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Abstract

Using an unprecedented technique involving diagonals of non-rational generating

functions, we prove that among the permutations of length n with i fixed points and

j excedances, the number of 321-avoiding ones equals the number of 132-avoiding

ones, for any given i, j.

Our theorem generalizes a result of Robertson, Saracino and Zeilberger. Even

though bijective proofs have later been found by the author jointly with Pak and

with Deutsch, this paper contains the original analytic proof that was presented at

FPSAC 2003.

1 Introduction

I met Doron Zeilberger for the first time at the 2002 Summer Meeting of the Canadian
Mathematical Society in Québec. He gave one of his memorable talks, this one about joint
work with Robertson and Saracino, which later appeared in [13]. The central result was,
in Zeilberger’s own words, “the amazing and easily-stated fact that the number of 132-
avoiding derangements equals the number of 321-avoiding derangements, and even more
amazingly, that the same is true if you replace ‘derangements’ by ‘permutations with i
fixed points’, for any 0 ≤ i ≤ n,” where n is the length of the permutations in question.
This beautiful result, and the fact that the proof in [13] is quite involved, motivated me
to try to find generalizations and a more direct proof, encouraged by Richard Stanley,
who at that time was my thesis advisor. The product is presented in this paper, namely a
proof of the more general statement that the number of 132-avoiding permutations with
i fixed points and j excedances equals the number of 321-avoiding permutations with
i fixed points and j excedances, for any 0 ≤ i, j ≤ n. One ingredient of the proof is a
method to extract a diagonal of a non-rational generating function, which is used to prove
an equality between generating functions. To the best of our knowledge, this is the first
time that such technique is used to solve a combinatorial problem, and we expect that
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it can be applied to other problems in the future. Other ingredients include bijections
between restricted permutations and Dyck paths, and the introduction of a new family of
Dyck paths statistics which we call tunnels. These statistics have been later used in [6],
together with the RSK algorithm, to give a bijective proof of our main theorem, and in [5]
to prove a different generalization of Robertson, Saracino and Zeilberger’s result. Because
of these subsequent results, the work presented in this paper, after being accepted as a
talk at FPSAC 2003, was never submitted for publication until now, on the occasion of
Doron Zeilberger’s 60th birthday.

2 Definitions and main theorem

Let n, m be two positive integers with m ≤ n, and let π = π1π2 · · ·πn ∈ Sn and σ =
σ1σ2 · · ·σm ∈ Sm. We say that π contains σ if there exist indices i1 < i2 < . . . < im such
that πi1πi2 · · ·πim is in the same relative order as σ1σ2 · · ·σm. If π does not contain σ, we
say that π is σ-avoiding. For example, if σ = 132, then π = 24531 contains σ, because
π1π3π4 = 253. However, π = 42351 is σ-avoiding.

We say that i is a fixed point of π if πi = i, and that i is an excedance of π if πi > i.
Denote by fp(π) and exc(π) the number of fixed points and the number of excedances of
π respectively. Denote by Sn(σ) the set of σ-avoiding permutations in Sn.

For the case of patterns of length 3, it was shown by Knuth [9] that for every pattern
σ ∈ S3, |Sn(σ)| = Cn = 1

n+1

(
2n

n

)
, the n-th Catalan number. Several bijective proofs of

this fact have been known for some time [10, 12, 14, 16].
More recently, Robertson, Saracino and Zeilberger [13] found an unexpected connec-

tion between pattern avoidance and permutation statistics, giving an interesting refine-
ment of this result. They showed that for any i ≤ n, the number of 321-avoiding permu-
tations of length n with i fixed points equals the number of 132-avoiding permutations of
length n with i fixed points. In this paper we prove a further refinement of this result,
namely that it still holds when we fix not only the number of fixed points but also the
number of excedances:

Theorem 2.1. For any 0 ≤ i, j ≤ n,

|{π ∈ Sn(321) : fp(π) = i, exc(π) = j}| = |{π ∈ Sn(132) : fp(π) = i, exc(π) = j}|.

Equivalently,
∑

π∈Sn(321)

xfp(π)qexc(π) =
∑

π∈Sn(132)

xfp(π)qexc(π).

In the proof we will use bijections between pattern-avoiding permutations and Dyck
paths. Recall that a Dyck path of length 2n is a lattice path in Z

2 from (0, 0) to (2n, 0)
consisting of up-steps (1, 1) and down-steps (1,−1) which never goes below the x-axis.
Sometimes it will be convenient to encode each up-step by a letter u and each down-step
by d, obtaining an encoding of the Dyck path as a Dyck word. We shall denote by Dn

the set of Dyck paths of length 2n, and by D =
⋃

n≥0 Dn the set of all Dyck paths. It is
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well-known that |Dn| = Cn. If D ∈ Dn, we will write |D| = n to indicate the semilength
of D. The generating function that enumerates Dyck paths according to their semilength
is

∑
D∈D t

|D| =
∑

n≥0Cnt
n = 1−

√
1−4t

2t
, which we denote by C(t). A peak of a Dyck path

is an up-step followed by a down-step (i.e., an occurrence of ud in the associated Dyck
word). A hill is a peak at height 1, where the height is the y-coordinate of the top of
the peak. Denote by h(D) the number of hills of D. A double rise of a Dyck path is
an up-step followed by another up-step (uu when seen as a word). Denote by dr(D) the
number of double rises of D.

Another key definition in the paper is the diagonal of a generating function. Given a
generating function F (v, t) =

∑
i,j ai,jv

itj in the variables v and t, the diagonal of F is the
generating function diagz

v,t F =
∑

n an,nz
n. Some properties of diagonals and techniques

to compute them are described in [15, 8].
Our proof of Theorem 2.1 is a combination of bijective combinatorics, “manipula-

torics,” and complex analysis. First, in Section 3 we find the generating function for
321-avoiding permutations with respect to the number of fixed points and excedances, us-
ing a bijection to Dyck paths and standard techniques. Section 4 is the central section of
the paper, where we we show that the same generating function also counts 132-avoiding
permutations with respect to the number of fixed points and excedances. To do this, we
first use a bijection to turn the problem into the enumeration of Dyck paths with respect
to some new statistics, which we call centered and left tunnels. For this enumeration, we
introduce an extra variable to the generating function and we find a complicated identity
satisfied by it, using combinatorial properties of Dyck paths. This identity has a unique
solution (i.e., it determines the generating function), but it involves a diagonal as defined
above. To solve it, we guess an expression for the solution and check that it indeed satisfies
the identity, using techniques from complex analysis.

Finally, Section 5 describes other bijections between 321-avoiding permutations and
Dyck paths derived from the one that we use in Section 3. These bijections provide
combinatorial proofs of the equidistribution of certain statistics on Dyck paths and also
on restricted permutations.

3 Counting 321-avoiding permutations according to

fixed points and excedances

The goal of this section is to find an expression for the generating function

F321(x, q, t) :=
∑

n≥0

∑

π∈Sn(321)

xfp(π)qexc(π)tn.

Instead of counting fixed points and excedances directly in 321-avoiding permutations,
we define a bijection ψ between Sn(321) and Dn, first suggested by Richard Stanley and
used also in [5]. We give three equivalent definitions of ψ.

Given π = π1π2 · · ·πn ∈ Sn(321), let

ai = max{j ≥ 0 : {1, 2, . . . , j} ⊆ {π1, π2, . . . , πi}},
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for each 1 ≤ i ≤ n. Now build the Dyck path ψ(π) by adjoining, for each i from 1 to n,
one up-step followed by max{ai − πi + 1, 0} down-steps. For example, for π = 23147586
we get a1 = a2 = 0, a3 = 3, a4 = a5 = 4, a6 = a7 = 5, a8 = 8, and the corresponding
Dyck path is given in Figure 1.

Figure 1: The Dyck path ψ(23147586).

Here is an alternative way to define this bijection. A right-to-left minimum of π is an
element πi such that πi < πj for all j > i. Let πi1 , πi2 , . . . , πik be the right-to-left minima
of π, from left to right. For example, the right-to-left minima of 23147586 are 1, 4, 5, 6.
Then, ψ(π) is precisely the path that starts with i1 up-steps, then has, for each j from 2
to k, πij −πij−1

down-steps followed by ij − ij−1 up-steps, and finally ends with n+1−πik

down-steps.
The third definition of ψ is the easiest one to visualize. First we represent π as an n×n

array (with rows and columns numbered as in a matrix) with crosses on the squares (i, πi).
It is known [11] that a permutation is 321-avoiding if and only if both the subsequence
determined by its excedances and the one determined by the remaining elements are
increasing. In this array representation, excedances correspond to crosses strictly to the
right of the main diagonal. The rest of the crosses are precisely the right-to-left minima.
Consider the path with down and right steps along the edges of the squares that goes
from the upper-left corner to the lower-right corner of the array leaving all the crosses to
the right and remaining always as close to the main diagonal as possible. Then ψ(π) can
be obtained from this path just by reading an up-step every time the path goes down, and
a down-step every time the path goes right. Figure 2 shows a picture of this bijection,
again for π = 23147586.

Figure 2: The bijection ψ.

It can easily be checked that ψ has the property that fp(π) = h(ψ(π)) and exc(π) =
dr(ψ(π)). Therefore, counting 321-avoiding permutations according to the number fixed
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points and excedances is equivalent to counting Dyck paths according to the number of
hills and double rises. More precisely,

F321(x, q, t) =
∑

D∈D
xh(D)qdr(D)t|D|.

We now give an equation for F321 using the symbolic method described in [7]. A
recursive definition for the class D is given by the fact that every non-empty Dyck path
D can be decomposed in a unique way as D = uAdB, where A,B ∈ D. Clearly if
A is empty, h(D) = h(B) + 1 and dr(D) = dr(B), and otherwise h(D) = h(B) and
dr(D) = dr(A) + dr(B) + 1. Hence, we obtain the following equation for F321:

F321(x, q, t) = 1 + t(x+ q(F321(1, q, t) − 1))F321(x, q, t). (1)

Substituting first x = 1, we obtain that

F321(1, q, t) =
1 + t(q − 1) −

√
1 − 2t(1 + q) + t2(1 − q)2

2qt
.

Now, solving (1) for F321(x, q, t) gives

F321(x, q, t) =
2

1 + t(1 + q − 2x) +
√

1 − 2t(1 + q) + t2(1 − q)2
. (2)

To conclude this section, we remark that the same method can be used to obtain
the generating function counting fixed points, excedances and descents in 321-avoiding
permutations. The number of descents of a 321-avoiding permutation π (i.e., indices i for
which πi > πi+1), denoted des(π), equals the number of occurrences of uud in the Dyck
word of ψ(π). Using the same decomposition as before, we conclude that

∑

n≥0

∑

π∈Sn(321)

xfp(π)qexc(π)pdes(π)tn =
2

1 + t(1 + q − 2x) +
√

1 − 2t(1+q) + t2((1+q)2 − 4qp)
.

4 Counting 132-avoiding permutations according to

fixed points and excedances

Analogously to the previous section, we define

F132(x, q, t) :=
∑

n≥0

∑

π∈Sn(132)

xfp(π)qexc(π)tn.

Theorem 2.1 is equivalent to the statement F321(x, q, t) = F132(x, q, t).
Instead of enumerating fixed points and excedances directly in 132-avoiding permuta-

tions, we use a bijection between Sn(132) and Dn that transforms fp and exc into certain
statistics on Dyck paths.
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4.1 New statistics on Dyck paths

For any D ∈ D, we define a tunnel of D to be a horizontal segment between two lattice
points of D that intersects D only in these two points, and stays below D everywhere
else. Tunnels are in obvious one-to-one correspondence with decompositions of the Dyck
word D = AuBdC, where B ∈ D (no restrictions on A and C). In the decomposition,
the tunnel is the segment that goes from the beginning of u to the end of d. If D ∈ Dn,
then D has exactly n tunnels, since such a decomposition can be given for each up-step
of D.

A tunnel of D ∈ Dn is called a centered tunnel if the x-coordinate of its midpoint (as
a segment) is n, that is, the tunnel is centered with respect to the vertical line through
the middle of D. In terms of the decomposition D = AuBdC, this is equivalent to A and
C having the same length. Denote by CT(D) the set of centered tunnels of D, and let
c(D) = |CT(D)|.

A tunnel of D ∈ Dn is called a left tunnel if the x-coordinate of its midpoint is strictly
less than n. In terms of the decomposition D = AuBdC, this is equivalent to the length of
A being strictly smaller than the length of C. Denote by l(D) the number of left tunnels
of D. In Figure 3, there is one centered tunnel drawn with a solid line, and four left
tunnels drawn with dotted lines.

Figure 3: Centered and left tunnels.

We will use the bijection between Sn(132) and Dn given by Krattenthaler in [10], which
we denote by ϕ. For π = π1π2 · · ·πn ∈ Sn(132), ϕ(π) is obtained by reading π from left
to right and adjoining for each πj as many up-steps as necessary followed by a down-step
from height hj +1 to height hj , where hj is the number of elements in πj+1 · · ·πn which are
larger than πj. As pointed out by Reifegerste in [11], this path is easily visualized using
the diagram of π obtained from the n× n array representation of π by shading, for each
cross, the cell containing it and the squares that are due south and due east of it. The
diagram, defined as the region that remains unshaded, is determined by the path with left
and down steps that goes from the upper-right corner to the lower-left corner, leaving all
the crosses to the right, and staying always as close to the diagonal connecting these two
corners as possible. If we go along this path reading an up-step every time it goes left
and a down-step every time it goes down, we get ϕ(π). Figure 4 shows an example when
π = 67435281.

The key property of this bijection for our purposes is that it maps fixed points to
centered tunnels, and excedances to left tunnels. This can be seen using the diagram
representation. First note that there is an easy way to recover a permutation π ∈ Sn(132)
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Figure 4: The bijection ϕ.

from its diagram: row by row, put a cross in the leftmost shaded square whose column
has no other crosses. Now, instead of looking directly at ϕ(π), consider the path from the
upper-right corner to the lower-left corner of the array of π. To each cross we can associate
a tunnel in a natural way. Indeed, if a cross is in position (i, j), the horizontal step in
column j and the vertical step in row i produce a decomposition ϕ(π) = AuBdC, where
B corresponds to the part of the path above and to the left of the cross (see Figure 5).
Thus, fixed points, which are crosses on the main diagonal, give centered tunnels, and
excedances, which are crosses to the right of the main diagonal, give left tunnels. It follows
that fp(π) = c(ϕ(π)) and exc(π) = l(ϕ(π)). So, counting 132-avoiding permutations with
respect to fixed points and excedances is equivalent to counting Dyck paths with respect
to centered and left tunnels, and the generating function we want to find becomes

F132(x, q, t) =
∑

D∈D
xc(D)ql(D)t|D|.

C
u d

B

A

Figure 5: A cross in a 132-avoiding permutation and the corresponding tunnel in the
Dyck path.

Unfortunately, the decomposition of D that we used to enumerate hills and double
rises in Section 3 no longer works here. The reason is that if we write D = uAdB with
A,B ∈ D, then c(A) and c(B) do not give information about c(D). However, it is possible
use a different decomposition to count centered tunnels (but not left tunnels), obtaining
an an expression for F132(x, 1, t).

For this purpose, we consider Dyck paths with marked centered tunnels. That is,
we count pairs (D,S) where D ∈ D and S ⊆ CT(D). Each such pair is given weight
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(x− 1)|S|t|D|, so that for a fixed D, the sum of weights of all pairs (D,S) will be

∑

S⊆CT(D)

(x− 1)|S|t|D| = ((x− 1) + 1)|CT(D)|t|D| = xc(D)t|D|,

which is precisely the weight that D has in F132(x, 1, t).

Figure 6: Decomposing Dyck paths with marked centered tunnels.

Dyck paths with no marked tunnels (i.e., pairs (D, ∅)) are enumerated by C(t), the
generating function for the Catalan numbers. On the other hand, for an arbitrary Dyck
path D with some centered tunnel marked (i.e., a pair (D,S) with S 6= ∅), we can consider
the decomposition given by the longest marked tunnel, say D = AuBdC. Then, AC (seen
as the concatenation of Dyck words) is an arbitrary Dyck path with no marked centered
tunnels, and B is an arbitrary Dyck path where some centered tunnels may be marked
(Figure 6). This decomposition translates into the following equation:

F132(x, 1, t) = C(t) + (x− 1)tC(t)F132(x, 1, t).

Solving it, we obtain

F132(x, 1, t) =
2

1 + 2t(1 − x) +
√

1 − 4t
,

which agrees with the expression for F321(x, 1, t) in (2). This gives a new, simpler proof
of the main result in [13], namely that |{π ∈ Sn(321) : fp(π) = i}| = |{π ∈ Sn(132) :
fp(π) = i}| for all i ≤ n.

4.2 An identity involving diagonals of generating functions

To enumerate left tunnels we need a different approach. Instead of F132, we will consider
a more general generating function with an additional variable. First we generalize the
concepts of centered and left tunnels to allow the vertical line that we use as a reference
to be shifted away from the center of the Dyck path. For D ∈ D and r ∈ Z, let cr(D) be
the number of tunnels of D whose midpoint lies on the vertical line x = n−r (we call this
the reference line). Similarly, let lr(D) be the number of tunnels of D whose midpoint
lies on the half-plane x < n− r. Notice that by definition, c0 and l0 are, respectively, the
statistics c and l defined previously.
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We add to the generating function a new variable v which marks the distance from
the reference line to the actual center of the path. Define

G(x, q, t, v) :=
∑

n,r≥0

∑

D∈Dn

xcr(D)qlr(D)vrtn,

and note that G(x, q, t, 0) = F132(x, q, t).
Our next goal is to find an equation that determines G(x, q, t, v). Again we use the

decomposition of Dyck paths as D = uAdB, where A,B ∈ D, with the difference that
now the generating functions involve sums not only over Dyck paths but also over the
possible positions of the reference line.

For the first part uAd of the decomposition we define the generating function

H1(x, q, t, v) :=
∑

n1≥1

k≥−n1

∑

A∈Dn1−1

xc
−k(uAd)qc

−k(uAd)vktn1 , (3)

allowing the reference line, whose distance from the center is measured by k (see Figure 7),
to be anywhere to the right of the beginning of the path. Similarly, for the second part
B of the decomposition we define

H2(x, q, t, v) :=
∑

n2≥0
r≥−n2

∑

B∈Dn2

xcr(B)qlr(B)vrtn2 , (4)

allowing the reference line, whose distance from the center is measured by r, to be any-
where to the left of the end of the path.

n1

n2

k

r

Figure 7: The generating functions H1 and H2.

We would like to express the generating function for paths of the form uAdB, where
the reference line is not fixed, in terms of H1 and H2. The product H1H2 counts pairs
(uAd,B), but if we draw the two paths uAd and in B next to each other making their
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reference lines coincide, then the end of uAd does not necessarily coincide with the be-
ginning of B, as shown in Figure 7. However, we can correct the problem by noticing the
following. The exponent k of v in H1 indicates how far to the right the reference line is
from the center of the path uAd, and similarly the exponent r of v in H2 indicates how far
to the left the reference line is from the center of the path B. Thus, in the product H1H2,
the exponent k+r of v is the distance from the center of the path uAd to the center of the
path B if we draw them so that their reference lines coincide. The key observation is that
the terms that correspond to an actual path D = uAdB, with B beginning where uAd
ends, are those where the exponent of v equals the exponent n1 + n2 of t in the product
H1H2, which is half of the sum of lengths of uAd and B (see Figure 8). As described in
Section 2, the generating function consisting of only such terms is called a diagonal.

n1 + n2

k
r

s

Figure 8: Terms with equal exponent in t and v.

In order to keep track of the distance s between the reference line and the center of
the new path D = uAdB, we use an additional variable y. Considering that D starts
at (0, 0), the x-coordinate of its center is the exponent of t in H1H2, which is n1 + n2.
On the other hand, the x-coordinate of the reference line is the exponent of t in H1 plus
the exponent of v in H1, namely n1 + k. Thus, the distance from the center of D to its
reference line is s = n1 + n2 − (n1 + k) = n2 − k, that is, the exponent of t in H2 minus
the exponent of v in H1.

We introduce this variable in the product by letting

P (x, q, t, v, y) := H1(x, q, t,
v

y
)H2(x, q, ty, v).

If we write its series expansion in v and t as

P (x, q, t, v, y) =
∑

n≥0
j≥−n

Pj,n(x, q, y)v
jtn,

then the diagonal (in v and t) of P is

diagz
v,t P :=

∑

n≥0

Pn,n(x, q, y)z
n.
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The above combinatorial argument implies that this diagonal equals precisely

H3(x, q, z, y) :=
∑

n≥1
−n≤r≤n

∑

D∈Dn

xcr(D)qlr(D)yrzn, (5)

where we sum over arbitrary non-empty Dyck paths D, allowing the reference line to
be anywhere between the beginning and the end of the path. Let us state the obtained
equation relating H1, H2 and H3 as a lemma.

Lemma 4.1. Let H1, H2 and H3 be defined respectively by (3), (4), and (5). Then,

diagz
v,t H1(x, q, t,

v

y
)H2(x, q, ty, v) = H3(x, q, z, y). (6)

We have chosen our definitions of H1, H2 and H3 to make the statement of Lemma 4.1
as simple as possible. However, for the lemma to be useful, we have to turn (6) into an
equation for G by expressing these three generating functions in terms of G. This part
is relatively straightforward. First we note that given D ∈ Dn, if DR is the Dyck path
obtained by reflecting D over the vertical line x = n, we have that c−r(D) = cr(D

R) and
l−r(D) = n− lr(D

R) − cr(D
R), since the total number of tunnels of DR is n. Thus,

∑

n,r≥0

∑

D∈Dn

xc
−r(D)ql

−r(D)vrtn =
∑

n,r≥0

∑

D∈Dn

(
x

q

)cr(DR) (
1

q

)lr(DR)

vr(qt)n = G(
x

q
,
1

q
, qt, v).

(7)
Also, if D ∈ Dn and r ≥ n, then cr(D) = lr(D) = c−r(D) = 0 and l−r(D) = n, so

∑

n≥0
r>n

∑

D∈Dn

xcr(D)qlr(D)vrtn =
∑

n≥0
r>n

Cnv
rtn =

∑

n≥0

Cn

vn+1

1 − v
tn =

v

1 − v
C(tv). (8)

Now we can write H1 as

H1(x, q, t, v) =
∑

n≥0

k≥−n−1

∑

A∈Dn

xc
−k(uAd)ql

−k(uAd)vktn+1

= t




∑

n≥0

k>0

∑

A∈Dn

xc
−k(uAd)ql

−k(uAd)vktn +
∑

n≥0

∑

A∈Dn

xc0(uAd)ql0(uAd)tn

+
∑

n≥0
0<r≤n+1

∑

A∈Dn

xcr(uAd)qlr(uAd)v−rtn


 . (9)
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The three sums on the right hand side of (9) can be simplified as follows. Using that
c−k(uAd) = c−k(A) and l−k(uAd) = l−k(A) + 1 for k > 0, and equation (7), the first sum
can be written as

q
∑

n≥0

k>0

∑

A∈Dn

xc
−k(A)ql

−k(A)vktn = q



∑

n≥0

k≥0

∑

A∈Dn

xc
−k(A)ql

−k(A)vktn −
∑

n≥0

∑

A∈Dn

xc0(A)ql0(A)tn




= q

[
G(
x

q
,
1

q
, qt, v) −G(x, q, t, 0)

]
.

The second sum, using that c0(uAd) = c0(A) + 1 and l0(uAd) = l0(A), becomes

x
∑

n≥0

∑

A∈Dn

xc0(A)ql0(A)tn = xG(x, q, t, 0).

For the third sum, we use that cr(uAd) = cr(A) and lr(uAd) = lr(A) for r > 0, together
with equation (8), to write it as

∑

n≥0
r>0

∑

A∈Dn

xcr(A)qlr(A)v−rtn −
∑

n≥0
r>n+1

∑

A∈Dn

xcr(A)qlr(A)v−rtn

= G(x, q, t,
1

v
) −G(x, q, t, 0) − 1

v(v − 1)
C(

t

v
).

Combining the last three equations we get

H1(x, q, t, v) = t

[
q G(

x

q
,
1

q
, qt, v) + (x−q−1)G(x, q, t, 0) +G(x, q, t,

1

v
) +

1

v(1 − v)
C(

t

v
)

]
.

(10)
For H2 and H3, very similar arguments show that

H2(x, q, t, v) = G(x, q, t, v) −G(x, q, t, 0) +G(
x

q
,
1

q
, qt,

1

v
) +

1

1 − v
C(
qt

v
), (11)

H3(x, q, z, y) = G(x, q, z, y) +G(
x

q
,
1

q
, qz,

1

y
)−G(x, q, z, 0) +

1

1 − y
[C(

qz

y
)− y C(zy)]− 1.

(12)
Substituting the above expressions for H1, H2 and H3 in (6), we obtain an equation

satisfied by G, which we call equation (6’). This identity uniquely determines G as a
generating function. Indeed, because of the common factor t in expression (10) for H1,
equation (6’) expresses the coefficient of zn on the right hand side in terms of coefficients
of ti with i < n in the product H1H2. Combinatorially, this is just a consequence of the
fact that the decomposition D = uAdB expresses a Dyck path D in terms of strictly
smaller Dyck paths.
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4.3 The solution

The solution to equation (6’) is given by the following formula.

Proposition 4.2. We have

G(x, q, t, v) =

1 − v + (q − 1)tvC(tv)

1 − v + (q − 1)tvF321(1, q, t)
− (x− 1)tvC(tv)

[1 − qt(F321(1, q, t) − 1) − xt](1 − v)
. (13)

Before proving that this expression for G satisfies equation (6’), let us show that
Proposition 4.2 implies Theorem 2.1. Indeed, we have by definition

G(x, q, t, 0) =
∑

n≥0

∑

D∈Dn

xc0(D)ql0(D)tn = F132(x, q, t).

On the other hand, Proposition 4.2 implies that

G(x, q, t, 0) =
1

1 − qt(F321(1, q, t) − 1) − xt
= F321(x, q, t),

where the last equality follows from equation (1). Thus, to conclude that F132(x, q, t) =
F321(x, q, t), it only remains to prove Proposition 4.2, which we do next.

Proof. Let H̃1, H̃2 and H̃3 be the expressions obtained from (10), (11) and (12), respec-
tively, when G is substituted with the formula given in equation (13). It suffices to check
that

diagz
v,t H̃1(x, q, t,

v

y
)H̃2(x, q, ty, v) = H̃3(x, q, z, y).

Let P̃ (x, q, t, v, y) := H̃1(x, q, t,
v
y
)H̃2(x, q, ty, v). A general method for obtaining diagonals

of rational generating functions is described in [15, Section 6.3]. This theory, however,

does not apply to our function P̃ , because it is not rational. In order to compute diagz
v,t P̃ ,

we will modify this technique and show that it can be extended to our particular case.
Taking α, β > 0 to be sufficiently small, the series expansion of P̃ in v and t,

P̃ (x, q, t, v, y) =
∑

n≥0
j≥−n

P̃j,n(x, q, y)v
jtn =

∑

n,i≥0

P̃i−n,n(x, q, y)v
i

(
t

v

)n

,

converges for |v| < β, | t
v
| < α. Similarly,

diagz
v,t P̃ =

∑

n≥0

P̃n,n(x, q, y)z
n

converges for |z| sufficiently small. Fix such a small z with |z| < αβ2. Then the series

P̃ (x, q, t,
z

t
, y) =

∑

n≥0
j≥−n

P̃j,n(x, q, y)z
jtn−j
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converges for | z
t
| < β and | t2

z
| < α. Regarded as a function of t, it converges for t in the

annulus
|z|
β
< |t| <

√
α|z|, (14)

which is non-empty because |z| < αβ2. In particular, it converges on some circle |t| = ρ
in the annulus. As in [8, Theorem 1], we have by Cauchy’s integral theorem that

diagz
v,t P̃ =

1

2πi

∫

|t|=ρ

P̃ (x, q, t,
z

t
, y)

dt

t
. (15)

It can be checked that the singularities of P̃ (x, q, t, z
t
, y)/t, as a function of t, that lie

inside the circle |t| = ρ are all simple poles. These poles are

t1 = 0, t2 = z, t3 =
z

y
, t4,5 =

(1 + q)y ± (1 − q)
√
y(y − 4qz)

2y(y + z(1 − q)2)
z,

t6,7 =
1 + q ± (1 − q)

√
1 − 4zy

2(q + zy(1 − q)2)
z.

There are also branch points at

t = ±1

2

√
z

y
and t = ±1

2

√
z

qy
,

but they lie outside the circle in the annulus (14), for an appropriate choice of radius ρ.
The remaining singularities do not depend on z and lie outside the circle.

By the Residue Theorem, the integral (15) can be computed by adding up the residues
at the poles inside the circle |t| = ρ. All the residues are 0 except for those in t2 and t3.
Thus,

diagz
v,t P̃ = Rest=z P̃ (x, q, t,

z

t
, y)

1

t
+ Rest= z

y
P̃ (x, q, t,

z

t
, y)

1

t
.

A routine computation in Maple shows that this sum of residues equals H̃3(x, q, z, y) as
claimed.

5 Some other bijections involving Sn(321) and Dn

Looking at permutations as arrays of crosses, as we did to define ψ, some other known
bijections between Sn(321) and Dn can easily be viewed in a systematic way, as paths
with down and right steps from the upper-left corner to the lower-right corner of the
permutation array. For each of these bijections, our canonical example will be π =
23147586. One such bijection, which we denote by ψ2, was established by Billey, Jockusch
and Stanley in [1, p. 361]. Consider the path that leaves the crosses corresponding to
excedances to the right, and stays always as far from the main diagonal as possible
(Figure 9). Then ψ2(π) can be obtained from it by reading an up-step every time the
path goes right and a down-step every time the path goes down.
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Figure 9: The bijection ψ2.

In [10], Krattenthaler describes a bijection from Sn(123) to Dn. If we omit the last
step, consisting of reflecting the path over a vertical line, and compose the bijection
with the reversal operation mapping a permutation π1π2 · · ·πn to πn · · ·π2π1, we get a
bijection from Sn(321) to Dn, which we denote by ψ3. In the array representation, ψ3(π)
corresponds, by the same trivial transformation as before, to the path that leaves all the
crosses to the left and remains as close to the main diagonal as possible (see Figure 10).

Figure 10: The bijection ψ3.

This last bijection is related to the one from Section 3 by ψ3(π) = ψ(π−1). In a similar
way, one can define a fourth bijection ψ4 : Sn(321) −→ Dn by ψ4(π) := ψ2(π

−1) (see
Figure 11). In their survey of bijections between 321- and 132-avoiding permutations [2],
Claesson and Kitaev mention some of the above bijections between permutations and
Dyck paths.

Figure 11: The bijection ψ4.
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Combining the bijections ψ, ψ2, ψ3, ψ4 and their inverses, we get some automorphisms
on Dyck paths and on 321-avoiding permutations with interesting properties. Recall that
a valley of a Dyck path D is a down-step followed by an up-step (du in the Dyck word).
Denote by va(D) the number of valleys of D. Denote by p2(D) the number of peaks of D
of height at least 2. Clearly, both p2(D) + h(D) and va(D) + 1 equal the total number
of peaks of D. It can be checked that ψ ◦ ψ−1

2 is an involution on Dn with the property
that va(ψ ◦ ψ−1

2 (D)) = dr(D) and dr(ψ ◦ ψ−1
2 (D)) = va(D). Indeed, this follows from the

fact that excedances are sent to valleys by ψ2 and to double rises by ψ. This bijection
gives yet another proof of the symmetry of the bivariate distribution of the pair (va, dr) of
statistics in Dyck paths. A different involution with this property was introduced in [3].

Another involution on Dn is given by ψ ◦ ψ−1
3 . This one shows the symmetry of the

distribution of the pair (dr, p2), because dr(ψ ◦ ψ−1
3 (D)) = p2(D) and p2(ψ ◦ ψ−1

3 (D)) =
dr(D). In addition, it preserves the number of hills, i.e., h(ψ ◦ ψ−1

3 (D)) = h(D). These
properties follow from the fact that both ψ3 and ψ send fixed points to hills, whereas
excedances are sent to peaks of height at least 2 by ψ3 and to double rises by ψ.

Finally, the involution on Sn(321) that maps π to (ψ−1
2 (ψ(π)))−1 gives a combinatorial

proof of the fact that the number of 321-avoiding permutations with k excedances equals
the number of 321-avoiding permutations with with k + 1 weak excedances. Recall that
i is a weak excedance of π if πi ≥ i. The analogous result for all permutations is well
known. An implication of Theorem 2.1 is that this result is also true for 132-avoiding
permutations.
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