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1 Introdu
tionA ballot path of size n is a path on the square latti
e, 
onsisting of north and east steps,starting at (0, 0), ending at (n, n), and never going below the diagonal {x = y}. Thereare three standard ways, often named after Stanley, Kreweras and Tamari, to endow theset of ballot paths of size n with a latti
e stru
ture (see [15, 20, 22℄, and [4℄ or [21℄ fora survey). We fo
us here on the Tamari latti
e Tn, whi
h, as detailed in the followingproposition, is 
onveniently des
ribed by the asso
iated 
overing relation. See Figure 1for an illustration.
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Figure 1: A 
overing relation in the Tamari latti
e, shown on ballot paths and binarytrees. The path en
odes the postorder of the tree (apart from the �rst leaf).Proposition 1. [4, Prop. 2.1℄ Let P and Q be two ballot paths of size n. Then Q 
overs
P in the Tamari latti
e Tn if and only if there exists in P an east step a, followed by anorth step b, su
h that Q is obtained from P by swapping a and S, where S is the shortestfa
tor of P that begins with b and is a (translated) ballot path.Alternatively, the Tamari latti
e Tn is often des
ribed in terms of rooted binary trees.The 
overing relation amounts to a re-organization of three subtrees, often 
alled rotation(Figure 1). The equivalen
e between the two des
riptions is obtained by reading the treein postorder, and en
oding ea
h leaf (resp. inner node) by a north (resp. east) step (apartfrom the �rst leaf, whi
h is not en
oded). We refer to [4, Se
. 2℄ for details. The Hassediagram of the latti
e Tn is the 1-skeleton of the asso
iahedron, or Stashe� polytope [11℄.A few years ago, Chapoton [12℄ proved that the number of intervals in Tn (i.e., pairs
P, Q ∈ Tn su
h that P ≤ Q) is

2

n(n + 1)

(

4n + 1

n − 1

)

.He observed that this number is known to 
ount 3-
onne
ted planar triangulations on n+3verti
es [30℄. Motivated by this result, Bernardi and Boni
hon found a beautiful bije
tion
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Figure 2: The relation ≺ between m-ballot paths (m = 2).between Tamari intervals and triangulations [4℄. This bije
tion is in fa
t a restri
tion ofa more general bije
tion between intervals in the Stanley latti
e and S
hnyder woods. Afurther restri
tion leads to the enumeration of intervals of the Kreweras latti
e.In this paper, we study a generalization of the Tamari latti
es to m-ballot paths due toBergeron, and 
ount the intervals of these latti
es. Again, a remarkably simple formulaholds (see (1)). As we explain below, this formula was �rst 
onje
tured by F. Bergeron,in 
onne
tion with the study of 
oinvariant spa
es.An m-ballot path of size n is a path on the square grid 
onsisting of north and eaststeps, starting at (0, 0), ending at (mn, n), and never going below the line {x = my}. Itis a 
lassi
al exer
i
e to show that there are 1
mn+1

(

(m+1)n
n

) su
h paths [14℄. Consider thefollowing relation ≺ on m-ballot paths, illustrated in Figure 2.De�nition 2. Let P and Q be two m-ballot paths of size n. Then P ≺ Q if there exists in
P an east step a, followed by a north step b, su
h that Q is obtained from P by swapping aand S, where S is the shortest fa
tor of P that begins with b and is a (translated) m-ballotpath.As we shall see, the transitive 
losure of ≺ de�nes a latti
e on m-ballot paths of size
n. We 
all it the m-Tamari latti
e of size n, and denote it by T

(m)
n . Of 
ourse, T (1)

n
oin
ides with Tn. See Figure 3 for examples. The main result of this paper is a 
losedform expression for the number f
(m)
n of intervals in T

(m)
n :

f (m)
n =

m + 1

n(mn + 1)

(

(m + 1)2n + m

n − 1

)

. (1)The �rst step of our proof establishes that T (m)
n is in fa
t isomorphi
 to a sublatti
e(and more pre
isely, an upper ideal) of Tmn. We then pro
eed with a re
ursive des
riptionof the intervals of T (m)

n , whi
h translates into a fun
tional equation for the asso
iatedgenerating fun
tion (Se
tion 2, Proposition 8). This generating fun
tion keeps tra
k ofthe size of the paths, but also of a 
atalyti
 parameter1 that is needed to write the equation.This parameter is the number of 
onta
ts of the lower path with the line {x = my}. Ageneral theorem asserts that the solution of the equation is algebrai
 [7℄, and gives asystemati
 pro
edure to solve it for small values of m. However, for a generi
 value of1This terminology is due to Zeilberger [32℄.
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Figure 3: The m-Tamari latti
e T (m)
n for m = 1 and n = 4 (left) and for m = 2 and n = 3(right). The three walks surrounded by a line in T

(1)
4 form a latti
e that is isomorphi
 to

T
(2)

2 . This will be generalized in Se
tion 2.
m, we have to resort to a guess-and-
he
k approa
h to solve the equation (Se
tion 3,Theorem 10). We enri
h our enumeration by taking into a

ount the initial rise of theupper path, that is, the length of its initial run of north steps. We obtain an unexpe
tedsymmetry result: the joint distribution of the number of 
onta
ts of the lower path (minusone) and the initial rise of the upper path is symmetri
. Se
tion 4 presents 
omments andquestions.To 
on
lude this introdu
tion, we des
ribe the algebrai
 problem that led Bergeron to
onje
ture (1).Let X = (xi,j)1≤i≤ℓ

1≤j≤n

be a matrix of variables, for some positive integers ℓ, n ≥ 1. We 
allea
h line of X a set of variables. Let C[X] be the ring of polynomials in the variables of
X. The symmetri
 group Sn a
ts as a representation on C[X] by permuting the 
olumnsof X. That is, if σ ∈ Sn and f(X) ∈ C[X], then

σ(f(X)) = f(σ(X)) = f((xi,σ(j))1≤i≤ℓ

1≤j≤n

).We 
onsider the ideal I of C[X] generated by Sn-invariant polynomials having no 
onstantterm. The quotient ring C[X]/I is (multi-)graded be
ause I is (multi-)homogeneous, andis a representation of Sn be
ause I is invariant under the a
tion of Sn. We fo
us on thedimension of this quotient ring, and to the dimension of the sign subrepresentation. Wedenote by W ε the sign subrepresentation of a representation W .
the electronic journal of combinatorics 18(2) (2012), #P31 4



Let us begin with the 
lassi
al 
ase of a single set of variables. When X = [x1, . . . , xn],we 
onsider the 
oinvariant spa
e Rn, de�ned by
Rn = C[X]

/

〈{

n
∑

i=1

xr
i

∣

∣r ≥ 1
}〉

,where 〈S〉 denotes the ideal generated by the set S. It is known [1℄ that Rn is isomorphi
to the regular representation of Sn. In parti
ular, dim(Rn) = n! and dim(Rε
n) = 1. Thereexist expli
it bases of Rn indexed by permutations.Let us now move to two sets of variables. In the early nineties, Garsia and Haimanintrodu
ed an analogue of Rn forX =

[

x1 . . . xn

y1 . . . yn

], and 
alled it the diagonal 
oinvariantspa
e [19℄:
DR2,n = C[X]

/

〈{

n
∑

i=1

xr
i y

t
i

∣

∣r + t ≥ 1
}〉

.About ten years later, using advan
ed algebrai
 geometry [18℄, Haiman settled several
onje
tures of [19℄ 
on
erning this spa
e, proving in parti
ular that
dim(DR2,n) = (n + 1)n−1 and dim(DR ε

2,n) =
1

n + 1

(

2n

n

)

. (2)He also studied an extension of DR2,n involving an integer parameter m and the ideal Agenerated by alternants [16, 17℄:
A =

〈{

f(x)
∣

∣σ(f(X)) = (−1)inv(σ)f(X), ∀σ ∈ Sn

}〉

.There is a natural a
tion of Sn on the quotient spa
e Am−1
/

JAm−1. Let us twist thisa
tion by the (m − 1)st power of the sign representation ε: this gives rise to spa
es
DRm

2,n := εm−1 ⊗Am−1
/

JAm−1,so that DR1
2,n = DR2,n. Haiman [18, 17℄ generalized (2) by proving

dim(DRm
2,n) = (mn + 1)n−1 and dim(DRm ε

2,n ) =
1

mn + 1

(

(m + 1)n

n

)

.Both dimensions have simple 
ombinatorial interpretations: we re
ognize in the latter thenumber of m-ballot paths of size n, and the former is the number of m-parking fun
tionsof size n (these fun
tions 
an be des
ribed as m-ballot paths of size n in whi
h the northsteps are labelled from 1 to n in su
h a way the labels in
rease along ea
h run of northsteps; see e.g. [31℄). However, it is still an open problem to �nd bases of DRm
2,n or DRm ε

2,nindexed by these simple 
ombinatorial obje
ts.For ℓ ≥ 3, the spa
es DRℓ,n and their generalization DRm
ℓ,n 
an be de�ned similarly.Haiman explored the dimension of DRℓ,n and DR ε

ℓ,n. For ℓ = 3, he observed in [19℄ that,for small values of n,
dim(DR3,n) = 2n(n + 1)n−2 and dim(DR ε

3,n) =
2

n(n + 1)

(

4n + 1

n − 1

)

.
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Following dis
ussions with Haiman, Bergeron 
ame up with 
onje
tures that dire
tly implythe following generalization (sin
e DR1
3,n 
oin
ides with DR3,n):

dim(DRm
3,n) = (m+1)n(mn+1)n−2 and dim(DRm ε

3,n ) =
m + 1

n(mn + 1)

(

(m + 1)2n + m

n − 1

)

.Both 
onje
tures are still wide open.A mu
h simpler problem 
onsists in asking whether these dimensions again have asimple 
ombinatorial interpretation. Bergeron, starting from the sequen
e 2
n(n+1)

(

4n+1
n−1

),found in Sloane's En
y
lopedia that this number 
ounts, among others, 
ertain ballotrelated obje
ts, namely intervals in the Tamari latti
e [12℄. From this observation, andthe role played by m-ballot paths for two sets of variables, he was led to introdu
e the m-Tamari latti
e T
(m)

n , and 
onje
tured that m+1
n(mn+1)

(

(m+1)2n+m

n−1

) is the number of intervalsin this latti
e. This is the 
onje
ture we prove in this paper. Another of his 
onje
turesis that (m + 1)n(mn + 1)n−2 is the number of Tamari intervals where the larger path is�de
orated� by an m-parking fun
tion [3℄. This is proved in [6, 5℄.2 A fun
tional equation for the generating fun
tion ofintervalsThe aim of this se
tion is to des
ribe a re
ursive de
omposition of m-Tamari intervals, andto translate it into a fun
tional equation satis�ed by the asso
iated generating fun
tion(Proposition 8). There are two main tools:
• we prove that T (m)

n 
an be seen as an upper ideal of the usual Tamari latti
e Tmn,
• we give a simple 
riterion to de
ide when two paths of the Tamari latti
e are 
om-parable.2.1 An alternative des
ription of the m-Tamari latti
esOur �rst transformation is totally harmless: we apply a 45 degree rotation to 1-ballotpaths to transform them into Dy
k paths. A Dy
k path of size n 
onsists of steps (1, 1)(up steps) and steps (1,−1) (down steps), starts at (0, 0), ends at (0, 2n) and never goesbelow the x-axis.We now introdu
e some terminology, and use it to rephrase the des
ription of the(usual) Tamari latti
e Tn. Given a Dy
k path P , and an up step u of P , the shortestportion of P that starts with u and forms a (translated) Dy
k path is 
alled the ex
ursionof u in P . We say that u and the �nal step of its ex
ursion mat
h ea
h other. Finally, wesay that u has rank i if it is the ith up step of P .Given two Dy
k paths P and Q of size n, Q 
overs P in the Tamari latti
e Tn if andonly if there exists in P a down step d, followed by an up step u, su
h that Q is obtainedfrom P by swapping d and S, where S is the ex
ursion of u in P . This des
ription impliesthe following property [4, Cor. 2.2℄.
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Property 3. If P ≤ Q in Tn then P is below Q. That is, for i ∈ [0..2n], the ordinateof the vertex of P lying at abs
issa i is at most the ordinate of the vertex of Q lying atabs
issa i.
≺S

SFigure 4: The relation ≺ of Figure 2 reformulated in terms of m-Dy
k paths (m = 2).Consider now an m-ballot path of size n, and repla
e ea
h north step by a sequen
e of
m north steps. This gives a 1-ballot path of size mn, and thus, after a rotation, a Dy
kpath. In this path, for ea
h i ∈ [0..n − 1], the up steps of ranks mi + 1, . . . , m(i + 1)are 
onse
utive. We 
all the Dy
k paths satisfying this property m-Dy
k paths. Clearly,
m-Dy
k paths of size mn are in one-to-one 
orresponden
e with m-ballot paths of size n.Consider now the relation ≺ of De�nition 2: on
e reformulated in terms of Dy
k paths,it be
omes a 
overing relation in the (usual) Tamari latti
e (Figure 4). Conversely, it iseasy to 
he
k that, if P is an m-Dy
k path and Q 
overs P in the usual Tamari latti
e,then Q is also an m-Dy
k path, and the m-ballot paths 
orresponding to P and Q arerelated by ≺. We have thus proved the following result.Proposition 4. The transitive 
losure of the relation ≺ de�ned in De�nition 2 is alatti
e on m-ballot paths of size n. This latti
e is isomorphi
 to the sublatti
e of theTamari latti
e Tmn 
onsisting of the elements that are larger than or equal to the Dy
kpath umdm . . . umdm. The relation ≺ is the 
overing relation of this latti
e.Notation. From now on, we only 
onsider Dy
k paths. We denote by T the set of Dy
kpaths, and by Tn the Tamari latti
e of Dy
k paths of length n. By T (m) we mean theset of m-Dy
k paths, and by T

(m)
n the Tamari latti
e of m-Dy
k paths of size mn. Thislatti
e is a sublatti
e of Tmn. Note that T (1) = T and T

(1)
n = Tn.2.2 Distan
e fun
tionsLet P be a Dy
k path of size n. For an up step u of P , we denote by ℓP (u) the size of theex
ursion of u in P . The fun
tion DP : [1..n] → [1..n] de�ned by DP (i) = ℓ(ui), where uiis the ith up step of P , is 
alled the distan
e fun
tion of P . It will sometimes be 
onvenientto see DP as a ve
tor (ℓ(u1), . . . , ℓ(un)) with n 
omponents. In parti
ular, we will 
omparedistan
e fun
tions 
omponent-wise. The main result of this subse
tion is a des
ription ofthe Tamari order in terms of distan
e fun
tions. This simple 
hara
terization seems tobe new.Proposition 5. Let P and Q be two paths in the Tamari latti
e Tn. Then P ≤ Q if andonly if DP ≤ DQ.
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In order to prove this, we �rst des
ribe the relation between the distan
e fun
tions oftwo paths related by a 
overing relation.Lemma 6. Let P be a Dy
k path, and d a down step of P followed by an up step u. Let
S be the ex
ursion of u in P , and let Q be the path obtained from P by swapping d and S.Let u′ be the up step mat
hed with d in P , and i0 the rank of u′ in P . Then DQ(i) = DP (i)for ea
h i 6= i0 and DQ(i0) = DP (i0) + ℓP (u).

u
′

u u
′ u

≺

S
S

P Q
2ℓP (u

′) 2ℓP (u) 2ℓQ(u
′)

dFigure 5: How the distan
e fun
tion 
hanges in a 
overing relation.This lemma is easily proved using Figure 5. It already implies that DP ≤ DQ if
P ≤ Q. The next lemma establishes the reverse impli
ation, thus 
on
luding the proof ofProposition 5.Lemma 7. Let P and Q be two Dy
k paths of size n su
h that DP ≤ DQ. Then P ≤ Qin the Tamari latti
e Tn.Proof. Let us �rst prove, by indu
tion on the size, that P is below Q (in the sense ofProperty 3). This is 
learly true if n = 0, so we assume n > 0.Let u be the �rst up step (in P and Q). Note that ℓP (u) = DP (1) ≤ DQ(1) = ℓQ(u).Let P ′ (resp. Q′) be the path obtained from P (resp. Q) by 
ontra
ting u and the downstep mat
hed with u. Observe that DP ′ is obtained by deleting the �rst 
omponent of
DP , and similarly for DQ′ and DQ. Consequently DP ′ ≤ DQ′, and hen
e by the indu
tionhypothesis, P ′ is below Q′. Let us 
onsider momentarily Dy
k paths as fun
tions, andwrite P (i) = j if the vertex of P lying at abs
issa i has ordinate j. Note that P (i) =
P ′(i − 1) + 1 for 1 ≤ i < 2ℓP (u), and P (i) = P ′(i − 2) for 2ℓP (u) ≤ i ≤ 2n. Similarly
Q(i) = Q′(i − 1) + 1 for 1 ≤ i < 2ℓQ(u), and Q(i) = Q′(i − 2) for 2ℓQ(u) ≤ i ≤ 2n. Sin
e
ℓP (u) ≤ ℓQ(u) and P ′(i) ≤ Q′(i) for 0 ≤ i ≤ 2n − 2, one easily 
he
ks that P (i) ≤ Q(i)for 0 ≤ i ≤ 2n, so that P is below Q.In order to prove that P ≤ Q, we pro
eed by indu
tion on ||DP − DQ||, where
||(x1, . . . , xn)|| = |x1|+ · · ·+ |xn|. If DP = DQ then P = Q, be
ause P is below Q and Qis below P . So let us assume that DP 6= DQ. Let i be minimal su
h that DP (i) < DQ(i).We 
laim that P and Q 
oin
ide at least until their up step of rank i. Indeed, sin
e Plies below Q, the paths P and Q 
oin
ide up to some abs
issa, and then we �nd a downstep δ in P but an up step in Q. Let j be the rank of the up step that mat
hes δ in
P . This up step belongs also to Q, and, sin
e δ 6∈ Q, we have DP (j) < DQ(j). Hen
e
j ≥ i by minimality of i, and P and Q 
oin
ide at least until their up step of rank i,whi
h we denote by u. Let d be the down step mat
hed with u in P (Figure 6). Sin
e
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DP (i) < DQ(i), the step d is not a step of Q. The step of Q lo
ated at the same abs
issaas d ends stri
tly higher than d, and in parti
ular, at a positive ordinate. Hen
e d is notthe �nal step of P . Let s be the step following d in P .
u d

su′

P
Q Figure 6: Why s 
annot be des
ending.Let us prove ad absurdum that s is an up step. Assume s is down. Then s is mat
hedin P with an up step u′ of rank j < i (Figure 6). Hen
e u′ belongs to Q and has rank j in

Q. Sin
e s 
annot belong to Q, this implies that DP (j) < DQ(j), whi
h 
ontradi
ts theminimality of i.Hen
e s is an up step of P (Figure 7). Let S be the ex
ursion of s in P . Sin
e
ℓQ(u) > ℓP (u) and sin
e Q is above P , we have ℓQ(u) ≥ ℓP (u) + ℓP (s), i.e., DQ(i) ≥
DP (i) + ℓP (s). Let P ′ be the path obtained from P by swapping d and S. Then P ′
overs P in the Tamari latti
e. By Lemma 6, DP = DP ′ ex
ept at index i (the rank of
u), where DP ′(i) = DP (i) + ℓP (s). Sin
e DP (i) + ℓP (s) ≤ DQ(i), we have DP ′ ≤ DQ.But ||DP ′ − DQ|| = ||DP − DQ|| − ℓP (s) and by the indu
tion hypothesis, P ′ ≤ Q in theTamari latti
e. Hen
e P < P ′ ≤ Q, and the lemma is proved.

u d s

2ℓP (u) 2ℓP (s)

2ℓQ(u)

Q
P Figure 7: General form of P and Q.

2.3 Re
ursive de
omposition of intervals and fun
tional equationA 
onta
t of a Dy
k path P is a vertex of P lying on the x-axis. It is initial if it is (0, 0).A 
onta
t of a Tamari interval [P, Q] is a 
onta
t of the lower path P . The re
ursivede
omposition of intervals that we use makes the number of 
onta
ts 
ru
ial, and we say
the electronic journal of combinatorics 18(2) (2012), #P31 9



that this parameter is 
atalyti
. We also 
onsider another, non-
atalyti
 parameter, whi
hwe �nd to be equidistributed with non-initial 
onta
ts (even more, the joint distributionof these two parameters is symmetri
). Given an m-Dy
k path Q, the length of the initialrun of up steps is of the form mk; the integer k is 
alled the initial rise of Q. The initialrise of an interval [P, Q] is the initial rise of the upper path Q. The aim of this subse
tionis to establish the following fun
tional equation.Proposition 8. For m ≥ 1, let F (x) ≡ F (m)(t; x) be the generating fun
tion of m-Tamariintervals, where t 
ounts the size (divided by m) and x the number of 
onta
ts. Then
F (x) = x + xt (F (x) · ∆)(m) (F (x)),where ∆ is the following divided di�eren
e operator

∆S(x) =
S(x) − S(1)

x − 1
,and the power m means that the operator G(x) 7→ F (x) · ∆G(x) is applied m times to

F (x).More generally, if F (x, y) ≡ F (m)(t; x, y) keeps tra
k in addition of the initial rise (viathe variable y), we have the following fun
tional equation:
F (x, y) = x + xyt (F (x, 1) · ∆)(m) (F (x, y)). (3)Note that ea
h of the above two equations de�nes a unique formal power series in t(think of extra
ting indu
tively the 
oe�
ient of tn in F (m)(t; x) or F (m)(t; x, y)).Examples1. When m = 1, the above equation reads

F (x, y) = x + xytF (x, 1) · ∆(F (x, y))

= x + xytF (x, 1)
F (x, y) − F (1, y)

x − 1
.When y = 1, we obtain, in the terminology of [7℄, a quadrati
 equation with one 
atalyti
variable:

F (x) = x + xtF (x)
F (x) − F (1)

x − 1
.2. When m = 2,

F (x, y) = x + xyt F (x, 1) · ∆(F (x, 1) · ∆(F (x, y)))

= x + xyt F (x, 1) · ∆

(

F (x, 1)
F (x, y) − F (1, y)

x − 1

)

= x +
xyt

x − 1
F (x, 1)

(

F (x, 1)
F (x, y) − F (1, y)

x − 1
− F (1, 1)F ′(1, y)

)

,
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where the derivative is taken with respe
t to the variable x. When y = 1, we obtain a
ubi
 equation with one 
atalyti
 variable:
F (x) = x +

xt

x − 1
F (x)

(

F (x)
F (x) − F (1)

x − 1
− F (1)F ′(1)

)

.The solution of (3) will be the topi
 of the next se
tion. For the moment we fo
us on theproof of this equation.We say that a vertex q lies to the right of a vertex p if the abs
issa of q is greaterthan or equal to the abs
issa of p. A k-pointed Dy
k path is a tuple (P ; p1, . . . , pk) where
P is a Dy
k path and p1, . . . , pk are 
onta
ts of P su
h that pi+1 lies to the right of
pi, for 1 ≤ i < k (note that some pi's may 
oin
ide). Given an m-Dy
k path P ofpositive size, let u1, . . . , um be the initial (
onse
utive) up steps of P , and let d1, . . . , dmbe the down steps mat
hed with u1, . . . , um, respe
tively. The m-redu
tion of P is the
m-pointed Dy
k path (P ′; p1, . . . , pm) where P ′ is obtained from P by 
ontra
ting allthe steps u1, . . . , um, d1, . . . , dm, and p1, . . . , pm are the verti
es of P ′ resulting from the
ontra
tion of d1, . . . , dm. It is easy to 
he
k that they are indeed 
onta
ts of P ′ (Figure 8).

⇒

P
P ′

DP = (10,7, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1) DP ′ = (2, 1, 4, 1, 2, 1, 2, 1, 2, 1)

x1=6 x2=8Figure 8: The m-redu
tion of an m-Dy
k path (m = 2).The map P 7→ (P ′; p1, . . . , pm) is 
learly invertible, hen
e m-Dy
k paths of size mnare in bije
tion with m-pointed m-Dy
k paths of size m(n− 1). Note that the non-initial
onta
ts of P 
orrespond to the 
onta
ts of P ′ that lie to the right of pm. Note also thatthe distan
e fun
tion DP ′ (seen as a ve
tor with m(n − 1) 
omponents) is obtained bydeleting the �rst m 
omponents of DP . Conversely, denoting by 2xi the abs
issa of pi,
DP is obtained by prepending to DP ′ the sequen
e (xm + m, xm−1 + m − 1, . . . , x1 + 1).In view of Proposition 5, this gives the following re
ursive 
hara
terization of intervals.Lemma 9. Let P and Q be two m-Dy
k paths of size mn > 0. Let (P ′; p1, . . . , pm) and
(Q′; q1, . . . , qm) be the m-redu
tions of P and Q respe
tively. Then P ≤ Q in T

(m)
n if andonly if P ′ ≤ Q′ in T

(m)
n−1 and for i ∈ [1..m], the point qi lies to the right of pi.The non-initial 
onta
ts of P 
orrespond to the 
onta
ts of P ′ lo
ated to the right of

pm.Let us 
all k-pointed interval in T (m) a pair 
onsisting of two k-pointed m-Dy
k paths
(P ; p1, . . . , pk) and (Q; q1, . . . , qk) su
h that P ≤ Q and for i ∈ [1..k], the point qi liesto the right of pi. An a
tive 
onta
t of su
h a pair is a 
onta
t of P lying to the rightof pk (if k = 0, all 
onta
ts are de
lared a
tive). For 0 ≤ k ≤ m, let us denote by
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G(m,k)(t; x, y) ≡ G(k)(x, y) the generating fun
tion of k-pointed m-Tamari intervals, where
t 
ounts the size (divided by m), x the number of a
tive 
onta
ts, and y the initial rise (wedrop the supers
ript m sin
e it will not vary). In parti
ular, the series we are interestedin is

F (x, y) = G(0)(x, y). (4)Moreover, Lemma 9 implies
F (x, y) = x + xytG(m)(x, y). (5)We will prove that, for k ≥ 0,

G(k+1)(x, y) = F (x, 1) · ∆G(k)(x, y). (6)The fun
tional equation (3) then follows using (4) and (5).For k ≥ 0, let I = [P •, Q•] be a (k + 1)-pointed interval in T (m), with P • =
(P ; p1, . . . , pk+1) and Q• = (Q; q1, . . . , qk+1) (see an illustration in Figure 9 when k = 0).Sin
e P is below Q, the 
onta
t qk+1 of Q is also a 
onta
t of P . By de�nition of pointedintervals, qk+1 is to the right of p1, . . . , pk+1. De
ompose P as PℓPr where Pℓ is the partof P to the left of qk+1 and Pr is the part of P to the right of qk+1. De
ompose similarly
Q as QℓQr, where the two fa
tors meet at qk+1. The distan
e fun
tion DP (seen as ave
tor) is DPℓ


on
atenated with DPr
, and similarly for DQ. In parti
ular, DPℓ

≤ DQℓand DPr
≤ DQr

. By Proposition 5, Ir := [Pr, Qr] is an interval, while Iℓ := [P ◦, Q◦],with P ◦ = (Pℓ; p1, . . . , pk) and Q◦ = (Qℓ; q1, . . . , qk), is a k-pointed interval. Its initial riseequals the initial rise of I. We denote by Φ the map that sends I to the pair of intervals
(Ir, Iℓ).

⇒

,

⇒

p1 q1Figure 9: The re
ursive de
omposition of intervals. Starting from an m-Tamari intervalof size n (here, m = 1 and n = 7), one �rst obtains by redu
tion an m-pointed intervalof size n − 1 (Lemma 9). This interval is further de
omposed into two intervals, the �rstone being (m − 1)-pointed.Conversely, take an interval Ir = [Pr, Qr] and a k-pointed interval Iℓ = [P ◦, Q◦],where P ◦ = (Pℓ; p1, . . . , pk) and Q◦ = (Qℓ; q1, . . . , qk). Let P = PℓPr, Q = QℓQr, anddenote by qk+1 the point where Qℓ and Qr (and Pr and Pℓ) meet. This is a 
onta
t of Pand Q. Then the preimages of (Ir, Iℓ) by Φ are all the intervals I = [P •, Q•] su
h that
P • = (P ; p1, . . . , pk+1) and Q• = (Q; q1, . . . , qk+1), where pk+1 is any a
tive 
onta
t of Pℓ.If Pℓ has i a
tive 
onta
ts and Pr has j 
onta
ts, then (Ir, Iℓ) has i preimages, havingrespe
tively j, 1 + j, . . . , i + j − 1 a
tive 
onta
ts (j a
tive 
onta
ts when pk+1 = qk+1,
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and i + j − 1 a
tive 
onta
ts when pk+1 = pk). Let us write G(k)(x, y) =
∑

i≥0 G
(k)
i (y)xi,so that G

(k)
i (y) 
ounts (by the size and the initial rise) k-pointed intervals with i a
tive
onta
ts. The above dis
ussion gives

G(k+1)(x, y) = F (x, 1)
∑

i≥1

G
(k)
i (y)(1 + x + · · ·+ xi−1)

= F (x, 1)
∑

i≥1

G
(k)
i (y)

xi − 1

x− 1

= F (x, 1) · ∆G(k)(x, y),as 
laimed in (6). The fa
tor F (x, 1) a

ounts for the 
hoi
e of Ir, and the term ∆G(k)(x, y)for the 
hoi
e of Iℓ and pk+1. This 
ompletes the proof of Proposition 8.3 Solution of the fun
tional equationIn this se
tion, we solve the fun
tional equation of Proposition 8, and thus establish themain result of this paper. We obtain in parti
ular an unexpe
ted symmetry property: theseries yF (m)(t; x, y) is symmetri
 in x and y. In other words, the joint distribution of thenumber of non-initial 
onta
ts (of the lower path) and the initial rise (of the upper path)is symmetri
.For any ring A, we denote by A[x] the ring of polynomials in x with 
oe�
ients in A,and by A[[x]] the ring of formal power series in x with 
oe�
ients in A. This notation isextended to the 
ase of polynomials and series in several indeterminates x1, x2, . . .Theorem 10. For m ≥ 1, let F (m)(t; x, y) be the generating fun
tion of m-Tamari inter-vals, where t 
ounts the size (divided by m), x the number of 
onta
ts of the bottom path,and y the initial rise of the upper path. Let z, u and v be three indeterminates, and set
t = z(1 − z)m2+2m, x =

1 + u

(1 + zu)m+1
, and y =

1 + v

(1 + zv)m+1
. (7)Then F (m)(t; x, y) be
omes a formal power series in z with 
oe�
ients in Q[u, v], and thisseries is rational. More pre
isely,

yF (m)(t; x, y) =
(1 + u)(1 + zu)(1 + v)(1 + zv)

(u − v)(1 − zuv)(1 − z)m+2

(

1 + u

(1 + zu)m+1
−

1 + v

(1 + zv)m+1

)

. (8)In parti
ular, yF (m)(t; x, y) is a symmetri
 series in x and y.Remark. This result was �rst guessed for small values of m. More pre
isely, we �rstguessed the values of ∂iF
∂x

(1, 1) for 0 ≤ i ≤ m − 1, and then 
ombined these 
onje
turedvalues with the fun
tional equation to obtain 
onje
tures for F (x, 1) and F (x, y). Let us
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illustrate our guessing pro
edure on the 
ase m = 1. We �rst 
onsider the 
ase y = 1,where the equation reads
F (x, 1) = x + xtF (x, 1)

F (x, 1) − F (1, 1)

x − 1
. (9)Our �rst obje
tive is to guess the value of F (1, 1). Using the above equation, we easily
ompute, say, the 20 �rst 
oe�
ients of F (1, 1). Using the Maple pa
kage gfun [27℄, we
onje
ture from this list of 
oe�
ients that f ≡ F (1, 1) satis�es

1 − 16 t − (1 − 20 t) f −
(

3 t + 8 t2
)

f 2 − 3 t2f 3 − t3f 4 = 0.Using the pa
kage alg
urves, we �nd that the above equation admits a rational parame-trization, for instan
e
t = z(1 − z)3, f = F (1, 1) =

1 − 2z

(1 − z)3
.This is the end of the �guessing� part2. Assume the above identity holds, and repla
e tand F (1, 1) in (9) by their expressions in terms of z. This gives an algebrai
 equation in

F (x, 1), x and z. Again, the pa
kage alg
urves reveals that this equation, seen as anequation in F (x, 1) and x, has a rational parametrization, for instan
e
x =

1 + u

(1 + zu)2
, F (x, 1) =

(1 + u) (1 − 2 z − z2u)

(1 + zu) (1 − z)3 .Let us �nally return to the fun
tional equation de�ning F (x, y):
F (x, y) = x + xytF (x, 1)

F (x, y)− F (1, y)

x − 1
.In this equation, repla
e t, x and F (x, 1) by their 
onje
tured expressions in terms of zand u. This gives

(

1 + zu − zy
(1 + u)2

u

)

F (x, y) =
1 + u

1 + zu
− zy

(1 + u)2

u
F (1, y). (10)We 
on
lude by applying to this equation the kernel method (see, e.g. [2, 8, 26℄): let

U ≡ U(z; y) be the unique formal power series in z (with 
oe�
ients in Q[y]) satisfying
U = zy(1 + U)2 − zU2.Equivalently,

U = z
1 + v

1 − 2z − z2v
, with y =

1 + v

(1 + zv)2
.2For a general value of m, one has to guess the series ∂

i
F

∂x
(1, 1) for 0 ≤ i ≤ m − 1. All of them arefound to be rational fun
tions of z, when t = z(1 − z)m

2
+2m.
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Setting u = U in (10) 
an
els the left-hand side, and thus the right-hand side, giving
yF (1, y) =

(1 + v) (1 − 2 z − z2v)

(1 + zv) (1 − z)3 .A 
onje
ture for the trivariate series F (t; x, y) follows, using (10). This 
onje
ture 
oin-
ides with (8). 2Before we prove Theorem 10, let us give a 
losed form expression for the number ofintervals in T
(m)

n .Corollary 11. Let m ≥ 1 and n ≥ 1. The number of intervals in the Tamari latti
e T
(m)

nis
f (m)

n =
m̄

n(mn + 1)

(

nm̄2 + m

n − 1

)

,where we denote m̄ = m + 1. For 2 ≤ i ≤ n + 1, the number of intervals in whi
h thebottom path has i 
onta
ts with the x-axis is
f

(m)
n,i =

(nm̄2 − im̄ + m)!(im̄ − m)!

(nm̄2 − n − im + 2m)!(n − i + 1)!(mi)!(i − 2)!
Pm(n, i), (11)where Pm(n, i) is a polynomial in n and i. In parti
ular,

P1(n, i) = 2, P2(n, i) = 6(33 in − 9 i2 + 15 i− 2 n − 2).More generally,
i(i − 1)Pm(n, i) = −m̄!(m − 1)!(n − i + 1)

(

im̄

m

)(

nm(m + 2) − im + 2m

m − 1

)

+
m−2
∑

k=1

kk!2(m − k − 2)!(m − k − 1)!((i + 1)mm̄ + 2m̄ + k)(n − i)(n − i + 1)×

(

im̄ − k − 1

m − k − 1

)(

im

k

)(

nm̄2 − im̄ + m + k

k

)(

nm(m + 2) − im + 2m

m − k − 2

)

+ m!2
(

im

m − 1

)(

i

(

nm̄2 − im̄ + 2m

m

)

−
(m − 1)(im̄ + 2)(n − i + 1)

m

(

nm̄2 − im̄ + 2m − 1

m − 1

))

. (12)Remarks1. The 
ase m = 1 of (11) reads
f

(1)
n,i =

(i − 1)(4n − 2i + 1)!

(3n − i + 2)!(n − i + 1)!

(

2i

i

)

.This result 
an also obtained using Bernardi and Boni
hon's bije
tion between intervalsof size n in the (usual) Tamari latti
e and planar 3-
onne
ted triangulations having n+3
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verti
es [4℄. Indeed, through this bije
tion, the number of 
onta
ts in the lower pathof the interval be
omes the degree of the root-vertex of the triangulation, minus one [4,Def. 3.2℄. The above result is thus equivalent to a result of Brown 
ounting triangulationsby the number of verti
es and the degree of the root-vertex [10, Eq. (4.7)℄.2. Our expression of Pm is not illuminating, but we have given it to prove that Pm isindeed a polynomial. If we �x i rather than m, then, experimentally, Pm(n, i) seems tobe a sum of two hypergeometri
 terms in m and n. More pre
isely, it appears that
Pm(n, i) =

mm̄!(im)!

(im̄ − m)!
(

n

i−1

)×

(

m̄Ri(m, n)

(

nm̄2 − (i − 2)m̄ − 1

m̄

)

+ Qi(m, n)

(

nm(m + 2) − (i − 2)m

m

))

,where Ri and Qi are two polynomials in m and n. This holds at least for small values of
i.3. The 
oe�
ients of the trivariate series F (t; x, y) do not seem to have small primefa
tors, even when m = 1.Proof of Theorem 10. The fun
tional equation of Proposition 8 de�nes a unique formalpower series in t (think of extra
ting indu
tively the 
oe�
ient of tn in F (t; x, y)). The
oe�
ients of this series are polynomials in x and y. The parametrized expression of
F (t; x, y) given in Theorem 10 also de�nes F (t; x, y) uniquely as a power series in t,be
ause (7) de�nes z, u and v uniquely as formal power series in t (with 
oe�
ientsin Q, Q[x] and Q[y] respe
tively). Thus it su�
es to prove that the series F (t; x, y) ofTheorem 10 satis�es the equation of Proposition 8.If G(t; x, y) ≡ G(x, y) is any series in Q[x, y][[t]], then performing the 
hange of vari-ables (7) gives G(t; x, y) = H(z; u, v), where

H(z; u, v) ≡ H(u, v) = G

(

z(1 − z)m2+2m;
1 + u

(1 + zu)m+1
,

1 + v

(1 + zv)m+1

)

.Moreover, if F (x, y) is given by (8), then
F (x, 1) =

(1 + u)(1 + zu)

u(1 − z)m+2

(

1 + u

(1 + zu)m+1
− 1

)

,and
F (x, 1)∆G(x, y) =

(1 + u)(1 + zu)

(1 − z)m+2

H(u, v)− H(0, v)

u
.Let us de�ne an operator Λ as follows: for any series H(z; u, v) ∈ Q[u, v][[z]],

ΛH(z; u, v) := (1 + u)(1 + zu)
H(z; u, v) − H(z; 0, v)

u
. (13)
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Then the series F (t; x, y) of Theorem 10 satis�es the equation of Proposition 8 if and only ifthe series H(u, v) obtained by performing the 
hange of variables (7) in y(1−z)m+2F (x, y),that is,
H(u, v) =

(1 + u)(1 + zu)(1 + v)(1 + zv)

(u − v)(1 − zuv)

(

1 + u

(1 + zu)m+1
−

1 + v

(1 + zv)m+1

)

. (14)satis�es
zΛ(m)H(u, v) =

(1 + zu)m+1(1 + zv)m+1

(1 + u)(1 + v)
H(u, v)− (1 − z)m+2. (15)Hen
e we simply have to prove an identity on rational fun
tions. Observe that both

H(u, v) and the 
onje
tured expression of Λ(m)H(u, v) are symmetri
 in u and v. Moregenerally, 
omputing (with the help of Maple) the rational fun
tions Λ(k)H(u, v) for afew values of m and k suggests that these fra
tions are always symmetri
 in u and v. Thisobservation raises the following question: Given a symmetri
 fun
tion H(u, v), when is
ΛH(u, v) also symmetri
? This leads to the following lemma, whi
h will redu
e the proofof (15) to the 
ase v = 0.Lemma 12. Let H(z; u, v) ≡ H(u, v) be a series of Q[u, v][[z]], symmetri
 in u and v.Let Λ be the operator de�ned by (13), and denote H1(u, v) := ΛH(u, v). Then H1(u, v) issymmetri
 in u and v if and only if H satis�es

H(u, v) =
u(1 + v)(1 + zv)H(u, 0)− v(1 + u)(1 + zu)H(v, 0)

(u − v)(1 − zuv)
. (16)If this holds, then H1(u, v) also satis�es (16) (with H repla
ed by H1). By indu
tion, thesame holds for Hk(u, v) := Λ(k)H(u, v).The proof is a straightforward 
al
ulation.Note that a series H satisfying (16) is 
hara
terized by the value of H(u, 0). The series

H(u, v) given by (14) satis�es (16), with
H(u, 0) =

(1 + u)(1 + zu)

u

(

1 + u

(1 + zu)m+1
− 1

)

= Λ

(

1 + u

(1 + zu)m+1

)

.Moreover, one easily 
he
ks that the right-hand side of (15) also satis�es (16), as expe
tedfrom Lemma 12. Thus it su�
es to prove the 
ase v = 0 of (15), namely
zΛ(m+1)

(

1 + u

(1 + zu)m+1

)

=
(1 + u)(1 + zu)

u

(

1 −
(1 + zu)m+1

1 + u

)

− (1 − z)m+2. (17)This will be a simple 
onsequen
e of the following lemma.Lemma 13. Let Λ be the operator de�ned by (13). For m ≥ 1,
Λ(m)

(

1

(1 + zu)m

)

= (1 − z)m − (1 + zu)m.
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Proof. We will a
tually prove a more general identity. Let 1 ≤ k ≤ m, and denote
w = 1 + zu. Then

Λ(k)

(

1

(1 + zu)m

)

=
(1 − z)k

wm−k
−

m−1
∑

i=k

k
∑

j=1

(−1)k+jzk−j+1

wm−i−1

(

k

j − 1

)(

i − j + 1

k − j

)

+
k−1
∑

i=1

i
∑

j=1

(−1)j−1zjwk−i

(

i − 1

j − 1

)(

m − k + j − 1

j

)

− wk. (18)The 
ase k = m is the identity of Lemma 13. In order to prove (18), we need an expressionof Λ(wp), for all p ∈ Z. Using the de�nition (13) of Λ, one obtains, for p ≥ 1,






























Λ

(

1

wp

)

=
1 − z

wp−1
− z

p−2
∑

a=0

1

wa
− w,

Λ(1) = 0,

Λ (wp) = (z − 1)w + z

p
∑

a=2

wa + wp+1.

(19)
We now prove (18), by indu
tion on k ≥ 1. For k = 1, (18) 
oin
ides with theexpression of Λ(1/wp) given above (with p repla
ed by m). Now let 1 ≤ k < m. Apply

Λ to (18), use (19) to express the terms Λ(wp) that appear, and then 
he
k that the
oe�
ient of wazb is what it is expe
ted to be, for all values of a and b. The details are abit tedious, but elementary. One needs to apply a few times the following identity:
r2
∑

r=r1

(

r − a

b

)

=
(r2 + 1 − a − b)

b + 1

(

r2 + 1 − a

b

)

−
(r1 − a − b)

b + 1

(

r1 − a

b

)

.We give in the appendix a 
onstru
tive proof of Lemma 13, whi
h does not requireto guess the more general identity (18). It is also possible to derive (18) 
ombinatoriallyfrom (19) using one-dimensional latti
e paths (in this setting, (19) des
ribes what stepsare allowed if one starts at position p, for any p ∈ Z).Let us now return to the proof of (17). We write
z

1 + u

(1 + uz)m+1
=

1

(1 + uz)m
+

z − 1

(1 + uz)m+1
.Thus

zΛ(m+1)

(

1 + u

(1 + uz)m+1

)

= Λ

(

Λ(m)

(

1

(1 + uz)m

))

+ (z − 1)Λ(m+1)

(

1

(1 + uz)m+1

)

= Λ ((1 − z)m − (1 + uz)m)

+(z − 1)
(

(1 − z)m+1 − (1 + uz)m+1
)by Lemma 13. Eq. (17) follows, and Theorem 10 is proved.
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Proof of Corollary 11. Let us �rst determine the 
oe�
ients of F (t; 1, 1). By letting uand v tend to 0 in the expression of yF (t; x, y), we obtain
F (t; 1, 1) =

1 − (m + 1)z

(1 − z)m+2
,where t = z(1 − z)m2+2m. The Lagrange inversion formula gives

[tn]F (t; 1, 1) =
1

n
[tn−1]

1 − (m + 1)2t

(1 − t)nm(m+2)+m+3
,and the expression of f

(m)
n follows after an elementary 
oe�
ient extra
tion.We now wish to express the 
oe�
ient of tnxi in

F (t; x, 1) =
(1 + u)(1 + zu)

u(1 − z)m+2

(

1 + u

(1 + zu)m+1
− 1

)

.We will expand this series, �rst in x, then in t, applying the Lagrange inversion formula�rst to u, then to z. We �rst expand (1 − z)m+2F (t; x, 1) in partial fra
tions of u:
(1− z)m+2F (t; x, 1) = −z1m>1 − (1 + zu)−

m−2
∑

k=1

z

(1 + uz)k
+

1 − z2

z(1 + uz)m−1
−

(1 − z)2

z(1 + uz)m
.By the Lagrange inversion formula, applied to u, we have, for i ≥ 1 and p ≥ −m,

[xi](1 + zu)p =
p

i

(

im̄ + p − 1

i − 1

)

zi(1 − z)im+p,with m̄ = m + 1. Hen
e, for i ≥ 1,
i[xi]F (t; x, 1) = −

(

im̄

i − 1

)

zi(1 − z)(i−1)m−1 +
m−2
∑

k=1

k

(

im̄ − k − 1

i − 1

)

zi+1(1 − z)(i−1)m−k−2

− (m − 1)

(

im̄ − m

i − 1

)

zi−1(1 + z)(1 − z)(i−2)m + m

(

(i − 1)m̄

i − 1

)

zi−1(1 − z)(i−2)m.We rewrite the above line as
(

im̄ − m

i − 1

)(

i

im̄ − m
zi−1(1 − z)(i−2)m − (m − 1)zi(1 − z)(i−2)m

)

.Re
all that z = t

(1−z)m2+2m
. Hen
e, for i ≥ 1,

i[xitn]F (t; x, 1) = −

(

im̄

i − 1

)

[tn−i]
1

(1 − z)m̄(im+1)

+
m−2
∑

k=1

k

(

im̄ − k − 1

i − 1

)

[tn−i−1]
1

(1 − z)(i+1)mm̄+2m̄+k

+

(

im̄ − m

i − 1

)(

i

im̄ − m
[tn−i+1]

1

(1 − z)m(im̄−m)
− (m − 1)[tn−i]

1

(1 − z)m(im̄+2)

)

.
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By the Lagrange inversion formula, applied to z, we have, for p ≥ 1 and n ≥ 1,
[tn]

1

(1 − z)p
=

p

n

(

nm̄2 + p − 1

n − 1

)

.This formula a
tually holds for n = 0 if we write it as
[tn]

1

(1 − z)p
=

p (nm̄2 + p − 1)!

n! (nm̄2 − n + p)!
,and a
tually for n < 0 as well with the 
onvention ( a

n−1

)

= 0 if n < 0. With this
onvention, we have, for 1 ≤ i ≤ n + 1,
i[xitn]F (t; x, 1) = −

m̄(im + 1)

n − i

(

im̄

i − 1

)(

nm̄2 − im̄ + m

n − i − 1

)

+
m−2
∑

k=1

k
(i + 1)mm̄ + 2m̄ + k

n − i − 1

(

im̄ − k − 1

i − 1

)(

nm̄2 − im̄ + m + k

n − i − 2

)

+ m

(

im̄ − m

i − 1

)(

i

n − i + 1

(

nm̄2 − im̄ + 2m

n − i

)

−(m − 1)
im̄ + 2

n − i

(

nm̄2 − im̄ + 2m − 1

n − i − 1

))

.This gives the expression (11) of f (m)
n,i , with Pm(n, i) given by (12). Clearly, i(i−1)Pm(n, i)is a polynomial in n and i, but we still have to prove that it is divisible by i(i − 1).For m ≥ 1 and 1 ≤ k ≤ m − 2, the polynomials (im̄

m

) and (im
k

) are divisible by i. Thenext-to-last term of (12) 
ontains an expli
it fa
tor i. The last term vanishes if m = 1,and otherwise 
ontains a fa
tor ( im

m−1

), whi
h is a multiple of i. Hen
e ea
h term of (12)is divisible by i.Finally, the right-hand side of (12) is easily evaluated to be 0 when i = 1, using thesum fun
tion of Maple.4 Final 
ommentsBije
tive proofs? Given the simpli
ity of the numbers (1), it is natural to ask about abije
tive enumeration of m-Tamari intervals. A related question would be to extend thebije
tion of [4℄ (whi
h transforms 1-Tamari intervals into triangulations) into a bije
tionbetween m-Tamari intervals and 
ertain maps (or related stru
tures, like balan
ed treesor mobiles [28, 9℄). Counting these stru
tures in a bije
tive way (as is done in [25℄ fortriangulations) would then provide a bije
tive proof of (1).Symmetry. The fa
t that the joint distribution of the number of non-initial 
onta
ts ofthe lower path and the initial rise of the upper path is symmetri
 remains a 
ombinatorialmystery to us, even when m = 1. What is easy to see is that the joint distribution of the
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number of non-initial 
onta
ts of the lower path and the �nal des
ent of the upper pathis symmetri
. Indeed, there exists a simple involution on Dy
k paths that reverses theTamari order and ex
hanges these two parameters: If we 
onsider Dy
k paths as postorderen
odings of binary trees, this involution amounts to a simple re�e
tion of trees. Via thebije
tion of [4℄, these two parameters 
orrespond to the degrees of two verti
es of theroot-fa
e of the triangulation [4, Def. 3.2℄, so that the symmetry is also 
lear in thissetting.A q-analogue of the fun
tional equation. As des
ribed in the introdu
tion, thenumbers f
(m)
n are 
onje
tured to give the dimension of 
ertain polynomial rings DRm ε

3,n .These rings are tri-graded (with respe
t to the sets of variables {xi}, {yi} and {zi}), and itis 
onje
tured [3℄ that the dimension of the homogeneous 
omponent in the xi's of degree
k is the number of intervals [P, Q] in T

(m)
n su
h that the longest 
hain from P to Q, inthe Tamari order, has length k. One 
an re
y
le the re
ursive des
ription of intervalsdes
ribed in Se
tion 2.3 to generalize the fun
tional equation of Proposition 8, taking intoa

ount (with a new variable q) this distan
e. Eq. (3) remains valid, upon de�ning theoperator ∆ by

∆S(x) =
S(qx) − S(1)

qx − 1
.The 
oe�
ient of tn in the series F (t, q; x, y) does not seem to fa
tor, even when x = y = 1.The 
oe�
ients of the bivariate series F (t, q; 1, 1) have large prime fa
tors.More on m-Tamari latti
es? We do not know of any simple des
ription of the m-Tamari latti
e in terms of rotations in m + 1-ary trees (whi
h are equinumerous with

m-Dy
k paths). A rotation for ternary trees is de�ned in [23℄, but does not give a latti
e.However, as noted by the referee, if we interpret m-ballot paths as the pre�x (rather thanpost�x) 
ode of an m + 1-ary tree, the 
overing relation 
an be des
ribed quite simply.One �rst 
hooses a leaf ℓ that is followed (in pre�x order) by an internal node v. Then,denoting by T0, . . . , Tm the m + 1 subtrees atta
hed to v, from left to right, we insert vand its �rst m subtrees in pla
e of the leaf ℓ, whi
h be
omes the rightmost 
hild of v. Therightmost subtree of v, Tm, �nally takes the former pla
e of v (Figure 10).
≺

ℓ
v

T0

T1 T2

ℓ

v

T0

T1

T2

Figure 10: The 
overing relation of Figure 2 translated in terms of ternary trees.More generally, it may be worth exploring analogues for the m-Tamari latti
es of thenumerous questions that have been studied for the usual Tamari latti
e. To mention only
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one, what is the diameter of the m-Tamari latti
e, that is, the maximal distan
e betweentwo m-Dy
k paths in the Hasse diagram? When m = 1, it is known to be 2n − 6 for nlarge enough, but the proof is as 
ompli
ated as the formula is simple [13, 29℄.
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⊳ � ⋄ � ⊲Appendix. A 
onstru
tive approa
h to Lemma 13. In order to prove Lemma 13, wehad to prove the more general identity (18). This identity was �rst guessed by expanding

Λ(k)(1/wm) in w and z, for several values of k and m. Fortunately, the 
oe�
ients in thisexpansion turned out to be simple produ
ts of binomial 
oe�
ients.What if these 
oe�
ients had not been so simple? A 
onstru
tive approa
h goes asfollows. Introdu
e the following two formal power series in3 t and s, with 
oe�
ients in
Q[w, 1/w, z]:

P (t; s) =
∑

m≥1,k≥0

tksm−1Λ(k)(wm) and N(t; s) =
∑

m≥0,k≥0

tksmΛ(k)

(

1

wm

)

,where we still denote w = 1 + zu. Observe that
P (t; 0) =

∑

k≥0

tkΛ(k)(w).We want to 
ompute the 
oe�
ient of tmsm of N(t; s), sin
e this 
oe�
ient is Λ(m)(1/wm).Eq. (19) yield fun
tional equations for the series P and N . For P (t; s) �rst,
P (t; s) =

∑

m≥1

sm−1wm + t
∑

m≥1,k≥1

tk−1sm−1Λ(k−1)

(

(z − 1)w + z

m
∑

a=2

wa + wm+1

)

=
w

1 − sw
+

t(z − 1)

1 − s
P (t; 0) +

tz

1 − s
(P (t; s) − P (t; 0)) + t

P (t; s) − P (t; 0)

s
.Equivalently,

(

1 −
tz

1 − s
−

t

s

)

P (t; s) =
w

1 − sw
−

tP (t; 0)

s(1 − s)
. (20)Now for N(t; s), we have

N(t; s) =
∑

m≥0

sm

wm
+ t

∑

m≥1,k≥1

tk−1smΛ(k−1)

(

1 − z

wm−1
− z

m−2
∑

a=0

1

wa
− w

)

=
1

1 − s/w
+ ts(1 − z)N(t; s) −

tzs2

1 − s
N(t; s) −

ts

1 − s
P (t; 0).3The variable t that we use here has nothing to do with the variable t that o

urs in the generatingfun
tion F (t; x, y) of intervals.
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Equivalently,
(

1 − ts +
tzs

1 − s

)

N(t; s) =
1

1 − s/w
−

ts

1 − s
P (t; 0). (21)Equation (20) 
an be solved using the kernel method (see e.g. [2, 8, 26℄): let S ≡ S(t, z)be the unique formal power series in t, with 
oe�
ients in Q[z], having 
onstant term 0and satisfying

1 −
tz

1 − S
−

t

S
= 0.That is,

S =
1 + t − tz −

√

1 − 2t(1 + z) + t2(1 − z)2

2
. (22)Then setting s = S 
an
els the left-hand side of (20), giving

P (t; 0) =
wS(1 − S)

t(1 − wS)
.Combined with (21), this yields an expli
it expression of N(t; s):

N(t; s) =
1

1 − ts + tzs
1−s

(

1

1 − s/w
−

wsS(1 − S)

(1 − s)(1 − wS)

)

.We want to extra
t from this series the 
oe�
ient of tmsm, and obtain the simple expres-sion (1−z)m −wm predi
ted by Lemma 13. Clearly, the �rst part of the above expressionof N(t; s) (with non-positive powers of w) 
ontributes (1 − z)m, as expe
ted. For i ≥ 1,the 
oe�
ient of wi in the se
ond part of N(t; s) is
Ri := −

sSi(1 − S)

(1 − s)
(

1 − ts + tzs
1−s

) .Re
all that S, given by (22), depends on t and z, but not on s. Sin
e S = t + O(t2), the
oe�
ient of tmsm in Ri is zero for i > m. When i = m, it is easily seen to be −1, asexpe
ted. In order to prove that the 
oe�
ient of tmsm in Ri is zero when 0 < i < m, we�rst perform a partial fra
tion expansion of Ri in s, using
(1 − s)

(

1 − ts +
tzs

1 − s

)

= (1 − sS)(1 − st/S),where S is de�ned by (22). This gives
Ri = −

Si+1(1 − S)

t − S2

(

1

1 − ts/S
−

1

1 − sS

)

,so that
[sm]Ri = −

Si+1−m(1 − S)

t − S2

(

tm − S2m
)

=

m−1
∑

j=0

tm−1−jS2j+i−m+1(S − 1)
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and
[smtm]Ri =

m−1
∑

j=0

[tj+1]S2j+i−m+1(S − 1) =
m−i
∑

j=0

[tj+1]S2j+i−m+1(S − 1). (23)The Lagrange inversion gives, for n ≥ 1 and k ∈ Z,
[tn]Sk(S − 1) =



























0 if n < k;
−1 if n = k;
1 − kz if n = k + 1;

1

n

n−k
∑

p=1

zp

(

n

p

)(

n − k − 1

p − 1

)

n − p − kp

n − k − 1
otherwise.Returning to (23), this gives

[smtm]Ri = −(m − i − 1)z+

m−i−2
∑

j=0

m−i−j
∑

p=1

zp

j + 1

(

j + 1

p

)(

m − i − j − 1

p − 1

)

j + 1 − p(2j + i − m + 2)

m − i − j − 1
.Proving that this is zero boils down to proving, that, for 1 ≤ p ≤ m − i,

m−i−2
∑

j=0

1

j + 1

(

j + 1

p

)(

m − i − j − 1

p − 1

)

j + 1 − p(2j + i − m + 2)

m − i − j − 1
= (m − i − 1)1p=1.This is easily proved using Zeilberger's algorithm [24, Chap. 6℄, via the Maple pa
kageEkhad (
ommand zeil), or dire
tly using the Maple 
ommand sum.
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