matrix and
the corresponding algorithm described earlier. Let δ1 be the smallest positive entry of
A = (aij) corresponding to an entry ai1j1 . Let Π1 be an alternating sign matrix that is an
optimal solution to the linear program

max{xi1j1 : X = (xij) ∈ ASMn, xij = 0, if aij = 0}.

Let A1 = A − δ1Π1. The row and column sums in A1 are all 1 − δ1. If this number
is zero, then A is already an alternating sign matrix. If not, set A2 = 1

1−δ1
A1. Then

applying Theorem 6, A2 = (a
(2)
ij ) lies in ASMn. Let δ2 be the smallest positive entry of A2

corresponding to an entry a
(2)
i2j2

. Let Π2 be an alternating sign matrix that is an optimal
solution to the linear program

max{xi2j2 : X = (xij) ∈ ASMn, xij = 0, if a
(2)
ij = 0}.
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Let A3 = A2 − δ2Π2, and if 1 − δ2 is not zero, set A4 = 1
1−δ2

A3. Repeating this process,
we are able to decompose A as claimed with the number of alternating sign matrices in
the decomposition is bounded above by the number of positive entries in A. Q.E.D.

Remark 1 Striker [20] gives a direct proof that each feasible point in the ASM polytope
can be written as a convex combination using the terminology of circuits. Our approach
for the decomposition relies on Theorem 5, but then directly employs linear programming
theory. Indeed, for small values of n one can directly apply LP software. In view of
Striker’s description of the ASM polytope we may also conclude that the decomposition
in the above corollary can be accomplished in fully polynomial time. Such decomposition
is clearly not unique. It would be interesting to give analysis of the complexity for an
efficient algorithm and its dependence on n and m.

As an example, suppose we wish to associate polynomiography to the 3 × 3 Latin
Square below, where we have scaled it by 6 to get a doubly stochastic matrix.

A =
1

6




2 1 3
1 3 2
3 2 1


 .

We apply the decomposition algorithm. It is easy to check that the algorithm leads to
the following as one possible decomposition.

A =
1

6




0 1 0
1 −1 1
0 1 0


 +

5

6

1

5




1 0 0
0 0 1
0 1 0


 +

5

6

4

5

1

4




1 0 0
0 1 0
0 0 1


 +

5

6

4

5

3

4




0 0 1
0 1 0
1 0 0


 .

In the above example we have purposely used an ASM in the decomposition but clearly
we could have obtained a decomposition purely in terms of permutation matrices. As the
example implies, in terms of approximate polynomiography of a doubly stochastic matrix,
an ASM matrix can come to play a role if so desired.

9.1 Diagonal Scaling into an ASM

Finally, we consider polynomiography to extensions of more general matrices. First we
give some definitions.

Definition 3 Two n × n matrices A = (aij) and B = (bij) have the same pattern if aij

and bij are either both zero, both positive, or both negative.

Definition 4 An n × n matrix A = (aij) has the ASMn sign property if there exists
B ∈ ASMn such that A has the same pattern as B.

Definition 5 An n × n matrix A = (aij) having the ASMn sign property is diagonally
scalable if there exist two n×n diagonal matrices U and V with positive diagonal entries,
and a matrix B ∈ ASMn such that

B = UAV.
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Given B = UAV we can associate a polynomial to B as follows

PB(z) =
∏

aij>0

(z − uivjaijθij) ×
∏

aij<0

(z − uivjaijθij)
2.

This allows association of polynomiography to a more general class of matrices than
those in the ASM polytope. When A has nonnegative entries, the corresponding diagonal
scalability is a well-studied problem. In particular, the following facts are known about
nonnegative matrices. First, a nonnegative matrix A is diagonally scalable if and only if
each nonnegative entry can be covered in a perfect matching. Second, the existence and
computation of U and V can be achieved in polynomial time. Further, the so-called RAS
algorithm gives rise to a practical algorithm. For these, see [17], [11], [12] and references
therein. For a matrix A having the ASMn sign property, the problem of deciding if it is
diagonally scalable is most likely a challenging problem in itself. Two questions that can
be posed are: (1) Is it true that a matrix A has an ASMn sign pattern if and only if it
can be diagonally scalable?, (2) If A is diagonally scalable, then how efficiently can it be
solved? Does the RAS method extend? Other research problems can be posed.

Concluding Remarks. In this article, we have associated complex polynomials to
matrices in the Birkhoff and the ASM polytopes. Not only do these provide a rich source
for polynomiography from the artistic point of view, but also a way to connect several
distinct theoretical and algorithmic concepts to the alternating sign matrices. This makes
possible the introduction of various concepts in interdisciplinary courses. Additionally,
the investigation of ASM polynomials give rise to some seemingly interesting research
problems. We have posed some in the context of matrix scaling. But clearly other
research topics arise. For instance, the question of general convergence of complex
permutation polynomials or complex alternating sign polynomials, say under Newton’s
method, is interesting from the point of view of dynamical systems. From the point of
view of polynomiography itself, the implementation of the approximate polynomiography
for an arbitrary member of the ASM polytope is the subject of our future work, especially
in the anticipation that they will yield interesting images. We plan to exhibit online
many polynomiography images relevant to this article that we have omitted due to space
limitation, as well as new ones that would be possible as a result of implementing new
algorithms.
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[18] E. Schröder, On infinitely many algorithms for solving equations (German), Math.

Ann., 2 (1870), pp. 317–365. (English translation by G.W. Stewart, TR-92-121, In-
stitute for Advanced Computer Studies, University of Maryland, College Park, MD,
1992.)

[19] D. S. Stones, The many formulae for the number of Latin rectangles, Electronic

Journal of Combinatorics, 17 (2010), A1, pp. 1–46.

[20] J. Striker, Alternating sign matrix polytope, Electronic Journal of Combinatorics,
16 (2009), R41, pp. 1–15.

[21] D. Zeilberger, Proof of the Alternating Sign Matrix conjecture, Electronic Journal of

Combinatorics, 3, No. 2 (1996), R13, pp. 1–84.

the electronic journal of combinatorics 18(2) (2011), #P24 22


