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Abstract

Let PL(n) be the number of all plane partitions of n while ppk(n) be the number
of plane partitions of n whose trace is exactly k. We study the zeros of polynomial
versions Qn(x) of plane partitions where Qn(x) =

∑

ppk(n)xk. Based on the asymp-
totics we have developed for Qn(x) and computational evidence, we determine the
limiting behavior of the zeros of Qn(x) as n → ∞. The distribution of the zeros has
a two-scale behavior which has order n2/3 inside the unit disk while has order n on
the unit circle.

Keywords: asymptotic, phase, plane partition, polylogarithm

1 Introduction

Over the past ten years, many examples of natural polynomial families from combinatorics
and number theory have emerged whose zeros for high degrees appear to converge to
intriguing curves in the complex plane. One interesting collection of examples appears
on the website [16] of Richard Stanley which includes chromatic polynomials of complete
partite graphs, q-analogue of Catalan numbers, Bernoulli polynomials, and others.

Previous emphasis has been on polynomials all of whose zeros are real as well as on
polynomials whose coefficients are unimodal or log-concave. The connection between the
zeros and coefficients, of course, comes from the fact that if all the zeros are real and
negative, then the coefficients are log-concave.

In [4], Boyer and Goh investigated the limiting behavior of zeros of the “partition
polynomials” Fn(x) where

Fn(x) =
n
∑

k=1

pk(n)xk
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where pk(n) is the number of integer partitions of n with exactly k parts. This is one of
the examples posted by Stanley. These polynomials were also mentioned earlier in the
paper “Durfee polynomials” [8] and even earlier their asymptotics on the positive real line
were studied by E.M. Wright in [18].

There is a principle from equilibrium statistical mechanics that the zeros of a sequence
of polynomials accumulate along the boundaries of the regions where their sense of the
asymptotics change (see [3]). For the partition polynomials, the asymptotics inside the
open unit disk D are governed by a sequence of functions (Lk(x)) where Lk(x) = L1(x

k)/k
with L1(x) =

√

Li2(x). Here Lip(x) is the polylogarithm function given by the series
∑∞

n=1 x
n/np, |x| < 1. When the polynomials are normalized as ln[Fn(x)]/

√
n, their nor-

malized form has a continuous limit, say L(x), in the unit disk. The behavior of the zeros
in the limit is governed by the regions of analyticity of L(x). We borrow a term from
statistical mechanics to describe these regions. For m ≥ 1, we say a region is a m-phase if
it is the set of points x where ℜ[Lm(x)] dominates the other terms of the sequence; that
is,

R(m) := {x ∈ D : ℜ[Lm(x)] > ℜ[Lj(x)], j 6= m}.
(See Definition 4 below.) For the partition polynomials there are only three distinct m-
phases: R(1), R(2), and R(3). The limit function L(x) restricted to these m-phases is
analytic and the polynomial zeros accumulate on their boundaries.

In [4], Boyer and Goh asked what is the behavior of the zeros for polynomials (Qn(x))
associated with the plane partitions of n. Recall that a plane partition π = πij is an array
of nonnegative integers that is weakly decreasing along each row and column with total
sum n =

∑

i,j πij . The trace of π is simply
∑

i πii, the sum of its diagonal entries. Let
ppk(n) denote the the number of plane partitions of n with trace k. Then the polynomial
Qn(x) is given by

Qn(x) =

n
∑

k=1

ppk(n)xk

which we call the plane partition polynomial. In outline form, the main structural features
that appear in [4] continue to hold for plane partitions as well. Inside the unit disk D,
there is a new sequence (Lk(x)) to describe the asymptotics where L1(x) = 3

√

2Li3(x)
and Lk(x) = L1(x

k)/k. For the plane partition polynomials, there are just two m-phases
with m = 1, 2. So D is the union of R(1) and R(2) together with their boundaries. The
zeros of Qn(x) accumulate along the boundaries of R(1) and R(2) just as for the partition
polynomials but there is another family that consists of a segment along the negative real
axis that arises because of a branch cut for L1(x). This last family of zeros exhibit a new
behavior of having a nonuniform density although being distributed on a line segment.

This paper clarifies the work initiated in [4] and identifies the key structural elements
needed to determine the asymptotics and the limiting behavior of the zeros. We expect
that other natural polynomial families associated with partitions can be analyzed with
these methods when their generating function has an infinite product form

G(x, q) =
∞
∏

n=1

1

(1 − xqn)αn
, αn ≥ 0. (1)
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When αn = 1 for all n, we recover the partition polynomials while αn = n, we get
the plane partition polynomials Qn(x). Perhaps the next accessible examples are the
partitions whose parts lie in some fixed residue class, say b, modulo m, so αn = 1 if
n mod m = b and is 0 otherwise, and case when the exponents αn = ns, s > 1.

We thank the referee for a careful reading of the paper and for suggesting the proof
of Lemma 30.

2 Statement of Results

2.1 Informal Overview

We study two versions of the limiting behavior of the zeros of the plane partition poly-
nomials. The first is the zero attractor A that consists of all the accumulation points of
the zeros of Qn(x). The second is the asymptotic zero distribution which is the measure,
supported on A, given as the limit of normalized counting measures of the zeros of Qn(x)
with normalizations nα, α = 2/3 or 1.

The calculation of the zero attractor requires knowing the limits 1
nα ln |Qn(x)| as n→

∞ for both normalizations α = 1 and α = 2/3. We denote these limits by Φα(x). In
section 3, we find that Φ1(x) equals ln |x| outside the unit disk D and is 0 inside by
means of asymptotics built directly from the generating function for the polynomials
∏∞

n=1(1 − zqn)−n. For α = 2/3, the asymptotics are more subtle that are needed to find
these limits. We describe in subsection 3.2 two open connected regions R(1) and R(2)
whose union is dense inside the unit disk. On their union R(1)∪R(2), Qn(x) is asymptotic
to an expression of the general form

n−2/3a(x) exp(cn2/3Lk(x)), x ∈ R(k), k = 1, 2,

where c > 0, Lk(x) is an analytic function on R(k), k = 1, 2, and L1(x) and L2(x) are not
analytic continuations of each other. Then we find that the limit Φ2/3(x) equals ln |Lk(x)|,
x ∈ R(k).

We can rephrase informally the result of Sokal (Theorem 13) that the zero attractor
A consists of the points of non-differentiability of the limit functions Φ1(x) and Φ2/3(x).
For α = 1, the set of non-differentiability of Φ1(x) is the unit circle S1 since Φ1(x) is zero
inside the unit disk and ln |x| outside.

For α = 2/3, the contributions to the zero attractor are more intricate. Points of
non-differentiability of Φ2/3(x) include the boundary points between the two regions R(1)
and R(2) which we can show is given by ℜ[L1(x)] = ℜ[L2(x)]. For points in R(1), Φ2/3(x)
equals the harmonic function ℜ[L1(x)] while for x in R(2), Φ2/3(x) becomes ℜ[L2(x)].
Hence, by the identity principle for harmonic functions, these boundary points lie in the
zero attractor.

We also prove that zero attractor contains the interval [x∗, 0] along the negative real
axis that reflects the existence of a branch cut for L1(x). So the total contribution to A
is γ ∪ γ ∪ [x∗, 0]∪ S1 where γ (see Figure 2) is the portion of the boundary of R(1) in the
upper half-plane. See Figure 3 for a full plot of A.
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Figure 1: On the left is region R(1) while on the right is the region R(2). Their common
boundary is γ ∪ γ.

The construction of the asymptotic zero distribution νZ of order n2/3 needs to be
carried out separately on each of the sets γ, γ, and [x∗, 0]. In subsection 5.1, we focus
on the contribution to νZ supported on γ. By [12] (see Theorem 27 below), if there is
a neighborhood U of γ where the asymptotics for Qn(x) satisfy several conditions which
include the existence of a conformal mapping ψ between U and a neighborhood of an arc
of the unit circle, then νZ = µ ◦ ψ where µ is Lebesgue measure on the unit circle.

For γ, the natural choice for the mapping ψ is exp(3
2
(L2(x)−L1(x)). There are several

difficulties to overcome in proving that ψ indeed is conformal that require techniques from
univalent function theory [10].

In subsection 5.2, we found it necessary to adapt the proof of Theorem 27 in order to
determine the portion of the asymptotic zero distribution νZ supported on the interval
[x∗, 0].

2.2 Detailed Summary

We begin with the formal definitions of the zero attractor and the asymptotic zero distri-
bution.

Definition 1. Let Z(Qn(x)) denote the finite set of zeros of the polynomial Qn(x). Then
the zero attractor A of the polynomial sequence (Qn(x)) is the limit of Z(Qn(x)) in the
Hausdorff metric d on the non-empty compact subsets K of C ∪ “∞.” [5]

Definition 2. The asymptotic zero distribution µ of order nα, 0 < α ≤ 1, for a sequence
(Qn(x)) of polynomials is the measure given as the weak*-limit of the normalized counting
measures of their zeros

µn =
1

nα

∑

{δz : Qn(z) = 0}

where deg(Qn) = n and δz is the point mass at z [5].
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For α = 1, the scaling of the zeros of the polynomial sequence (Qn(x)) is proportional
to their degrees. Inside the unit disk, we found that it is necessary to rescale the zeros
according to the power nα to obtain a nonzero distribution.

Remark 3. Both the zero attractor and the asymptotic zero distribution have their
advantages and disadvantages in describing the limiting zero set of a sequence of polyno-
mials. The zero attractor gives a complete description of the limiting zero set but gives
no information about the distribution of the zeros. In contrast, the asymptotic zero dis-
tribution of order nα gives us a description of the zero set that includes the density but
its description can be incomplete as it ignores the parts of the zero set which has order
nβ, 0 < β < α.

Before we proceed further, we point out the standard notational conventions in this
paper. We continue with the conventions given in [6]. We define s

√
x to be the s root

exp( log x
s

) with the imaginary part of the logarithm defined on (−π, π]. Next [x]− and x
are defined to be the complex conjugate of x.

When we say gn(x) = OV (an), where an a sequence of complex numbers, we mean
there exists a constant CV dependent solely on a collection of parameters V, so that
|gn(x)| ≤ CV |an| as n→ ∞. Absence of any V indicates that the constant is uniform. We
can make a similar definition for gn(x) = oV (an).

We will first compute the zero attractor and the asymptotic zero distribution of Qn(x)
but these objects depend on something called a “phase” [6].

Definition 4. Let (Lk(x)) be a sequence of complex valued functions defined on a domain
G. A set R(m) is called them-th phase (or phasem) of an “(Lk(x))-Region of Dominance”
if and only if

1. If x ∈ R(m) then for every k ∈ N, k 6= m implies ℜLm(x) > ℜLk(x).

2. If an open set V has property (1), V ⊂ R(m).

Obviously 0 ∈ Z(Qn(x)) for every n ∈ N so we analyze the zeros with the domain
D = D \ {0} is the open punctured unit disk with

Lk(x) =
1

k
3
√

2Li3(xk), where Lis(x) =
∞
∑

n=1

xn

ns
.

The functions Lk(x) are deeply tied to the asymptotic structure of Z(Qn(x)) on D. In
particular, their real part determines the asymptotic location of these zeros on D while
their imaginary part plays an important role in determining the asymptotic density of
these zeros.

Definition 5. Let γ be the level set ℜL1(x) = ℜL2(x) with ℑx ≥ 0 and |x| ≤ 1. In
[6, Section 4.3], we showed that γ can be represented as a curve with a parametrization
in polar form as γ(r) = reiθ(r) where r ∈ [−x∗, 1], θ(r) ∈ [π/2, π], and x∗ is the unique
intersection point of γ with the negative real axis.
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Figure 2: On the left is the level set γ (see Definition 5) while on the right is γ together
with the zeros of Q2200(x) of modulus < 1 that lie in the second quadrant

In [6] we give an extensive exposition on these phases and prove:

Theorem 6. (Parry-Boyer [6]) Let D be the punctured open unit disk and Lk(x) =
1
k

3
√

2Li3(xk). Then there are exactly two nonempty phases R(1) and R(2) with the prop-
erties:

1. The boundaries of phases R(1) and R(2) consist of γ and its complex conjugate γ;
their union equals {x ∈ D : ℜL1(x) = ℜL2(x)}. γ and γ intersect the real axis at
x∗ ≃ −0.82500 30529. γ intersects the unit circle at eiθ

∗π where θ∗ is the unique
solution to ℜL1(e

iθπ) = ℜL2(e
iθπ), for 1/2 < θ < 1. Note: θ∗ ≃ 0.95170 31251.

2. R(2) lies in the open left half-plane and

R(2) ∩ (−1, 1) = (−1, x∗).

Because we have the proper language, we may now describe the zero attractor and the
asymptotic zero distribution.

Theorem 7. The zero attractor A of the sequence of plane partition polynomials (Qn(x))
is the set

A = [x∗, 0] ∪ γ ∪ γ ∪ S1

where γ and x∗ are given in Definition 5, and S1 is the unit circle.

Theorem 8. The asymptotic zero distribution of order n of the sequence (Qn(x)) is the
normalized Lebesgue measure supported on the unit circle S1.

Now we address our second question. Obviously zeros accumulate only along the zero
attractor of (Qn(x)) so we only need to estimate distributions in the four regions given
above. By proving Theorem 8, we will have already attained this estimate about the unit
circle.

Theorem 9. Let −π < θ1 < θ2 ≤ π, then for every ǫ > 0 sufficiently small

lim
n→∞

1

n
|{z ∈ C : arg z ∈ [θ1, θ2], |z| ∈ (1 − ǫ, 1 + ǫ), Qn(z) = 0}| =

1

2π
(θ2 − θ1).
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Figure 3: On the left is the zero attractor of Qn(x) while on the right is the zero set of
Q2200(x).

So we will focus our attention on the parts of the zero attractor that do not have scale
n. We will start with the density of [x∗, 0].

Theorem 10. Let x∗ < x < y < 0 and ǫ > 0, then

lim
n→∞

1

n
2

3

|{z ∈ C : ℜz ∈ (x, y), |ℑz| < ǫ, Qn(z) = 0}| =
3

2π
ℑ [L1(x) − L1(y)] .

Then we compute similar theorems for γ and γ. Since Qn(x) has real coefficients, its
zero set is symmetric about the real axis and so γ and its complex conjugate have identical
asymptotic distributions. We only then need to prove a theorem for γ.

Theorem 11. (a) Let Ψ(z) = 3i (L2(z) − L1(z)) /2. Then Ψ maps the level set γ con-
formally to the line segment E = [Ψ(x∗),Ψ(eiπθ

∗

)] where Ψ(x∗) ≃ 1.49070 11097 and
Ψ(eiπθ

∗

) ≃ 1.66275 31735.
(b) For every (α, β) ⊂ E and positive sufficiently small ǫ0

lim
n→∞

1

n
2

3

|{z ∈ C : ℜΨ(z) ∈ (α, β), |ℑΨ(z)| ≤ ǫ0, Qn(z) = 0}| =
β − α

2π
.

3 The Zero Attractor of Plane Partition Polynomials

(Qn(x))

When viewing the zero attractor A of Qn(x) it is useful to understand the following
definitions [14, page 104]:

lim inf Z(Qn(x)) = {z ∈ C : ∀ǫ > 0, B(z, ǫ) ∩ Z(Qn(x)) 6= ∅ for all but finitely many n}
lim supZ(Qn(x)) = {z ∈ C : ∀ǫ > 0, B(z, ǫ) ∩ Z(Qn(x)) 6= ∅ for infinitely many n}
One should also note

lim inf Z(Qn(x)) ⊆ A ⊆ lim supZ(Qn(x))
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Figure 4: On the left is the cumulative density plot of the zeros Q2200(x) on the negative
real axis. On the right is the cumulative distribution predicted by Theorem 10. The
support of the distribution is [x∗, 0].

and when set equality holds

lim inf Z(Qn(x)) = lim supZ(Qn(x)) = A.

We will therefore prove Theorem 7 in three steps:

Step 1: Show that “∞” 6∈ lim supZ(Qn(x)).

Step 2: [x∗, 0] ∪ γ ∪ γ ∪ S1 ⊆ lim inf Z(Qn(x)).

Step 3: ([x∗, 0] ∪ γ ∪ γ ∪ S1)c ⊆ lim supZ(Qn(x))
c.

Together these three steps imply that

[x∗, 0] ∪ γ ∪ γ ∪ S1 ⊆ lim inf Z(Qn(x)) ⊆ lim supZ(Qn(x)) ⊆ [x∗, 0] ∪ γ ∪ γ ∪ S1,

which determines the zero attractor A since the limit inf and limit sup of the sequence of
sets Z(Qn(x)) agree:

lim inf Z(Qn(x)) = lim supZ(Qn(x)) = [x∗, 0] ∪ γ ∪ γ ∪ S1 = A.

3.1 Proof of Step 1

As a technical point, in order to consider the zero attractor in the topology of the one
point compactification of C we must show that “∞” cannot be part of the zero attractor.
To do this it is sufficient to show that “∞” 6∈ lim supZ(Qn(x)) or that there is a compact
set B(0, r0) for some r0 > 0 and N > 0 so that for n > N Z(Qn(x)) is contained in
B(0, r0).
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Lemma 12. For all r0 > 1 there exists a N > 0 so that for n > N

Z(Qn(x)) ⊂ B(0, r0) ⊂ B(0, r0).

Therefore “∞” 6∈ A.

Proof. This is a natural consequence of the asymptotic estimate of Qn(x) outside the unit
disk given in [7]. For every |x| > r0 > 1 and positive η,

Qn(x) = xn
∞
∏

k=1

1

(1 − x−k)k+1
+Or0,η(x

n( 1

2
+η)). (2)

Now choose any η > 0 and r0 > 1 so that 0 6∈ Z(Qn(x)) ∩ B(0, r0)
c. Then we have

Z

(

Qn(x)

xn

)

∩ B(0, r0)
c = Z(Qn(x)) ∩ B(0, r0)

c.

By equation 2, we find that

lim
n→∞

Qn(x)

xn
=

∞
∏

k=1

1

(1 − x−k)k+1

uniformly. Thus, for 0 < ǫ < 1 there exists a N > 0 so that for n > N

∣

∣

∣

∣

Qn(x)

xn

∣

∣

∣

∣

≥
∞
∏

k=1

1

(1 + |x|−k)k+1
− ǫ > 0.

Hence we see that Z (Qn(x)/x
n) ∩B(0, r0)

c = ∅ and conclude

Z(Qn(x)) ∩B(0, r0)
c = ∅.

3.2 Proof of Step 2

The set lim inf Z(Qn(x)) is intrinsically tied to the asymptotics of Qn(x) in the complex
plane. This connection is given by the following theorem [15].

Theorem 13. (Sokal) Let G be a domain in C with x0 ∈ G. Let (Qn(x)) be a sequence
of analytic functions on G, and let (an) be a sequence of positive real constants such that
(|Qn(x)|an) are uniformly bounded on compact subsets of G. Suppose that there does not
exist a neighborhood U containing x0 and a function v on U that is either harmonic or
else identically −∞ such that

lim inf log |Qn(x)|an ≤ v(x) ≤ lim sup log |Qn(x)|an .

Then x0 ∈ lim inf Z(Qn(x)).
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To make more clear this connection if |Qn(x)| ∼ v(x)
1

an then

v(x) = lim
n→∞

an ln |Qn(x)|.

Thus where asymptotic approximations in a sense “fail to be harmonic” is lim inf Z(Qn(x)).
In [7] we have computed the asymptotics of Qn(x). They are given by equation 2 and the
following two theorems.

Theorem 14. (a) Let X ⊂ R(1) \ [x∗, 0] be a compact set and x ∈ X, then

Qn(x) = 12
√

1 − x

√

L1(x)

6πn
4

3

exp
(

n
2

3 (3
2
L1(x))

)

(

1 +OX

(

1

n
1

3

))

.

(b) Let X ⊂ R(2) be a compact and let x ∈ X, then

Qn(x) = (−1)n
24
√

1 − x2 8

√

1 − x

1 + x

√

L2(x)

6πn
4

3

exp
(

n
2

3 (3
2
L2(x))

)

(

1 +OX

(

1

n
1

3

))

.

Theorem 15. (a) Let X ⊂ (x∗, 0) be a compact set and let x ∈ X, we have that

Qn(x) = 12
√

1 − x





√

L1(x)

6πn
4

3

exp
(

n
2

3 (3
2
L1(x))

)





−
(

1 +OX

(

1

n
1

3

))

+ 12
√

1 − x

√

L1(x)

6πn
4

3

exp
(

n
2

3 (3
2
L1(x))

)

(

1 +OX

(

1

n
1

3

))

.

(b) Let X ⊂ {x : ℜL1(x) = ℜL2(x)} \ {x∗} be a compact set and let x ∈ X, then

Qn(x) = 12
√

1 − x

√

L1(x)

6πn
4

3

exp
(

n
2

3 (3
2
L1(x))

)

(

1 +OX

(

1

n
1

3

))

+ (−1)n
24
√

1 − x2 8

√

1 − x

1 + x

√

L2(x)

6πn
4

3

exp
(

n
2

3 (3
2
L2(x))

)

(

1 +OX

(

1

n
1

3

))

.

So we will apply Theorem 13 in two settings. The first would be with an = 1/n and

G = C and then we will let an = 1/n
2

3 and G = D \ {0}.

3.2.1 Application of Theorem 13 with an = 1/n and G = C

Since any compact subset of X ⊂ C is bounded, one can observe that

|Qn(x)|
1

n ≤ Qn(|x|)
1

n ≤ sup
x∈X

Qn(|x|)
1

n .

Using Theorems 14 and 15 as well as equation 2, we observe the following limit:
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Corollary 16. The limits below hold uniformly on compact subsets of the region:

lim
n→∞

1

n
ln |Qn(x)| =

{

ln |x|, |x| ≥ 1

0, |x| < 1.

The existence of these limits imply that supx∈X Qn(|x|)
1

n is bounded. Thus |Qn(x)|
1

n

is uniformly bounded. We then observe that if v(x) in Theorem 13 was harmonic on the
unit circle, then

v(x) = lim
n→∞

1

n
ln |Qn(x)| =

{

ln |x|, |x| ≥ 1

0, |x| < 1.

The function v(x) cannot be differentiable on the unit circle; in particular, it cannot be
harmonic. So Theorem 13 applies and gives

Lemma 17. S1 ⊂ lim inf Z(Qn(x)).

3.2.2 Application of Theorem 13 with an = 1/n
2

3 and G = D \ {0}
We will observe that

|Qn(x)| ≤ Qn(1) = PL(n).

By using E.M. Wright’s approximation for PL(n) [17]

PL(n) ∼
ζ(3)

7

36

2
11

36π
1

2n
25

36

exp

(

3
2
n

2

3
3
√

2ζ(3) + 2

∫ ∞

0

y ln y

e2πy − 1
dy

)

,

it is clear that |Qn(x)|1/n
2
3 is bounded uniformly on all subsets of the open unit disk.

Theorems 14 and 15 imply

Corollary 18. The limits below hold uniformly on compact subsets of the region:

lim
n→∞

1

n
2

3

ln |Qn(x)| =











3
2
ℜL1(x), x ∈ R(1),

3
2
ℜL2(x), x ∈ R(2),

3
2
ℜL2(x) = 3

2
ℜL1(x), x ∈ γ ∪ γ.

We then observe that if v(x) in Theorem 13 was harmonic then

v(x) = lim
n→∞

1

n
2

3

ln |Qn(x)| =











3
2
ℜL1(x), x ∈ R(1),

3
2
ℜL2(x), x ∈ R(2),

3
2
ℜL2(x) = 3

2
ℜL1(x), x ∈ γ ∪ γ.

So if v(x) is harmonic in a neighborhood of γ∪γ then, by principle of analytic continuation,
ℜL1(x) = ℜL2(x) on D \ {0}. This is simply untrue as L1(x) and L2(x) are distinct.
Therefore we have the set containment for the level sets γ and γ:
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Lemma 19. γ ∪ γ ⊂ lim inf Z(Qn(x)).

In [6] we have noted that ℜLk(x) is not harmonic on {x : xk ≤ 0}. Therefore v(x)
cannot be harmonic on R(1) ∩ {x : x ≤ 0} and R(2) ∩ {x : x2 ≤ 0}. By Theorem 6
R(1) ∩ {x : x ≤ 0} is the interval (x∗, 0) while R(2) ∩ {x : x2 ≤ 0} is empty. Theorem 13
applies again to give us:

Lemma 20. [x∗, 0] ⊂ lim inf Z(Qn(x)).

Combining Lemmas 17, 19, and 20, we now obtain

Lemma 21. [x∗, 0] ∪ γ ∪ γ ∪ S1 ⊂ lim inf Z(Qn(x)).

3.3 Proof of Step 3

Recall that x 6∈ lim supZ(Qn(x)) if and only if there exists a ǫ, N > 0 so that for n > N,
B(x, ǫ) is disjoint from Z(Qn(x)). Like lim inf Z(Qn(x)), lim supZ(Qn(x))

c is tied to the
asymptotic approximations of Qn(x) in the complex plane. This connection is given by
an application of Hurwitz’s Theorem: Let G ⊂ C be a region and suppose the sequence
of holomorphic functions fn(x) converges uniformly on compact subsets of G to f(x). If
f(x) is not identically zero, B(x0, r) ⊂ G and f(x) 6= 0 on the boundary of our open ball,
then there exists an N such that for all n > N f(x) and fn(x) have the same number of
zeros in B(x0, r) ([9, Page 152]).

Theorem 22. Let G ⊂ C be a region. Suppose there exists a sequence of holomorphic
functions (gn(x)) such that

lim
n→∞

Qn(x)/gn(x) = 1

uniformly on compact subsets of G. If gn(z0) is not zero on some neighborhood of z0 inside
G, then z0 6∈ lim supZ(Qn(x)).

Proof. We begin by choosing any nonempty open subset of G so that gn(x) is nonzero on
the closure of this neighborhood. It is then the case that Qn(x)/gn(x) is a sequence of
holomorphic functions which converge uniformly to 1 on the closure of this neighborhood.
Then Hurwitz’s Theorem applies showing that for all but finitely many n Qn(x) is nonzero
in B(x0, r). Thus, by definition x0 /∈ lim supZ(Qn(x)).

Lemma 23. D
c ⊂ lim supZ(Qn(x))

c.

Proof. If |x| > 1, then

gn(x) = xn
∞
∏

k=1

1

(1 − x−k)k+1

is nonzero outside the closed unit disk. By equation 2, it follows that the polynomials
Qn(x) themselves are nonzero there as well.

Lemma 24. D \ (S1 ∪ [x∗, 0] ∪ γ ∪ γ) ⊂ lim supZ(Qn(x))
c.
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Proof. By Theorem 6 the closed unit disk can be decomposed into a disjoint union

D = S1 ∪ [x∗, 0] ∪ γ ∪ γ ∪ R(1) \ [x∗, 0] ∪ R(2).

In other words, we have the set equality

D \ (S1 ∪ [x∗, 0] ∪ γ ∪ γ) = R(1) \ [x∗, 0] ∪ R(2).

Theorem 14 now allows us to say that if x ∈ R(1) \ [x∗, 0] then

gn(x) = 12
√

1 − x

√

L1(x)

n
4

3 6π
exp

(

n
2

3 (3
2
L1(x))

)

6= 0.

If x ∈ R(2), then

gn(x) = (−1)n
24
√

1 − x2 8

√

1 − x

1 + x

√

L2(x)

n
4

3 6π
exp

(

n
2

3 (3
2
L2(x))

)

6= 0.

Lemma 25.

(S1 ∪ [x∗, 0] ∪ γ ∪ γ)c
=
[

D \ (S1 ∪ [x∗, 0] ∪ γ ∪ γ)
]

∪ D
c ⊂ lim supZ(Qn(x))

c.

So we conclude the proof as we said we would do in the introduction; that is, by
Lemmas 21 and 25,

S1 ∪ [x∗, 0] ∪ γ ∪ γ ⊆ lim inf Z(Qn(x)) ⊆ A ⊆ lim supZ(Qn(x)) ⊆ S1 ∪ [x∗, 0] ∪ γ ∪ γ,

and so the zero attractor A is given by

A = S1 ∪ [x∗, 0] ∪ γ ∪ γ.

4 Asymptotic Zero Distribution of Order n

We now have found the zero attractor A so the next problem is to find how the zeros are
distributed among the different curves of A.

In this section, we work with normalized counting measure of the zeros of Qn(x) of
order n. For simplicity of notation, we will exclude contribution of 0 which is a simple
zero for all the polynomials Qn(x). So we will use µn given as

µn =
1

n

∑

{δx : Qn(x) = 0, x 6= 0}.
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Theorem 26. The normalized counting measures µn converge weakly to normalized Le-
besgue measure µ on the unit circle.

Proof. We will use the characterization of weak convergence in [1, Theorem 2.2, page
14]: Let U be a collection of open subsets of C such that (i) U is closed under finite
intersections and (ii) each open set is either a finite or countable union of elements of U .
If µn(U) → µ(U) for every U in U , then µn converges weakly to µ.

We will use the collection of open subsets of C consisting of annular wedges

W (r1, r2;φ1, φ2) = {x ∈ C : r1 < |x| < r2, φ1 < arg x < φ2} (3)

where r1, r2, φ1, φ2 ∈ Q+ with r1, r2 6= 1, r1 < r2, and φ2 − φ1 < π.
Since the zero attractor A must lie inside the closed unit disk, it is easy to verify that

lim sup
n→∞

µn(W (r1, r2;φ1, φ2)) = 0, r1 > 1.

For the reminder of the proof it is convenient to work with a normalized family of
polynomials Pn(x) = Qn(x)/x so Pn(x) have exactly the same nonzero roots as Qn(x) as
well as Pn(0) = 1, deg(Pn) = n− 1, and the coefficient [xn−1]Pn(x) = 1.

Let ǫ > 0 be given. Consider W (r1, r2;φ1, φ2) with r2 ≤ 1 − ǫ. Recall Jensen’s
formula from [9, pages 280-281]: suppose that f(x) is an analytic function on an open
neighborhood B(x0, r), let a0, a1, a2, . . . , am be the zeros inside this neighborhood. Then

ln |f(x0)| =
m
∑

k=0

ln
|ak|
r

+
1

2π

∫ 2π

0

ln |f(x0 + reit)| dt.

For the sake of completeness, we sketch how Jensen’s formula is used to count zeros
for Pn(x) with r = 1. We have the bounds

1

2π

∫ 2π

0

ln |Pn(eit)| dt = ln |Pn(0)| +
∑

{− ln |z| : Pn(z) = 0, |z| < 1}

≥ −
∑

{ln |z| : Pn(z) = 0, |z| < 1 − ǫ} > ǫnµn(B(0, 1 − ǫ).

On the other hand, we have the easy bound max{|Pn(z)| : |z| = 1} ≤ Pn(1) = PL(n).
Hence, we have the estimate

µn(B(0, 1 − ǫ)) ≤ 1

2πǫn
lnPL(n).

Since by Wright’s result PL(n) has subexponential growth, we conclude that

lim sup
n→∞

µn(B(0, 1 − ǫ)) = 0.

This implies, of course, that lim supn→∞ µn(W (r1, r2;φ1, φ2)) = 0 when r2 < 1.
For the final case we let 0 < r1 < 1 < r2. We need a theorem of Erdös and Turán

[11]. Let P (x) be a polynomial P (x) = a0 + a1x + · · · + adx
d where a0ad 6= 0. Set
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M =
∑ |aj|/

√

|a0ad| and set N(α, β) to be the number of zeros of P (x) whose arguments
lie in the interval [α, β]. Then

∣

∣

∣

∣

N(α, β)

d
− β − α

2π

∣

∣

∣

∣

< 16

√
lnM√
d

.

For the polynomials Pn(x), we find
∣

∣

∣

∣

µn+1(W (r1, r2;φ1, φ2)) −
φ2 − φ1

2π

∣

∣

∣

∣

< 16

√

ln[PL(n+ 1)]√
n

.

Since the plane partition numbers PL(n) have subexponential growth, we must have

lim
n→∞

µn(W (r1, r2;φ1, φ2)) =
φ2 − φ1

2π
.

By the characterization of weak convergence of probability measures, the normalized
counting measures do indeed converge to normalized Lebesgue measure on the unit circle.

5 Asymptotic Zero Distributions of Order n2/3

The zero attractor A of Qn(x) consists of the unit circle together with [x∗, 0] ∪ γ ∪ γ. In
the above section, we showed that the zeros in the limit are uniformly distributed along
the unit circle and are of order O(n). In this section, we determine the asymptotic zero
distributions along the level set γ and the line segment [x∗, 0] along the negative real axis
both of which are of order n2/3.

5.1 Distribution of Zeros along the level sets γ and γ (Proof of
Theorem 11)

We will apply the Density Theorem from [12]; see [5] for another exposition. Recall the
setup of this theorem. Let ψ be a conformal mapping from a neighborhood U of an analytic
arc C to a neighborhood of the unit circle of the form W = W (r1, r2;α, β) (see (3) for
this notation), where r1 < 1 < r2 and C is mapped to the circular arc Γ: eit, α ≤ t ≤ β.
Let W+ = W (1, r2;α, β) and W− = W (r1, 1;α, β) so U = ψ−1(W+) ∪ C ∪ ψ−1(W−).

Theorem 27. [12, Section 6] If (Tn(x)) is a sequence of analytic functions on U such
that

Tn(x) = 1 + an(x)ψ
cn(x) + en(x)

where (cn) is an unbounded increasing sequence of positive numbers and (an(x)) is a
sequence of analytic functions that satisfy uniformly on U as n → ∞: |an(x)| ≥ δ > 0,
a′n(x)
nan(x)

= o(1), and en(x) = oX(an(x)ψ
cn(x)) (X is a compact subset of W ) and further

en(x) =

{

oX(ψ(x)cn), x ∈ ψ−1(W+),

oX(1), x ∈ ψ−1(W−).

the electronic journal of combinatorics 18(2) (2012), #P30 15



where X is a compact subset of W±. Then for any ǫ > 0 all the zeros of Tn(x) lie in Cǫ
for n sufficiently large, where Cǫ is the ǫ-neighborhood of the analytic arc C and

lim
n→∞

1

cn

∑

{δψ(z) : z ∈ Z(Tn) ∩ Cǫ} → µ

where µ is normalized Lebesgue measure on the unit circle restricted to the circular arc
ψ(C). In particular, the zero density measure νZ for the family (Tn(x)) is νZ = µ ◦ ψ on
the arc C.

To apply this density theorem, we require an alternate form of Theorems 14 and
15 which is given in Remark 27 in [7]; if X is compact and disjoint from negative and
imaginary axes, then we have

Qn(x) = 12
√

1 − xI1,1,n(x) + (−1)n
24
√

1 − x2 8

√

1 − x

1 + x
I1,2,n(x), where

Ih,k,n(x) =

√

Lk(x)

n
4

3 6π
exp

(

n
2

3 (3
2
Lk(x))

)

(

1 +OX

(

1

n
1

3

))

.

We define Tn(x) by the normalization

Tn(x) =
Qn(x)

12
√

1 − xI1,1,n(x)
.

Observe that if x 6= 0, 1, then Ih,k,n(x) does not vanish and so Z(Qn(x)) and Z(Tn(x))
differ by at most two zeros. For the plane partition polynomials, the required functions
for the density result are

Tn(x) = 1 + an(x)ψ(x)n
2/3

+ en(x), cn = n2/3,

ψ(x) = e
3

2
(L2(x)−L1(x))

an(x) = (−1)n
24
√

1 − x2

12
√

1 − x
8

√

1 − x

1 + x

√

L2(x)

L1(x)

en(x) = OX

(

1

n1/3
an(x)ψ(x)n

2/3

)

=

{

oX(ψ(x)cn), x ∈ R(2),

oX(1), x ∈ R(1).

For convenience of the reader, we give a brief indication that the conditions of the
theorem are met. It is easy to see that ψ−1(W−) ⊂ R(1) and ψ−1(W+) ⊂ R(2); that is, if
x ∈ R(1), then ℜL1(x) > ℜL2(x) by its definition so

|ψ(x)| = exp(3
2
ℜ(L2(x) − L1(x))) < 1

and, in addition,

en(x) = OX

(

1

n1/3
an(x)ψ(x)n

2/3

)

= oX(1).
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Similarly, if x ∈ R(2) then ℜL2(x) > ℜL1(x) or |ψ(x)| > 1, so

en(x) = OX

(

1

n1/3
an(x)ψ(x)n

2/3

)

= oX(ψ(x)n
2/3

).

On γ, we have by definition ℜL1(x) = ℜL2(x), so

|ψ(x)| = exp(3
2
ℜ(L2(x) − L1(x))) = 1.

For an(x), we first observe that |an(x)| is independent of n and so is bounded as n→ ∞.
It is bounded away from zero, because an(x) has roots only when 1−x2 or when L2(x) =
3
√

2Li3(x2) vanish; that is, at x = ±1 and 0. Proposition 21 in [6] proved these points do
not lie on γ so we can choose the neighborhood small enough so they are excluded.

To finish the proof of the density result we need to address why ψ is conformal in a
neighborhood of γ. We use a special class of univalent functions called starlike (see the
book [10, Chapter 2]).

Definition 28. Let f(x) be an analytic function of D with f(0) = 0 and f ′(1) = 1. The
function f(x) is starlike if and only if f(D) is starlike (convex with respect to the origin).

See [10, Section 2.5] for the following:

Lemma 29. Starlike functions are univalent. An analytic function f(x) on D with f(0) =
0 and f ′(0) = 1 is starlike if and only if

ℜ
(

x
f ′(x)

f(x)

)

> 0.

Lemma 30. The function L1(x) = 3
√

2Li3(x) satisfies the inequality

ℜ
(

z
(xL′

1(x))
′

xL′
1(x)

)

= ℜ
(

Li1(x)

Li2(x)
− 2

3

Li2(x)

Li3(x)

)

> 0, for all x ∈ D.

Because of the computational nature and length of the proof of this lemma, we give
its proof in the appendix.

Lemma 31. Let f(x) = 3
2
(xL′

1(x))
3 = Li2(x)3

Li3(x)2
. Then we have (a) f(x) is starlike.

(b) zL′
1(z) is univalent.

Proof. (a) By cubing L1(x) we eliminate the branch cut which causes f(x) to be indeed
analytic. Trivially f(0) = 0, and f ′(0) = 1. Last observe the following trick:

ℜ
(

x
f ′(x)

f(x)

)

= ℜ
(

x
((xL′

1(x))
3)′

(xL′
1(x))

3

)

= 3ℜ
(

x
(xL′

1(x))
′

xL′
1(x)

)

> 0.

(b) By part (a), 3
2
(zL′

1(z))
3 is univalent. Hence (zL′

1(z))
3 and zL′

1(z) are univalent since
scaling and the single valued cube root are both univalent.
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With these brief comments about univalent functions, we can continue with our proof
of the density result. Our next step appeared in our paper [6] but we restate it because
of its importance to the argument.

Theorem 32. If x ∈ D and is nonzero, then for every k 6= j,

L′
k(x) 6= L′

j(x).

Proof. We show the contrapositive. Therefore, we suppose there are distinct positive
integers k, j so that L′

k(x) = L′
j(x) for some x ∈ D \ {0}. Therefore, x also solves the

equation xL′
k(x) = xL′

j(x). But, xL′
k(x) = xkL′

1(x
k). Thus,

xkL′
1(x

k) = xjL′
1(x

j).

Lemma 31 states: xL′
1(x) is univalent and thus xk = xj. Hence x would be either zero or

on the unit circle.

Lemma 33. The function ψ(x) = exp(3
2
(L2(x)−L1(x))) is conformal on a neighborhood

of γ.

Proof. It is enough to show that ψ′(x) is nonzero on γ since γ is compact. Note that γ
can be described also as |ψ(x)| = 1. Since we have that

ψ′(x) = 3
2
(L′

1(x) − L′
2(x))ψ(x),

the derivative ψ′(x) = 0 only if L′
1(x) = L′

2(x). By Theorem 32, this cannot be the case
so the proof is complete.

Now all the hypotheses of the Density Theorem are met so we may conclude that for
any ǫ0 > 0

lim
n→∞

1

n2/3
|{z ∈ C : ℑψ(z) ∈ (α, β), |ℜψ(z)| ≤ ǫ0, Qn(z) = 0}| =

β − α

2π
.

It seems very natural to use a line segment instead of an arc of the unit circle to
describing the density. This is easily done as follows. Define Ψ(z) = i ln f(z) = 3i

2
(L2(z)−

L1(z)). Then the function Ψ(z) maps the set ψ−1(W ) to the rectangle given by

Ψ(x∗) ≤ ℜΨ(z) ≤ Ψ(eiθ
∗π) and |ℑΨ(z)| ≤ ǫ0

and γ to the line segment [Ψ(x∗),Ψ(eiθ
∗π)] so we now have both parts of Theorem 11.

5.2 Distribution of the Zeros of Qn(x) along the negative axis

(Proof of Theorem 10)

In this section, we find the distribution of zeros along the line segment [x∗, 0]. The Density
Theorem is not directly applicable; however, the proof in [5] can be modified to handle
this situation. We begin with a simple lemma.
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Lemma 34. Let

Sn = {x ∈ (x∗, 0) :
√

L1(x)e
3

2
n

2
3 L1(x) ∈ R \ {0}}.

then for any x, y ∈ (x∗, 0) and any n we can choose xn, yn ⊂ Sn so that xn → x and
yn → y as n→ ∞.

This lemma allows us to use the Argument Principle: if Γǫ is a simple closed curve
then the number of zeros of Qn(x) contained in the interior of Γǫ is given by

1

2πi

∫

Γǫ

Q′
n(z)

Qn(z)
dz.

For ǫ > 0, n ∈ N, and xn, yn as in Lemma 34 we define Γǫ = Γ+ − Γ− + Γxn − Γyn .

Γ+ = {t+ iǫ : xn < t < yn}, Γ− = {t− iǫ : xn < t < yn},
Γxn = {xn + it : |t| ≤ ǫ}, Γyn = {yn + it : |t| ≤ ǫ}

which is a box with vertices at (xn, ǫ), (xn,−ǫ), (yn, ǫ), and (yn, ǫ). We can count the zeros
in a neighborhood of the negative axis by

|{ℜz ∈ (y, x) : |ℑz| ≤ ǫ, Qn(z) = 0}| =
1

2πi

∫

Γǫ

Q′
n(z)

Qn(z)
dz.

Using this strategy we decompose our contour into four separate integrals

1

2πi

∫

Γǫ

Q′
n(z)

Qn(z)
dz =

1

2πi

(

∫

Γ+

−
∫

Γ−

+

∫

Γxn

−
∫

Γyn

)

Q′
n(z)

Qn(z)
dz.

A direct application of Theorem 14 gives the contribution along the contours Γ±: “major
contours:”

Corollary 35.

lim
n→∞

1

2πin
2

3

∫

Γ+

Q′
n(z)

Qn(z)
dz =

3

2π

(L1(y + iǫ) − L1(x+ iǫ))

2i
,

lim
n→∞

1

2πin
2

3

∫

Γ−

Q′
n(z)

Qn(z)
dz =

3

2π

[L1(y + iǫ) − L1(x+ iǫ)]−

2i
.

Then we estimate the two remaining contours Γxn and Γyn (“minor contours”) by the
Bäcklund method of estimating the number of zeros of the zeta function (see [5] for an
exposition).

Lemma 36. (a) If W ′
n denotes the number of zeros of ℜQn(xn + it) on the interval

t ∈ [0, ǫ] then
∣

∣

∣

∣

1

2πin
2

3

∫

Γxn

Q′
n(x)

Qn(x)
dx

∣

∣

∣

∣

≤ W ′
n

n
2

3

.
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(b) If V ′
n denotes the number of zeros of ℜQn(yn + it) on the interval t ∈ [0, ǫ], then

∣

∣

∣

∣

∣

1

2πin
2

3

∫

Γyn

Q′
n(x)

Qn(x)
dx

∣

∣

∣

∣

∣

≤ V ′
n

n
2

3

.

Lemma 37.

lim sup
n→∞

1

n
2

3

W ′
n ≤ 3 sup

|z|=2ǫ

(ℜL1(x+ iz) − ℜL1(x))

lim sup
n→∞

1

n
2

3

V ′
n ≤ 3 sup

|z|=2ǫ

(ℜL1(y + iz) − ℜL1(y)).

Proof. Because the same estimates work for V ′
n almost verbatim, we only will estimate

W ′
n. To do so, define

RQn(z) =
1

2
[Qn(xn − iz) +Qn(xn + iz)].

The function RQn(z) is an analytic function such that when z is real, RQn(z) = ℜQn(xn+
iz). We let Wn denote the number of zeros RQn(z) inside B(xn, ǫ). Obviously W ′

n < Wn.
In [12], they use a standard consequence of Jensen’s formula: suppose that h(x) is

an analytic function that has m zeros inside B(a, r). If R > r and h(a) 6= 0, then
m ≤ max|ζ|=R(ln |h(a+ ζ) − lnh(a)|)/(lnR − ln r). To estimate Wn, we take R = 2ǫ and
r = ǫ to obtain

Wn ≤
sup|z|=2ǫ (ln |RQn(z)/RQn(0)|)

ln 2
≤ 2 sup

|z|=2ǫ

(

ln

∣

∣

∣

∣

Qn(xn + iz)

Qn(xn)

∣

∣

∣

∣

)

.

We then apply Theorem 15. Because xn ∈ Sn, given by Lemma 34, our estimate simplifies
to

Qn(xn) = 2 12
√

1 − xn





√

|L1(xn)|
n

4

3 6π
exp

(

n
2

3 (3
2
ℜL1(xn))

)





−
(

1 +OX

(

1

n
1

3

))

,

which allows us to write

lnQn(xn) = 3
2
n

2

3ℜL1(xn) +Ox(lnn).

To estimate Qn(x) uniformly on a neighborhood of xn we invoke another theorem from
[7]: If X ⊂ D is compact then we have the uniform estimate:

Qn(x) = OX

(

e
3
2
n

2
3 max[ℜL1(x),ℜL2(x)]

)

.

Because xn ∈ (x∗, 0) ⊂ R(1) for sufficiently small ǫ > 0, we can make the bound

2 sup
|z|=2ǫ

(ln |Qn(xn + iz)/Qn(xn)|) ≤ 3n
2

3 sup
|z|=2ǫ

(ℜL1(xn + iz) − ℜL1(xn)) +Ox(lnn).
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Conclude the proof of the lemma by taking the limit

lim
n→∞

1

n
2

3

Wn ≤ 3 sup
|z|=2ǫ

(ℜL1(x+ iz) − ℜL1(x)).

We now finish the proof of our density result. Combining Lemmas 36 and 37, we
obtain the bounds for the contours Γxn and Γyn:

lim
n→∞

1

2πin
2

3

∫

Γxn

Q′
n(x)

Qn(x)
dx ≤ 3 sup

|z|=2ǫ

(ℜL1(x+ iz) −ℜL1(x)) = Ox(ǫ),

lim
n→∞

1

2πin
2

3

∫

Γyn

Q′
n(x)

Qn(x)
dx ≤ 3 sup

|z|=2ǫ

(ℜL1(y + iz) − ℜL1(y)) = Oy(ǫ).

Substituting in all of our estimates, we obtain

lim
n→∞

1

n
2

3

1

2πi

∫

Γǫ

Q′
n(z)

Qn(z)
dz =

3

2π
ℑ[(L1(y + iǫ) − L1(x+ iǫ))] +Ox,y(ǫ).

We complete the proof by taking the infimum over ǫ > 0.

Remark 38. For any compact subset X on (x∗, 0), we see that the zeros of Qn(x) there
satisfy the equation

0 = 12
√

1 − x





√

L1(x)

n
4

3 6π
exp

(

n
2

3 (3
2
L1(x))

)





−
(

1 +OX

(

1

n
1

3

))

+ 12
√

1 − x





√

L1(x)

n
4

3 6π
exp

(

n
2

3 (3
2
L1(x))

)





(

1 +OX

(

1

n
1

3

))

,

which simplifies to

0 = cos
(

3
√

3
4
n

2

3
3
√

2 (−Li3(x))1/3 + π
6

)

+OX

(

n−1/3
)

(4)

since Li3(x) is negative on X the argument of L1(x) is constant. This last equation
provides a good quantitative estimate for the roots of the polynomial on X by deleting
the big-oh contribution:

cos
(

3
√

3
4
n

2

3
3
√

2 (−Li3(x))1/3 + π
6

)

= 0.

In Figure 5, we plot − log10 of the relative error e two ways so in both plots the
vertical axis measures the number of significant digits of accuracy. In the first plot, we
simply plot − log10(e) listing roots in a uniform fashion while in the second plot we plot
− log10(e) above the actual root on the negative axis. To find the numerical values for
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Figure 5: Two views of the relative error of using the approximation of the zero of the
asymptotic estimate instead of the actual root of Q2200(x). The vertical scale represents
the number of significant digits of accuracy.

the 79 negative zeros Q2200(x), we used the software MPSolve [2] while for solving the
nonlinear equation from the asymptotic estimate we used the command fsolve in Maple.

We observe that the results of this section are much stronger than simply knowing
that the zero attractor A contains the interval [x∗, 0] since the zeros of Qn(x) may be
non-real but still accumulate in the limit along a real interval while equation 4 guarantees
that Qn(x) has zeros in the compact subset X of (x∗, 0) for n sufficiently large.

6 Appendix: Proof of Lemma 30

In Figure 6, we see strong numerical evidence for the inequality of the lemma.

t
K3 K2 K1 0 1 2 3

0.2

0.4

0.6

0.8

1.0

Figure 6: On left plot is the plot of ℜ
(

Li1(x)
Li2(x)

− 2
3
Li2(x)
Li3(x)

)

where x = eiθ and θ ∈ (−π, π).

On the right, the constant 2/3 is changed to 3ζ(3) ln(2)/ζ(2)2.

the electronic journal of combinatorics 18(2) (2012), #P30 22



Proof. By the minimum principle for harmonic functions, it is sufficient to establish the
inequality on the unit circle. Let

f(θ) = ℜ
(

Li1(e
iθ)

Li2(eiθ)
− 2

3

Li2(e
iθ)

Li3(eiθ)

)

.

Note that f is an even function and f(θ) → ∞ as θ → 0+. So it is enough to show that
f(θ) > 0 on (0, π]. Since |Lis(eiθ)| is a decreasing function of θ [6, Section 2], we have the
bounds

(1 − 21−s)ζ(s) = Lis(−1) ≤ |Lis(eiθ)| ≤ ζ(s).

In particular, we find that 1
2
ζ(2) ≤ |Li2(eiθ)| ≤ ζ(2) and 3

4
ζ(3) ≤ |Li3(eiθ)| ≤ ζ(3) on

[0, π].
We first show that there exists θ0 ∈ (0, π) such that f(θ) > 0 on (0, θ0). Now we have

the lower bound

ℜ
(

Li1(e
iθ)

Li2(eiθ)
− 2

3

Li2(e
iθ)

Li3(eiθ)

)

≥ ℜ
(

Li1(e
iθ)

Li2(eiθ)

)

− 2

3

ζ(2)
3
4
ζ(3)

.

On (0, π], we can simplify further

ℜ
(

Li1(e
iθ)

Li2(eiθ)

)

= ℜ
(− ln(1 − eiθ)

Li2(eiθ)

)

= − ln |1 − eiθ| ℜ
(

1

Li2(eiθ)

)

+ arg(1 − eiθ)ℑ
(

1

Li2(eiθ)

)

≥ − ln |1 − eiθ| ℜ
(

1

Li2(eiθ)

)

− 2π

ζ(2)

= − ln |1 − eiθ| 1

|Li2(eiθ)|
cos(arg(Li2(e

iθ))) − 2π

ζ(2)
.

By [13], we know that Li2(x) is convex and therefore a starlike function. Recall that for
any starlike function g(x) if x = eiθ we have

ℜ
(

x
g′(x)

g(x)

)

=
d

dθ
arg g(eiθ) > 0.

In particular, argLi2(e
iθ) is an increasing function of θ.

For any θ1 such that 0 < argLi2(e
iθ1) < π/2, we know that cos argLi2(e

iθ) is decreasing
on (0, θ1) so is bounded below by cos argLi2(e

iθ1). So we obtain an refinement of the above
lower bound on (0, θ1)

ℜ
(

Li1(e
iθ)

Li2(eiθ)

)

≥ − ln |1 − eiθ| 1

|Li2(eiθ)|
cos(arg(Li2(e

iθ1))) − 2π

ζ(2)

which leads to the lower bound for f(θ)

f(θ) ≥ − ln |1 − eiθ| 1

ζ(2)
cos(arg(Li2(e

iθ1))) − 2π

ζ(2)
− 8

9

ζ(2)

ζ(3)
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We now restrict to θ such that

− ln |1 − eiθ| cos(arg(Li2(e
iθ1))) > 2π +

8

9

ζ(2)2

ζ(3)
.

This is equivalent to

cos θ > 1 − 1

2
exp

(

−2 sec(arg(Li2(e
iθ1)))

[

2π +
8

9

ζ(2)2

ζ(3)

])

.

Consequently, for θ < π/2, we have

θ < arccos

(

1 − 1

2
exp

(

−2 sec(arg(Li2(e
iθ1)))

[

2π +
8

9

ζ(2)2

ζ(3)

]))

= θ2.

Hence f(θ) > 0 on (0, θ0) where

θ0 = min[θ1, θ2, θ3]

where θ3 ≃ 1.32779 3289 . . . is chosen so argLi2(e
iθ3) = π/2. We find that θ0 may be

taken as 2 × 10−5.
We now turn to establishing the inequality on [θ0, π]. Now f(θ) is differentiable and

f ′(θ) = −ℑ
(

eiθ

(1 − eiθ)Li2(eiθ)
−
(

ln(1 − eiθ)

Li2(eiθ)

)2

+
ln(1 − eiθ)

Li2(eiθ)
+

2

3

(

Li2(e
iθ)

Li3(eiθ)

)

)

We need a uniform bound for |f ′(eiθ)| on [θ0, π]. We begin with the bound
∣

∣

∣

∣

eiθ

(1 − eiθ)Li2(eiθ)

∣

∣

∣

∣

≤ π

θ0ζ(2)
.

Since | ln(1 − eiθ)| is decreasing on (0, π), we have
∣

∣

∣

∣

ln(1 − eiθ)

Li2(eiθ)

∣

∣

∣

∣

≤ 2
| ln(1 − eiθ0)|

ζ(2)

Hence, we have the upper bound

|f ′(θ)| ≤ π

θ0ζ(2)
+ 4

| ln(1 − eiθ0)|2
ζ(2)2

+ 2
| ln(1 − eiθ0)|

ζ(2)
+

8

9

ζ(2)2

ζ(3)2

≃ 95683.44241 . . .

≤ 95700.

To sum up, we have shown that f(θ) is a real-valued differentiable function on [θ0, π] such
that the magnitude of its derivative there is bounded by 95700. Suppose f(θi) > 0 for some
θi ∈ [θ0, π]. Then f(θ) > 0 for |θ − θi| ≤ f(θi)/194000. This provides a computational
method to finish the proof.

Let θ0 = 2×10−5. Note that f(θ) > 0 on [θ0, θ0 +f(θ0)/19400]. Next, given θ0 < θ1 <
· · · < θi−1 for i ≥ 1 such that f(θ) > 0 on [θ0, θi−1], let θi = θi−1 +f(θi−1)/19400. Then we
have that f is positive on [θ0, θi]. The lemma holds provided there exists an integer i such
that θi > π. Numerically, we verified that f(θi) ≥ 0.23457 35690, for 0 ≤ i ≤ 2135923,
and θ2135924 = 3.14200 0829 > π. So the proof is complete.
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Remark 39. We thank the referee for suggesting the above proof. The bound in Lemma
30 is not tight; for example, W. Zudilin [19] suggested the improvement of changing the
coefficient 2/3 to 3ζ(3) ln(2)/ζ(2)2 ≃ 0.92379 31819 that gives equality at x = −1. See
Figure 6.

References

[1] Patrick Billingsley, “Convergence of Probability Measures,” Wiley, 1999.

[2] Dario Bini and Giuseppe Fiorentino, Design, analysis, and implementation of a mul-
tiprecision polynomial rootfinder, Numerical Algorithms, 23 (2000), 127–173.

[3] M. Biskup, C. Borgs, J. T. Chayes, and R. Kotecky, Partition function zeros at
first-order phase transitions: A general analysis, Commun. Math. Phys, 116 (2004)
79–131.

[4] Robert P. Boyer and William M. Y. Goh, Partition polynomials: asymptotics and
zeros, In Tapas in experimental mathematics, Contemporary Mathematics, Volume
457, pages 99–111. Amer. Math. Soc., Providence, RI, 2008.

[5] Robert P. Boyer and William M. Y. Goh, Appell Polynomials and Their Zero At-
tractors, Contemporary Mathematics, Volume 517 (2010), 69–96.

[6] Robert P. Boyer and Daniel T. Parry. Phase calculations for plane partition polyno-
mials, accepted for publication, Rocky Mountain Journal of Mathematics.

[7] Robert P. Boyer Daniel T. Parry, Plane partition polynomials and weighted plane
partitions. submitted for publication, 2011.

[8] E. Rodney Canfield, Sylvie Corteel, and Carla D. Savage, Durfee polynomials, Elec-
tron. J. Combin., 5 (1998) #R32 (21 pages).

[9] John Conway, “Functions of One Complex Variables” Graduate Texts in Mathematics
Vol. 11, Springer-Verlag, New York, NY, 1978.

[10] Peter L. Duren, “Univalent Functions,” Grundlehren der mathematischen Wis-
senschaften Vol. 259, Springer-Verlag, New York, NY, 1983.

[11] Paul Erdös and P. Turán, On the distribution of roots of polynomials, Ann. Math.
(2) 51 (1950) 105–119.

[12] William M. Y. Goh, Matthew He, and Paolo Ricci, On the universal zero attractor
of the Tribonacci-related polynomials, Calcolo 46 (2009) 95–129.

[13] John L. Lewis, Convexity of a Certain Series, J. London Math. Society (2), 27 (1983)
435–446.

[14] Athanase Papadopoulos, “Metric Spaces, Convexity and Nonpositive Curvature,”
European Mathematical Society, 2005.

[15] Alan Sokal, Chromatic roots are dense in the whole complex plane, Combinatorics,
Probability & Computing 13 (2004), 221-261.

[16] Richard P. Stanley, http://www-math.mit.edu/∼rstan/zeros

the electronic journal of combinatorics 18(2) (2012), #P30 25



[17] E. M. Wright, Asymptotic Partition Formulae: (I) Plane Partitions, Quart. J. Math.
Oxford Ser. (2) 2 (1931) 177-189.

[18] E. M. Wright, Asymptotic Partition Formulae: (II) Weighted Partitions, Proceedings
of the London Mathematical Society (2) 36 (1933) 117-141.

[19] Wadim Zudilin, http://mathoverflow.net/questions/54609 (version:

2011-02-07)

the electronic journal of combinatorics 18(2) (2012), #P30 26


