
Pattern avoidance by even permutations∗

Andrew Baxter
Mathematics Department

Pennsylvania State University

baxter@math.psu.edu

Aaron D. Jaggard
Department of Computer Science

Colgate University
and

DIMACS, Rutgers University

adj@dimacs.rutgers.edu

Submitted: Apr 30, 2011; Accepted: Dec 12, 2011; Published: Dec 19, 2011
Mathematics Subject Classification: 05A05, 05A15, 05A19

Dedicated to Doron Zeilberger, on the occasion of his |A5| th birthday.

Abstract

We study questions of even-Wilf-equivalence, the analogue of Wilf-equivalence
when attention is restricted to pattern avoidance by permutations in the alternating
group. Although some Wilf-equivalence results break when considering even-Wilf-
equivalence analogues, we prove that other Wilf-equivalence results continue to hold
in the even-Wilf-equivalence setting. In particular, we prove that t(t−1) · · · 321 and
(t − 1)(t − 2) · · · 21t are even-shape-Wilf-equivalent for odd t, paralleling a result
(which held for all t) of Backelin, West, and Xin for shape-Wilf-equivalence. This
allows us to classify the symmetric group S4, and to partially classify S5 and S6, ac-
cording to even-Wilf-equivalence. As with transition to involution-Wilf-equivalence,
some—but not all—of the classical Wilf-equivalence results are preserved when we
make the transition to even-Wilf-equivalence.

Keywords: Permutation pattern, Wilf-equivalence, even-Wilf-equivalence, alter-
nating group, even permutation.

1 Introduction

In this paper we focus on questions of Wilf-equivalence when we count only the even
permutations (i.e., the members of the alternating subgroup) that avoid a particular
pattern. In particular, we are interested in which classical Wilf-equivalence results have

∗Both authors partially supported by NSA award H98230-09-1-0014. An early version of this work
appeared as part of the first author’s Ph.D. thesis at Rutgers University under the direction of Doron
Zeilberger.
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parallels when we instead consider even-Wilf-equivalence. These investigations parallel
comparisons between classical Wilf-equivalence and involution-Wilf-equivalence seen in
other work (e.g., [SS85, Jag03, DJMR09, JM11]).

Given a permutation σ = σ1 · · ·σk ∈ Sk, π = π1 · · ·πn ∈ Sn is said to contain the
pattern τ ∈ Sk if there is some sequence of indices i1 < · · · < ik such that πi1 · · ·πik is
order isomorphic to τ1 · · · τk. If π does not contain τ , then π is said to avoid the pattern
τ . We let Sn(σ) denote the set of permutations avoiding σ and let Sn(σ) := #Sn(σ). Two
permutations σ and τ are said to be (classically) Wilf-equivalent if, for every positive
integer n, Sn(σ) = Sn(τ); we then write σ ≡ τ .

A pair of indices i < j forms an inversion in permutation π if πi > πj. Let inv(π)
denote the number of inversions in π, and let sgn(π) = (−1)inv(π) be the sign of π. If
sgn(π) = 1 (i.e., inv(π) is even) we say that π is even and otherwise π is odd. Let
En ⊂ Sn be the set of even permutations of length n and On ⊂ Sn be the set of odd
permutations of length n. Let En(σ) = Sn(σ) ∩ En be the set of even permutations
avoiding σ and let En(σ) := #En(σ), and similarly for On(σ) and On(σ). We say that
two permutations σ and τ are even-Wilf-equivalent if En(σ) = En(τ) for all n ≥ 0; we
then write σ ≡En τ . When we need contrast with classical Wilf-equivalence, we denote
classical Wilf-equivalence σ ≡Sn τ .

Our main result, presented in Theorem 10, is the even-shape-Wilf-equivalence of Jt =
t(t− 1) · · · 321 and Ft = (t− 1)(t− 2) · · · 21t when t is odd. This parallels the analogous
result for shape-Wilf-equivalence due to Backelin, West, and Xin [BWX07], which held
for all t. As corollaries of our main result, we classify the permutations in S4 according
to ≡En and give partial classifications of S5 and S6 according to ≡En ; we also conjecture
a number of other even-Wilf-equivalences that parallel known Wilf-equivalences.

2 Equivalences via Symmetry

In this section we present two useful lemmas connecting classical Wilf-equivalence to
even-Wilf-equivalence. First we exhibit a case that shows where it is is clear that σ is not
even-Wilf-equivalent to τ .

Lemma 1. If σ, τ ∈ Sk but sgn(σ) 6= sgn(τ), then σ 6≡En τ .

Proof. If σ is even and τ is odd, then Ek(σ) = En \ {σ} while Ek(τ) = Ek. Hence Ek(σ) =
Ek(τ)− 1.

Next we consider the trivial symmetries induced by the symmetry of the square. Recall
the reverse of π = π1π2 · · ·πn is the horizontal reflection of π, denoted

πr := πnπn−1 · · ·π1.

Similarly, the complement of π ∈ Sn is the vertical reflection

πc := (n+ 1− π1)(n+ 1− π2) · · · (n+ 1− πn).

The inverse of π is denoted as usual by π−1. The following lemma summarizes how these
reflections affect the sign of π.
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Lemma 2. The sign of a permutation π ∈ Sn is affected by reflections in the following
ways:

(a.) sgn(π) = sgn(πr) if and only if n ≡ 0, 1 (mod 4).

(b.) sgn(π) = sgn(πc) if and only if n ≡ 0, 1 (mod 4).

(c.) sgn(π) = sgn(π−1)

Proof. For each pair of indices i < j, πi > πj if and only if (πr)i < (πr)j. That is,
the reversal map swaps the sites of inversions and non-inversions. Therefore inv(πr) =(

n
2

)
− inv(π). Since

(
n
2

)
is even if and only if n ≡ 0, 1 (mod 4), part (a) is proven. Part

(b) is proven similarly since it is also the case that inv(πc) =
(

n
2

)
− inv(π). Part (c)

follows from the fact that for any permutation, inv(π) = inv(π−1).

In the classical case, σ ≡Sn σr, σ ≡Sn σc, and σ ≡Sn σ−1. Parts (a) and (b) of the
lemma above, however, show that even-Wilf-equivalence for σ and σr is not guaranteed,
and similarly for σc. For example 123 6≡En 321, since E3(123) = 2 and E3(321) = 3. Part
(c) confirms, however, that we still have σ ≡En σ

−1.
The next lemma demonstrates that while we lose the equivalences from reversal and

complement, we may use symmetric versions of any even-Wilf-equivalences discovered.

Lemma 3. If σ ≡En τ and σ ≡Sn τ , then σr ≡En τ
r and σc ≡En τ

c.

Proof. We will prove σr ≡En τ
r. The proof for σc ≡En τ

c is analogous. First observe that
if Sn(σ) = Sn(τ) and En(σ) = En(τ), then On(σ) = On(τ). We continue by cases. If
n ≡ 0 or 1 (mod 4), then

En(σr) = En(σ) = En(τ) = En(τ r),

where the first and third equalities follow from Lemma 2 and the second equality by our
assumptions. If n ≡ 2 or 3 (mod 4), then we see

En(σr) = On(σ) = On(τ) = En(τ r),

where again the first and third equalities follow from Lemma 2 and the second equality
by the observation above.

It is worth stating the following lemma regarding the trivial equivalence classes for
even-Wilf-equivalences. Its proof is similar to those above and is left to the reader.

Lemma 4. For a pattern σ, we have the following trivial equivalences:

• σ ≡En σ
−1 ≡En σ

rc ≡En (σ−1)
rc

• σr ≡En σ
c ≡En (σ−1)

r ≡En (σ−1)
c
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3 Short Patterns

In this section we turn to the question of classifying patterns of a given length according
to even-Wilf-equivalence.

Lemma 1 immediately implies 12 6≡En 21, which is the classification of S2.
Moving on to patterns of length three, we turn to observations of Simion and Schmidt

[SS85]. Their enumerations of En(σ)− On(σ) for each σ ∈ S3 imply the following equiv-
alences:

Theorem 5 (Simion and Schmidt [SS85]). There are two distinct even-Wilf-equivalence
classes for patterns of length 3:

• 123 ≡En 312 ≡En 231

• 321 ≡En 213 ≡En 132

This suggests that if σ ≡Sn τ and sgn(σ) = sgn(τ), then σ ≡En τ . This is not the case,
however, as demonstrated by 1234 6≡En 4321: E6(1234) = 258, while E6(4321) = 255.

To classify patterns of length 4 or more, we use tools developed in the next section.

4 An Infinite Class of Non-trivial Equivalences

In this section we discuss an extension of the celebrated “prefix reversal” result for clas-
sical Wilf-equivalence, as proven by Backelin, West, and Xin [BWX07]. We follow and
adapt their notation, aside from a change in convention: we reflect everything vertically.
Backelin et al. state their results in terms of (permutation) matrices avoiding other (per-
mutation) matrices. Hence the permutation 132, for example, is written as:1 0 0

0 0 1
0 1 0


They then proceed to consider pattern avoidance in non-attacking rook placements in
Young diagrams. These rook placements correspond to permutation matrices with some
of the southeast cells of the matrix absent.

We choose to illustrate our permutations as graphs of functions, hence our graph of
132 looks like Figure 1.

Figure 1: The graph of the permutation 132
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As a result of this new convention, we orient our Young diagrams λ = λ1 ≥ λ2 ≥ · · · ≥
λn such that the largest part λ1 forms the bottom row of cells (boxes), then λ2 cells lie
above this bottom layer, and so on as per the French custom. Cells of λ are indexed from
the lower-left corner by rows and columns, so (r, c) is the cell in the rth row (increasing
from the bottom) and cth column (increasing from the left). Hence (r′, c′) is above (r, c)
if r′ > r and to the right if c′ > c.

A transversal of λ = (λ1, . . . , λn) is a permutation π ∈ Sn such that each point in the
graph of π lies inside some cell of λ (i.e., π−1

i ≤ λi for 1 ≤ i ≤ n). Figure 2 illustrates
that π = 45321 is a transversal of λ = (5, 5, 3, 2, 2). Let Sλ denote all transversals of λ.

Figure 2: π = 45321 is a transversal of λ = (5, 5, 5, 3, 2).

Pattern containment is stricter for transversals than it is for permutations. A transver-
sal π ∈ Sλ contains σ ∈ Sk if there exists a subsequence i1 < i2 < · · · < ik such that
πi1πi2 · · ·πik ∼ σ and the cell (max{πi1 , πi2 , · · · , πik}, ik) lies in λ. In other words, the
rows and columns of λ containing πi1πi2 · · ·πik must form a full k × k square. In Fig-
ure 2 we see the transversal 45321 in (5, 5, 5, 3, 2) contains 321 in the last three entries.
Further, the transversal 45321 in (5, 5, 5, 3, 2) avoids 231 even though the permutation
45321 does not. We let Sλ(σ) denote the set of all transversals of λ which do not con-
tain σ, and Sλ(σ) := #Sλ(σ). Two patterns σ and τ are called shape-Wilf-equivalent if

Sλ(σ) = Sλ(τ) for all shapes λ; we denote this σ
s≡Sn τ . Clearly shape-Wilf-equivalence

implies Wilf-equivalence, since Wilf-equivalence considers only the shapes λ which are
n× n squares.

We adapt these concepts for even permutations as follows. A transversal π ∈ Sλ is even
if the underlying permutation π is even. Note that the presence/absence of an inversion is
independent of λ, that is, an inversion is not necessarily a copy of a 21 pattern in the sense
of transversals. Let Eλ be the even transversals in Sλ, Eλ(σ) be the even transversals in λ
avoiding σ, and Eλ(σ) := #Eλ(σ). We may do the same for odd transversals, using Oλ,
Oλ(σ), and Oλ(σ). If Eλ(σ) = Eλ(τ), then we say σ and τ are even-shape-Wilf-equivalent

and we write σ
s≡En τ .

Recall the direct sum of two permutations, α ∈ Sk and β ∈ S`, is the length-(k + `)
permutation α1α2 · · ·αk(β1 + k)(β2 + k) · · · (β` + k). This is most easily seen as placing β
above and to the right of α. Figure 3 depicts 312⊕ 2413 = 3125746.

We now re-state Backelin, West and Xin’s Proposition 2.3 [BWX07] as a lemma.
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Figure 3: The direct sum 312⊕ 2413 = 3125746

Lemma 6 (Backelin, West, and Xin [BWX07]). For patterns α and β, α
s≡Sn β implies

α⊕ σ
s≡Sn β ⊕ σ.

We summarize the proof here, as it will be useful for the following lemma.

Proof (summary). For any shape λ, let fλ : Sλ(α) → Sλ(β) be a bijection implied by the
hypothesis. Now fix λ and let π ∈ Sλ(α ⊕ σ). We will color the cells of λ either white
or gray by a two-step procedure, then transform within the white cells while leaving the
gray cells fixed. In this way we create a bijection Sλ(α ⊕ σ) → Sλ(β ⊕ σ). We illustrate
these steps in Figure 4.

Step 1. Color cell (r, c) white if the part of π lying in the subboard above and to the
right of it contains σ (as a transversal). Otherwise color (r, c) gray.

Step 2. For each point in the graph of π which lies in a gray cell, color gray the remaining
cells in its row and column.

Figure 4: For π = 8(11)64(10)2915(12)73 and λ = (129, 112, 10), steps 1 (left) and 2
(center) of the Backelin–West–Xin transformation, and the resulting π̄ = 54321 and
λ̄ = (5, 5, 5, 4, 4) (right)
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Denote the white cells by λ̄ and the subtransversal of π lying in λ̄ by π̄. By step 2, λ̄ is
itself a Young diagram, and further π̄ is a transversal of λ̄. Further, since π avoids α⊕ σ,
step 1 implies π̄ avoids α. We apply fλ̄ to π̄ within the white cells, and so fλ̄(π̄) avoids β.
Restoring the gray portions of λ and π, we return to a transversal π′ of λ avoiding β ⊕ σ.
While the application of fλ̄ could have created or destroyed some copies of σ overall, it
can be seen that re-coloring the cells of λ according to the new transversal π′ leads to
the same white subboard as when one colored according to π. Thus we see the map is
invertible, where the inverse map applies f−1

λ̄
to the white subboard.

We are now ready to state the even-shape-Wilf-equivalence analogue.

Lemma 7. For patterns α and β, if α
s≡En β and α

s≡Sn β then α⊕ σ
s≡En β ⊕ σ.

Proof. We will adapt notation from Lemma 6 above. Let gλ : Eλ(α) → Eλ(β) be a bijection
implied by the hypothesis. By reasoning similar to that in Lemma 3, we see that we may
also construct a bijection for odd transversals hλ : Oλ(α) → Oλ(β).

The map Eλ(α⊕σ) → Eλ(β⊕σ) is constructed in the same way as for Lemma 6. Color
cells of λ white or gray by the same rules, and isolate λ̄ and π̄. Now π̄ is either even or
odd, so we apply the appropriate map gλ̄ or hλ̄. Observe that these maps preserve sign
and so correspond to multiplying the original π by some even permutation. Hence the
image of the transversal π is also even and we have our bijection.

Backelin et al. also prove Jt
s≡Sn It, where Jt is the decreasing permutation t(t−1) · · · 21

and It is the increasing permutation 12 · · · t. By Lemma 6 above, this implies the well-
known “prefix reversal” maneuver for Wilf-equivalence, namely 12 · · · k ⊕ σ ≡Sn k(k −
1) · · · 1⊕ σ. They prove1 Jt

s≡Sn It via their Proposition 3.1, that Jt
s≡Sn Ft for all t > 0,

where Ft = Jt−1 ⊕ 1 = (t− 1)(t− 2) · · · 21t. Iterating this proves Jt
s≡Sn Jt−k ⊕ Ik for all

0 ≤ k ≤ t. They provide a bijection φ∗t : Sλ(Ft) → Sλ(Jt), which we will show preserves
sign. Here we will construct the map only; the proof of its correctness was given by
Backelin et al. [BWX07].

The map from Sλ(Ft) to Sλ(Jt) uses the following transformation. At its heart, it
systematically converts all occurrences of Jt into occurrences of Ft. Suppose π ∈ Sλ(Jt).
Then we apply the following algorithm:

Algorithm 8.

Step 1. Find all occurrences of Jt in π (as a transversal). If π contains no Jt, then stop
and return π.

Step 2. Find the smallest letter π(i1) such that π(i1) is the leftmost letter in an copy of
Jt.

Step 3. Find the leftmost letter π(i2) such that i1 < i2 and there is an occurrence of Jt

such that π(i1) and π(i2) are the leftmost letters.

1Backelin et al. actually provide two proofs of Jt
s≡Sn It. Here we discuss only their first proof.
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Step 4. Find indices i3 < i4 < · · · < it one by one as described in step 3. This yields
a subpermutation π(i1)π(i2) · · ·π(it), which is a copy of Jt, as shown in the left
part of Figure 5.

Step 5. Form a new permutation π′ by moving π(i1) to the it
th position, and each other

π(ij) to the ij−1
th position. Call this transformation θ(π) = π′. Observe that

π′(i1)π
′(i2) · · ·π′(it) is a copy of Ft. (See the right part of Figure 5.)

Step 6. Return to step 1.

We denote a single application of steps 2 through 5 by φt(π). As described in steps
1 and 6, we compose φt with itself repeatedly until all copies of Jt are eliminated. We
denote this repeated composition φ∗t .

Figure 5: Selecting a copy of Jt (left) and applying the transformation θ (right)

For completeness we present the inverse map from Sλ(Jt) to Sλ(Ft). It operates on
the same principle, converting copies of Ft into copies of Jt.

Algorithm 9.

Step 1. Find all occurrences of Ft in π (as a transversal). If π contains no Ft, then stop
and return π.

Step 2. Find the largest letter π(it) such that π(it) is the rightmost letter in an copy of
Ft.

Step 3. Find the largest letter π(it−1) such that it−1 < it and there is an occurrence of Ft

such that π(it−1) and π(it) are the rightmost letters.

Step 4. Find indices it−2 > it−3 > · · · > i1 one by one as described in step 3. This yields
a subpermutation π(i1)π(i2) · · ·π(it), which is a copy of Ft.

Step 5. Form a new permutation π′ by moving π(it) to the i1
th position, and each other

π(ij) to the ij+1
th position. Call this transformation θ′(π) = π′. Observe that

π′(i1)π
′(i2) · · ·π′(it) is a copy of Jt.

Step 6. Return to step 1.
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We denote the application of steps 2 through 5 by ψt(π). We compose ψt with itself a
certain number of times as outlined in steps 1 and 6, yielding a map ψ∗

t : Sλ(Jt) → Sλ(Ft).
Backelin et al. then show that φt and ψt are inverses of one another, and hence so are φ∗t
and ψ∗

t .
We are now ready to prove our main result.

Theorem 10. Jt
s≡En Ft for all odd t.

Proof. Fix t odd. The theorem follows from the claim that φt preserve sign. If φt preserves
sign, then so does φ∗t . Hence φ∗t restricts to the map φ∗t : Eλ(Ft) → Eλ(Jt). Since ψt is the
inverse of φt, ψ

∗
t must also preserve sign and hence we have our desired bijection.

Thus it remains to show that φt preserves sign when t is odd. Careful inspection
reveals that the map θ in Step 5 is merely multiplying by the cycle (i1 i2 · · · it). Since an
odd cycle is an even permutation, applying θ preserves sign.

It should be noted that φt reverses sign when t is even. This follows from the fact
that θ is an even cycle and hence its application reverses sign. Since φt may be composed
with itself either an even or odd number of times in the application of φ∗t , however, the
composition φ∗t neither preserves nor reverses sign for the entirety of Eλ(Ft).

The restriction that t be odd prevents the iteration which implies Jt
s≡Sn Jt−k ⊕ Ik for

all 0 ≤ k ≤ t. Applying the theorem once gets us Jt
s≡En Jt−1 ⊕ 1, at which point t − 1

is even and the theorem no longer applies. Note that the general prefix reversal result is
not true for even-Wilf-equivalence: for example, 1234 6≡En 4321.

5 Classifications

This section makes the classification of 4-patterns under ≡En explicit, as well as the partial
classifications of patterns of length 5 and 6.

5.1 Classification of S4

With Theorem 10 above and sufficient numerical computation, we may classify all patterns
σ ∈ S4. There are eleven equivalence classes in total. The values of each En(σ) are listed
for n ≤ 10 in Table 1.

In S4, only two non-trivial equivalences appear. Since σ ≡En σ
rc we get that 3214 ≡En

1432 and 2134 ≡En 1243. Applying Theorem 10 and Lemma 7, we get that 3214 =
J3 ⊕ 1 ≡En F3 ⊕ 1 = 2134 to complete the class. The reverses of these patterns comprise
the other non-trivial class, as per Lemma 3: 3421 ≡En 4312 ≡En 4123 ≡En 2341. Thus we
obtain the classification shown in Table 1. Horizontal lines separate the even-Wilf classes:
patterns in the same even-Wilf class appear in adjacent rows with no separating line.
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σ sgn(σ) E4(σ) E5(σ) E6(σ) E7(σ) E8(σ) E9(σ) E10(σ)
2134 -1 12 52 257 1381 7885 47181 293297
3214 -1 12 52 257 1381 7885 47181 293297
1243 -1 12 52 257 1381 7885 47181 293297
1432 -1 12 52 257 1381 7885 47181 293297
4312 -1 12 52 256 1380 7885 47181 293293
4123 -1 12 52 256 1380 7885 47181 293293
3421 -1 12 52 256 1380 7885 47181 293293
2341 -1 12 52 256 1380 7885 47181 293293
2314 1 11 51 257 1371 7742 45622 277826
1423 1 11 51 257 1371 7742 45622 277826
3124 1 11 51 257 1371 7742 45622 277826
1342 1 11 51 257 1371 7742 45622 277826
4132 1 11 51 255 1369 7742 45622 277836
3241 1 11 51 255 1369 7742 45622 277836
4213 1 11 51 255 1369 7742 45622 277836
2431 1 11 51 255 1369 7742 45622 277836
2413 -1 12 52 256 1370 7743 45623 277831
3142 -1 12 52 256 1370 7743 45623 277831
1234 1 11 51 258 1382 7879 47175 293311
4321 1 11 51 255 1379 7879 47175 293279
2143 1 11 51 256 1380 7885 47181 293301
3412 1 11 51 257 1381 7885 47181 293289
1324 -1 12 52 258 1382 7903 47393 296002
4231 -1 12 52 255 1380 7903 47393 295948

Table 1: The classification of S4 into ≡En-classes with values of En(σ) for σ ∈ S4 and
n ≤ 10.
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5.2 Partial Classification of S5

The techniques of the previous section imply a partial classification of S5. Based on com-
putations for En(σ) for n ≤ 11, there appear to be four non-trivial equivalence classes,
listed in Table 2. Each row represents one trivial equivalence class with a chosen rep-
resentative. Two rows written adjacently with no separating line are proven above to
be even-Wilf-equivalent, as discussed below. Two rows written adjacently and separated
by a dotted line are conjectured to be even-Wilf-equivalent based on numerical data for
n ≤ 11. Solid lines separate rows which are not even-Wilf-equivalent.

σ sgn(σ) E7(σ) E8(σ) E9(σ) E10(σ) E11(σ)
12345 1 2293 16662 130897 1095344 9659368
23451 1 2293 16662 130897 1095344 9659368
45312 1 2293 16662 130897 1095344 9659368
34512 1 2293 16662 130897 1095344 9659368
15432 1 2289 16662 130897 1095344 9659320
54321 1 2289 16662 130897 1095344 9659320
21354 1 2289 16662 130897 1095344 9659320
21543 1 2289 16662 130897 1095344 9659320
12354 -1 2291 16662 130907 1095344 9659344
12543 -1 2291 16662 130907 1095344 9659344
45321 -1 2291 16662 130907 1095344 9659344
34521 -1 2291 16662 130907 1095344 9659344
13524 -1 2290 16627 130145 1081965 9450267
42531 -1 2290 16627 130145 1081965 9450267

Table 2: The classification of S5 into ≡En-classes with values of En(σ) for σ ∈ S5 and
n ≤ 11.

The proven equivalences are each a corollary to Theorem 10 in conjunction with the
symmetries in Lemmas 3 and 4. For example, 12345 ≡En 23451 since 12345c = 54321,

54321
s≡En φ∗5(54321) = 43215, and 43215c = 23451. Thus we see that π 7→ φ∗5(π

c)c

provides the bijection En(12345) → En(23451).

• 12345 ≡En 23451 (under φ∗5(π
c)c)

• 45312 ≡En 34512 (under ψ∗
3(π

c)c)

• 15432 ≡En 54321 (under φ∗5(π)rc)

• 21354 ≡En 21543 (under ψ∗
3(π

rc)rc)

• 12354 ≡En 12543 (under ψ∗
3(π

rc)rc)

• 45321 ≡En 34521 (under ψ∗
3(π

c)c)

This leaves the following conjectured equivalences:
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Conjecture 11. The following equivalences hold:

• 12345 ≡En 45312

• 54321 ≡En 21354

• 12354 ≡En 45321

• 13524 ≡En 42531

Observe that Lemma 3 implies that the first and second conjectured equivalences
follow from one another.

The second conjectured equivalence class contains all patterns of the form Jr ⊕ Js for
all r + s = 5 and r, s ≥ 0, together with 21354. The first conjectured class contains the
reverses of these. A similar pattern seems to emerge in patterns of length 7, although
again conjecturally. This suggests the following more general statement:

Conjecture 12. For odd t, Jr ⊕ Js ≡En Jt for any r + s = t.

Also notice that the third and fourth conjectured equivalences in Conjecture 11 have
been written in the form σ ≡En σ

r. In the classical case this is trivial under the reversal
map since Sn(σ)r = Sn(σr), but if n = 3, 4 (mod 4), then En(σ)r∩En(σr) = ∅ since En(σ)r

contains only odd permutations by Lemma 2.

5.3 Partial Classification of S6

For S6 there are 10 non-trivial even-Wilf classes, plus two more conjectured based on
numerical results. These are listed below in Table 3. As in Table 2, we separate classes
known to be even-Wilf-inequivalent by solid lines, we separate by dashed lines classes that
we conjecture to be even-Wilf-equivalent, and there is no separation between classes that
we know to be even-Wilf-equivalent. Each of these equivalences follows from Theorem
10 and its symmetries. In the classical case, classifying the length 6 patterns required an

additional result provided by Stankova and West [SW02]. They prove that 312
s≡Sn 231,

which in combination with Lemma 6 provides the equivalence 312564 ≡Sn 231564. We
have checked computationally for all Ferrers shapes λ which lie in an 9 × 9 box that
Eλ(312) = Eλ(231), and that En(231⊕α) = En(312⊕α) for all α ∈ S1∪S2∪S3∪S4 and

n ≤ 11. This naturally leads to Conjecture 13, which would imply 312564
s≡En 231564

(and 465312
s≡En 465132 by Lemma 7).

Conjecture 13. 312 is even-shape-Wilf-equivalent to 231.

This analogue of the Stankova-West result, combined with those discussed in the
previous sections, would complete the classification of the length 6 patterns.
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σ sgn(σ) E7(σ) E8(σ) E9(σ) E10(σ) E11(σ)
543216 1 2501 19713 172417 1645790 16917552
432156 1 2501 19713 172417 1645790 16917552
612345 -1 2502 19713 172417 1645800 16917562
651234 -1 2502 19713 172417 1645800 16917562
213564 -1 2502 19714 172392 1644933 16895077
321564 -1 2502 19714 172392 1644933 16895077
465312 1 2501 19714 172392 1644930 16895074
465123 1 2501 19714 172392 1644930 16895074
213456 -1 2502 19714 172418 1645799 16917561
321456 -1 2502 19714 172418 1645799 16917561
654312 1 2501 19714 172418 1645791 16917553
654123 1 2501 19714 172418 1645791 16917553
213546 1 2501 19712 172417 1645814 16918707
321546 1 2501 19712 172417 1645814 16918707
645312 -1 2502 19712 172417 1645838 16918725
645123 -1 2502 19712 172417 1645838 16918725
213465 1 2501 19713 172417 1645791 16917553
321465 1 2501 19713 172417 1645791 16917553
321654 1 2501 19713 172417 1645791 16917553
564312 -1 2502 19713 172417 1645799 16917561
564123 -1 2502 19713 172417 1645799 16917561
456123 -1 2502 19713 172417 1645799 16917561
231564 1 2501 19716 172388 1644575 16882865
312564 1 2501 19716 172388 1644575 16882865
465132 -1 2502 19716 172388 1644588 16882878
465213 -1 2502 19716 172388 1644588 16882878

Table 3: The classification of S6 into ≡En-classes with values of En(σ) for σ ∈ S6 and
n ≤ 11.
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6 Conclusions and Future Directions

In this paper we have established the foundation for a theory of even-Wilf-equivalence,
parallel to the classical theory of Wilf-equivalence. As with involution-Wilf-equivalence,
the general trend appears to be that results in Wilf-equivalence have weaker versions for
even-Wilf-equivalence. For example, σ 6≡En σ

r but if σ ≡En τ then σr ≡En τ
r. Similarly,

we have prove an ≡En-analogue to Backelin et al.’s result that J ≡Sn Ft; this requires t to
be be odd. These results allow us to classify S4 according to even-Wilf-equivalence, and
to partially classify Sk for larger k.

Known even-Wilf-equivalences, and the ones we conjecture above based on numerical
results, suggest that even-Wilf-equivalence is a refinement of Wilf-equivalence; we thus
make the following conjecture:

Conjecture 14. If σ ≡En τ , then σ ≡Sn τ .

We note that the analogue (which has not been formally conjectured, but which mo-
tivated aspects of [JM11]) for involution-Wilf-equivalence2 remains open.

Examining the equivalence classes under ≡En suggests that even-Wilf-equivalence is
a very strong condition. Table 4 summarizes the number of equivalence classes under
classical and even-Wilf-equivalence. Values for the number of equivalence classes under
Wilf equivalence are taken from OEIS sequence A099952 [OEI11]. Lower bounds for the
even-Wilf-equivalence classes for 5- and 6-patterns are based on avoidance by permuta-
tions of length n ≤ 11; we obtain upper bounds by assuming all conjectures above are

false. Note that 312564
s≡En 231564 holds if and only if 465312

s≡En 465132 holds, so 217
is not a possible value for the bottom-right table entry.

n 1 2 3 4 5 6
Wilf-equivalence 1 1 1 3 16 91

even-Wilf-equivalence 1 1 2 11 [35, 39] {216, 218}

Table 4: The number of equivalence classes for patterns of length n.

There are many more trivial equivalence classes under ≡En than in the classical case.
A possible weakening of even-Wilf-equivalence is perhaps to require that En(σ) = En(τ)
only for “most” n. For example, the results of Simion and Schmidt [SS85] imply that
En(123) = En(132) for any n 6= 0 (mod 4). Similarly, En(σ) = En(σr) = En(σc) for any
n = 0, 1 (mod 4). In other instances, data suggests pairs (σ, τ) such that E2n(σ) = E2n(τ)
for all n. For example, the enumeration schemes in [Bax10] verify that E2n(12345) =
E2n(54321) for n ≤ 7. An investigation into these weakened forms of equivalence may
yield a classification of patterns which more closely resembles Wilf-classification.

2Two patterns σ and τ are said to be involution-Wilf-equivalent if
∣∣Sn(σ) ∩ In

∣∣ =
∣∣Sn(τ) ∩ In

∣∣ for all
n, where In is the set of involutions of length n.
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