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Abstract

Let Πn denote the set of all set partitions of {1, 2, . . . , n}. We consider two
subsets of Πn, one connected to rook theory and one associated with symmetric
functions in noncommuting variables. Let En ⊆ Πn be the subset of all partitions
corresponding to an extendable rook (placement) on the upper-triangular board,
Tn−1. Given π ∈ Πm and σ ∈ Πn, define their slash product to be π|σ = π∪(σ+m) ∈
Πm+n where σ + m is the partition obtained by adding m to every element of
every block of σ. Call τ atomic if it can not be written as a nontrivial slash
product and let An ⊆ Πn denote the subset of atomic partitions. Atomic partitions
were first defined by Bergeron, Hohlweg, Rosas, and Zabrocki during their study
of NCSym, the symmetric functions in noncommuting variables. We show that,
despite their very different definitions, En = An for all n ≥ 0. Furthermore, we put
an algebra structure on the formal vector space generated by all rook placements
on upper triangular boards which makes it isomorphic to NCSym. We end with
some remarks.

∗Work partially done while a Program Officer at NSF. The views expressed are not necessarily those
of the NSF.
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1 Extendable rooks and atomic partitions

For a nonnegative integer n, let [n] = {1, 2, . . . , n}. Let Πn denote the set of all set
partitions π of [n], i.e., π = {B1, B2, . . . , Bk} with ⊎iBi = [n] (disjoint union). In this
case we will write π ⊢ [n]. The Bi are called blocks . We will often drop set parentheses
and commas and just put slashes between blocks for readability’s sake. Also, we will
always write π is standard form which means that

min B1 < min B2 < . . . < min Bk (1)

and that the elements in each block are listed in increasing order. So, for example,
π = 136|2459|78 ⊢ [9]. The trivial partition is the unique element of Π0, while all other
partitions are nontrivial .

The purpose of this note is to show that two subsets of Πn, one connected with rook
theory and the other associated to the Hopf algebra NCSym of symmetric functions in
noncommuting variables, are actually equal although they have very different definitions.
After proving this result in the current section, we will devote the next to putting an
algebra structure on certain rook placements which is isomorphic to NCSym. The final
section contains some comments.

Let us first introduce the necessary rook theory. A rook (placement) is an n×n matrix,
R, of 0’s and 1’s with at most one 1 in every row and column. So a permutation matrix,
P , is just a rook of full rank. A board is B ⊆ [n] × [n]. We say that R is a rook on B
if Ri,j = 1 implies (i, j) ∈ B. In this case we write, by abuse of notation, R ⊆ B. A
rook R ⊆ B is extendable in B if there is a permutation matrix P such that Pi,j = Ri,j

for (i, j) ∈ B. For example, consider the upper-triangular board Tn = {(i, j) : i ≤
j}. The R ⊆ T2 are displayed in Figure 1. Only the third and fifth rooks in Figure 1
are extendable, corresponding to the transposition and identity permutation matrices,
respectively. Extendability is an important concept in rook theory because of its relation
to the much-studied hit numbers of a board [6, page 163 and ff.].

R :

(

0 0
0 0

) (

1 0
0 0

) (

0 1
0 0

) (

0 0
0 1

) (

1 0
0 1

)

πR : 1|2|3 12|3 13|2 1|23 123

Figure 1: The rooks on T2 and their associated partitions

There is a well-known bijection between π ∈ Πn and the rooks R ⊆ Tn−1 [9, page
75]. Given R, define a partition πR by putting i and j in the same block of πR whenever
Ri,j−1 = 1. For each R ⊆ T2, the corresponding πR ∈ Π3 is shown in Figure 1. Conversely,
given π we define a rook Rπ by letting (Rπ)i,j = 1 exactly when i and j + 1 are adjacent
elements in a block of π in standard form. It is easy to see that the maps R 7→ πR and
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π 7→ Rπ are inverses. If a matrix has a certain property then we will also say that the
corresponding partition does, and vice-versa. Our first subset of Πn will be the extendable
partitions denoted by

En = {π ∈ Πn : Rπ is extendable in Tn−1}.

So, from Figure 1, E2 = {13|2, 123}.
To define our second subset of Πn, it is convenient to introduce an operation on

partitions. For a set of integers B = {b1, . . . , bj} we let B + m = {b1 + m, . . . , bj + m}.
Similarly, for a partition π = {B1, . . . , Bk} we use the notation π+m = {B1+m, . . . , Bk +
m}. If π ∈ Πm and σ ∈ Πn then define their slash product to be the partition in Πm+n

given by
π|σ = π ∪ (σ + m).

Call a partition atomic if it can not be written as a slash product of two nontrivial
partitions and let

An = {π ∈ Πn : π is atomic}.

Atomic partitions were defined by Bergeron, Hohlweg, Rosas, and Zabrocki [2] because
of their connection with symmetric functions in noncommuting variables. We will have
more to say about this in Section 2.

Since En is defined in terms of rook placements, it will be convenient to have a rook
interpretation of An. Given any two matrices R and S, defined their extended direct sum
to be

R⊕̂S = R ⊕ (0) ⊕ S

where ⊕ is ordinary matrix direct sum and (0) is the 1 × 1 zero matrix. To illustrate,

(

a b c

d e f

)

⊕̂

(

w x

y z

)

=













a b c 0 0 0
d e f 0 0 0
0 0 0 0 0 0
0 0 0 0 w x

0 0 0 0 y z













.

It is clear from the definitions that τ = π|σ if and only if Rτ = Rπ⊕̂Rσ. We now have
everything we need to prove our first result.

Theorem 1.1. For all n ≥ 0 we have En = An.

Proof. Suppose we have τ ∈ En. Assume, towards a contradiction, that τ is not atomic
so that τ = π|σ. On the matrix level we have Rτ = Rπ⊕̂Rσ where Rπ is m×m for some
m. We are given that τ is extendable, so let P be a permutation matrix extending Rτ .
Since P and Rτ agree above and including the diagonal, the first m + 1 rows of P must
be zero from column m+1 on. But P is a permutation matrix and so each of these m+1
rows must have a one in a different column, contradicting the fact that only m columns
are available.
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Now assume τ ∈ An. We will construct an extension P of Rτ . Let i1, . . . , ir be the
indices of the zero rows of Rτ and similarly for j1, . . . , jr and the columns. If ik > jk

for all k ∈ [r], then we can construct P by supplementing Rτ with ones in positions
(i1, j1), . . . , (ir, jr).

So suppose, towards a contradiction, that there is some k with ik ≤ jk. Now Rτ must
contain jk − k ones in the columns to the left of column jk. If ik < jk, then there are
fewer than jk − k rows which could contain these ones since Rτ is upper triangular. This
is a contradiction. If ik = jk, then the jk − k ones in the columns left of jk must lie in
the first ik − k = jk − k rows. Furthermore, these ones together with the zero rows force
the columns to the right of jk to be zero up to and including row ik = jk. It follows that
Rτ = Rπ⊕̂Rσ for some π, σ with Rπ being (ik − 1) × (ik − 1). This contradicts the fact
that τ is atomic.

Having two descriptions of this set may make it easy to prove assertions about it from
one definition which would be difficult to demonstrate if the other were used. Here is an
example.

Corollary 1.2. Let R ⊆ Tn. If R1,n = 1 then R is extendable in Tn.

Proof. If R1,n = 1 then we can not have R = Rσ⊕̂Rτ for nontrivial σ, τ . So R is atomic
and, by the previous theorem, R is extendable.

2 An algebra on rook placements and NCSym

The algebra of symmetric functions in noncommuting variables, NCSym, was first studied
by Wolf [11] who proved a version of the Fundamental Theorem of Symmetric Functions
in this context. The algebra was rediscovered by Gebhard and Sagan [5] who used it as
a tool to make progress on Stanley’s (3 + 1)-free Conjecture for chromatic symmetric
functions [8]. Rosas and Sagan [7] were the first to make a systematic study of the vector
space properties of NCSym. Bergeron, Reutenauer, Rosas, and Zabrocki [3] introduced
a Hopf algebra structure on NCSym and described its invariants and covariants.

Let X = {x1, x2, . . .} be a countably infinite set of variables which do not commute.
Consider the corresponding ring of formal power series over the rationals Q〈〈X〉〉. Let Sm

be the symmetric group on [m]. Then any g ∈ Sn acts on a monomial x = xi1xi2 · · ·xin

by
g(x) = xg−1(i1)xg−1(i2) · · ·xg−1(in)

where g(i) = i for i > m. Extend this action linearly to Q〈〈X〉〉. The symmetric functions
in noncommuting variables, NCsym ⊂ Q〈〈X〉〉, are all power series which are of bounded
degree and invariant under the action of Sm for all m ≥ 0.

The vector space bases of NCSym are indexed by set partitions. We will be partic-
ularly interested in a basis which is the analogue of the power sum basis for ordinary
symmetric functions. Given a monomial x = xi1xi2 · · ·xin , there is an associated set par-
tition πx where j and k are in the same block of πx if and only if ij = ik in x, i.e., the
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indices in the jth and kth positions are the same. For example, if x = x3x5x2x3x3x2

then πx = 145|2|36. The power sum symmetric functions in noncommuting variables are
defined by

pπ =
∑

x : πx≥π

x,

where πx ≥ π is the partial order in the lattice of partitions, so πx is obtained by merging
blocks of π. Equivalently, pπ is the sum of all monomials where the indices in the jth
and kth places are equal if j and k are in the same block of π, but there may be other
equalities as well. To illustrate,

p13|2 = x1x2x1 + x2x1x2 + · · · + x3
1 + x3

2 + · · · .

Note that, directly from the definitions,

pπ|σ = pπpσ. (2)

Using this property, Bergeron, Hohlweg, Rosas, and Zabrocki [2] proved the following
result which will be useful for our purposes.

Proposition 2.1 ([2]). As an algebra, NCSym is freely generated by the pπ with π

atomic.

Let
R = {R ⊆ Tn : n ≥ −1},

where there is a single rook on T−1 called the unit rook and denoted R = 1 (not to be
confused with the empty rook on T0). We extend the bijection between set partitions
and rooks on upper triangular boards by letting the unit rook correspond to the empty
partition. Consider the vector space QR of all formal linear combinations of rooks in R.
By both extending ⊕̂ linearly and letting the unit rook act as an identity, the operation
of extended direct sum can be considered as a product on this space. It is easy to verify
that this turns QR into an algebra.

Proposition 2.2. As an algebra, QR is freely generated by the Rπ with π atomic.

Proof. A simple induction on n shows that any τ ∈ Πn can be uniquely factored as
τ = π1|π2| · · · |πt with the πi atomic. From the remark just before Theorem 1.1, it follows
that each Rτ can be uniquely written as a product of atomic Rπ’s. Since the set of all Rτ

forms a vector space basis, the atomic Rπ form a free generating set.

Comparing Propositions 2.1 and 2.2 as well as the remark before Theorem 1.1 and
equation 2, we immediately get the desired isomorphism.

Theorem 2.3. The map pπ 7→ Rπ is an algebra isomorphism of NCSym with QR.
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3 Remarks

3.1 Unsplittable partitions

Bergeron, Reutenauer, Rosas, and Zabrocki [3] considered another free generating set for
NCSym which we will now describe. A restricted growth function of length n is a sequence
of positive integers r = a1a2 . . . an such that

1. a1 = 1, and

2. ai ≤ 1 + max{a1, . . . , ai−1} for 2 ≤ i ≤ n.

Let RGn denoted the set of restricted growth functions of length n. There is a well-known
bijection between Πn and RGn [9, page 34] as follows. Given π ∈ Πn we define rπ by
ai = j if and only if i ∈ Bj in π. For example, if π = 124|36|5 then rπ = 112132. It is
easy to see that having π in standard form makes the map well defined. And the reader
should have no trouble constructing the inverse.

Define the split product of π ∈ Πm and σ ∈ Πn to be τ = π ◦ σ ∈ Πm+n where τ is the
uniqe partition such that rτ = rπrσ (concatenation). To illustrate, if π is as in the previous
paragraph and σ = 13|2 then rπrσ = 112132121 and so π ◦ σ = 12479|368|5. This is not
Bergeron et al.’s original definition, but it is equivalent. Now define τ to be unsplitable
if it can not be written as a split product of two nontrivial partitions. (Bergeron et al.
used the term “nonsplitable” which is not a typical English word.) Let USn ⊆ Πn be the
subset of unsplitable partitions. So US2 = {1|2|3, 1|23}.

Perhaps the simplest basis for NCSym is the one gotten by symmetrizing a monomial.
Define the monomial symmetric functions in noncommuting variables to be

mπ =
∑

x : πx=π

x.

So now indices in a term of mπ are equal precisely when their positions are in the same
block of π. For example,

m13|2 = x1x2x1 + x2x1x2 + · · · .

The following is a more explicit version of Wolf’s original result [11].

Proposition 3.1 ([3]). As an algebra, NCSym is freely generated by the mπ with π

unsplitable.

Comparing Propositions 2.1 and 3.1 we see that |An| = |USn| for all n ≥ 0 where
| · | denotes cardinality. (Although they are not the same set as can be seen by our
computations when n = 2.) It would be interesting to find a bijective proof of this result.
Note added in proof: Such a bijection has recently been found by Chen, Li and Wang [4].
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3.2 Hopf structure

Thiem [10] found a connection between NCSym and unipotent upper-triangular zero-
one matrices using supercharacter theory. This work has very recently been extended
using matrices over any field and a colored version of NCSym during a workshop at the
American Institute of Mathematics [1]. This approach gives an isomorphism even at the
Hopf algebra level.
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